xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * arch/parisc/kernel/firmware.c  - safe PDC access routines
4  *
5  *	PDC == Processor Dependent Code
6  *
7  * See http://www.parisc-linux.org/documentation/index.html
8  * for documentation describing the entry points and calling
9  * conventions defined below.
10  *
11  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
12  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
13  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
14  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
15  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
16  */
17 
18 /*	I think it would be in everyone's best interest to follow this
19  *	guidelines when writing PDC wrappers:
20  *
21  *	 - the name of the pdc wrapper should match one of the macros
22  *	   used for the first two arguments
23  *	 - don't use caps for random parts of the name
24  *	 - use the static PDC result buffers and "copyout" to structs
25  *	   supplied by the caller to encapsulate alignment restrictions
26  *	 - hold pdc_lock while in PDC or using static result buffers
27  *	 - use __pa() to convert virtual (kernel) pointers to physical
28  *	   ones.
29  *	 - the name of the struct used for pdc return values should equal
30  *	   one of the macros used for the first two arguments to the
31  *	   corresponding PDC call
32  *	 - keep the order of arguments
33  *	 - don't be smart (setting trailing NUL bytes for strings, return
34  *	   something useful even if the call failed) unless you are sure
35  *	   it's not going to affect functionality or performance
36  *
37  *	Example:
38  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
39  *	{
40  *		int retval;
41  *
42  *		spin_lock_irq(&pdc_lock);
43  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
44  *		convert_to_wide(pdc_result);
45  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
46  *		spin_unlock_irq(&pdc_lock);
47  *
48  *		return retval;
49  *	}
50  *					prumpf	991016
51  */
52 
53 #include <stdarg.h>
54 
55 #include <linux/delay.h>
56 #include <linux/init.h>
57 #include <linux/kernel.h>
58 #include <linux/module.h>
59 #include <linux/string.h>
60 #include <linux/spinlock.h>
61 
62 #include <asm/page.h>
63 #include <asm/pdc.h>
64 #include <asm/pdcpat.h>
65 #include <asm/processor.h>	/* for boot_cpu_data */
66 
67 #if defined(BOOTLOADER)
68 # undef  spin_lock_irqsave
69 # define spin_lock_irqsave(a, b) { b = 1; }
70 # undef  spin_unlock_irqrestore
71 # define spin_unlock_irqrestore(a, b)
72 #else
73 static DEFINE_SPINLOCK(pdc_lock);
74 #endif
75 
76 extern unsigned long pdc_result[NUM_PDC_RESULT];
77 extern unsigned long pdc_result2[NUM_PDC_RESULT];
78 
79 #ifdef CONFIG_64BIT
80 #define WIDE_FIRMWARE 0x1
81 #define NARROW_FIRMWARE 0x2
82 
83 /* Firmware needs to be initially set to narrow to determine the
84  * actual firmware width. */
85 int parisc_narrow_firmware __ro_after_init = 1;
86 #endif
87 
88 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
89  * and MEM_PDC calls are always the same width as the OS.
90  * Some PAT boxes may have 64-bit IODC I/O.
91  *
92  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
93  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
94  * This allowed wide kernels to run on Cxxx boxes.
95  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
96  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
97  */
98 
99 #ifdef CONFIG_64BIT
100 long real64_call(unsigned long function, ...);
101 #endif
102 long real32_call(unsigned long function, ...);
103 
104 #ifdef CONFIG_64BIT
105 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
106 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
107 #else
108 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
109 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
110 #endif
111 
112 
113 /**
114  * f_extend - Convert PDC addresses to kernel addresses.
115  * @address: Address returned from PDC.
116  *
117  * This function is used to convert PDC addresses into kernel addresses
118  * when the PDC address size and kernel address size are different.
119  */
120 static unsigned long f_extend(unsigned long address)
121 {
122 #ifdef CONFIG_64BIT
123 	if(unlikely(parisc_narrow_firmware)) {
124 		if((address & 0xff000000) == 0xf0000000)
125 			return 0xf0f0f0f000000000UL | (u32)address;
126 
127 		if((address & 0xf0000000) == 0xf0000000)
128 			return 0xffffffff00000000UL | (u32)address;
129 	}
130 #endif
131 	return address;
132 }
133 
134 /**
135  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
136  * @address: The return buffer from PDC.
137  *
138  * This function is used to convert the return buffer addresses retrieved from PDC
139  * into kernel addresses when the PDC address size and kernel address size are
140  * different.
141  */
142 static void convert_to_wide(unsigned long *addr)
143 {
144 #ifdef CONFIG_64BIT
145 	int i;
146 	unsigned int *p = (unsigned int *)addr;
147 
148 	if (unlikely(parisc_narrow_firmware)) {
149 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
150 			addr[i] = p[i];
151 	}
152 #endif
153 }
154 
155 #ifdef CONFIG_64BIT
156 void set_firmware_width_unlocked(void)
157 {
158 	int ret;
159 
160 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
161 		__pa(pdc_result), 0);
162 	convert_to_wide(pdc_result);
163 	if (pdc_result[0] != NARROW_FIRMWARE)
164 		parisc_narrow_firmware = 0;
165 }
166 
167 /**
168  * set_firmware_width - Determine if the firmware is wide or narrow.
169  *
170  * This function must be called before any pdc_* function that uses the
171  * convert_to_wide function.
172  */
173 void set_firmware_width(void)
174 {
175 	unsigned long flags;
176 	spin_lock_irqsave(&pdc_lock, flags);
177 	set_firmware_width_unlocked();
178 	spin_unlock_irqrestore(&pdc_lock, flags);
179 }
180 #else
181 void set_firmware_width_unlocked(void)
182 {
183 	return;
184 }
185 
186 void set_firmware_width(void)
187 {
188 	return;
189 }
190 #endif /*CONFIG_64BIT*/
191 
192 
193 #if !defined(BOOTLOADER)
194 /**
195  * pdc_emergency_unlock - Unlock the linux pdc lock
196  *
197  * This call unlocks the linux pdc lock in case we need some PDC functions
198  * (like pdc_add_valid) during kernel stack dump.
199  */
200 void pdc_emergency_unlock(void)
201 {
202  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
203         if (spin_is_locked(&pdc_lock))
204 		spin_unlock(&pdc_lock);
205 }
206 
207 
208 /**
209  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
210  * @address: Address to be verified.
211  *
212  * This PDC call attempts to read from the specified address and verifies
213  * if the address is valid.
214  *
215  * The return value is PDC_OK (0) in case accessing this address is valid.
216  */
217 int pdc_add_valid(unsigned long address)
218 {
219         int retval;
220 	unsigned long flags;
221 
222         spin_lock_irqsave(&pdc_lock, flags);
223         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
224         spin_unlock_irqrestore(&pdc_lock, flags);
225 
226         return retval;
227 }
228 EXPORT_SYMBOL(pdc_add_valid);
229 
230 /**
231  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
232  * @instr: Pointer to variable which will get instruction opcode.
233  *
234  * The return value is PDC_OK (0) in case call succeeded.
235  */
236 int __init pdc_instr(unsigned int *instr)
237 {
238 	int retval;
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&pdc_lock, flags);
242 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
243 	convert_to_wide(pdc_result);
244 	*instr = pdc_result[0];
245 	spin_unlock_irqrestore(&pdc_lock, flags);
246 
247 	return retval;
248 }
249 
250 /**
251  * pdc_chassis_info - Return chassis information.
252  * @result: The return buffer.
253  * @chassis_info: The memory buffer address.
254  * @len: The size of the memory buffer address.
255  *
256  * An HVERSION dependent call for returning the chassis information.
257  */
258 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
259 {
260         int retval;
261 	unsigned long flags;
262 
263         spin_lock_irqsave(&pdc_lock, flags);
264         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
265         memcpy(&pdc_result2, led_info, len);
266         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
267                               __pa(pdc_result), __pa(pdc_result2), len);
268         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
269         memcpy(led_info, pdc_result2, len);
270         spin_unlock_irqrestore(&pdc_lock, flags);
271 
272         return retval;
273 }
274 
275 /**
276  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
277  * @retval: -1 on error, 0 on success. Other value are PDC errors
278  *
279  * Must be correctly formatted or expect system crash
280  */
281 #ifdef CONFIG_64BIT
282 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
283 {
284 	int retval = 0;
285 	unsigned long flags;
286 
287 	if (!is_pdc_pat())
288 		return -1;
289 
290 	spin_lock_irqsave(&pdc_lock, flags);
291 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
292 	spin_unlock_irqrestore(&pdc_lock, flags);
293 
294 	return retval;
295 }
296 #endif
297 
298 /**
299  * pdc_chassis_disp - Updates chassis code
300  * @retval: -1 on error, 0 on success
301  */
302 int pdc_chassis_disp(unsigned long disp)
303 {
304 	int retval = 0;
305 	unsigned long flags;
306 
307 	spin_lock_irqsave(&pdc_lock, flags);
308 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
309 	spin_unlock_irqrestore(&pdc_lock, flags);
310 
311 	return retval;
312 }
313 
314 /**
315  * pdc_chassis_warn - Fetches chassis warnings
316  * @retval: -1 on error, 0 on success
317  */
318 int pdc_chassis_warn(unsigned long *warn)
319 {
320 	int retval = 0;
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(&pdc_lock, flags);
324 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
325 	*warn = pdc_result[0];
326 	spin_unlock_irqrestore(&pdc_lock, flags);
327 
328 	return retval;
329 }
330 
331 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
332 {
333 	int ret;
334 
335 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
336 	convert_to_wide(pdc_result);
337 	pdc_coproc_info->ccr_functional = pdc_result[0];
338 	pdc_coproc_info->ccr_present = pdc_result[1];
339 	pdc_coproc_info->revision = pdc_result[17];
340 	pdc_coproc_info->model = pdc_result[18];
341 
342 	return ret;
343 }
344 
345 /**
346  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
347  * @pdc_coproc_info: Return buffer address.
348  *
349  * This PDC call returns the presence and status of all the coprocessors
350  * attached to the processor.
351  */
352 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
353 {
354 	int ret;
355 	unsigned long flags;
356 
357 	spin_lock_irqsave(&pdc_lock, flags);
358 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
359 	spin_unlock_irqrestore(&pdc_lock, flags);
360 
361 	return ret;
362 }
363 
364 /**
365  * pdc_iodc_read - Read data from the modules IODC.
366  * @actcnt: The actual number of bytes.
367  * @hpa: The HPA of the module for the iodc read.
368  * @index: The iodc entry point.
369  * @iodc_data: A buffer memory for the iodc options.
370  * @iodc_data_size: Size of the memory buffer.
371  *
372  * This PDC call reads from the IODC of the module specified by the hpa
373  * argument.
374  */
375 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
376 		  void *iodc_data, unsigned int iodc_data_size)
377 {
378 	int retval;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&pdc_lock, flags);
382 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
383 			      index, __pa(pdc_result2), iodc_data_size);
384 	convert_to_wide(pdc_result);
385 	*actcnt = pdc_result[0];
386 	memcpy(iodc_data, pdc_result2, iodc_data_size);
387 	spin_unlock_irqrestore(&pdc_lock, flags);
388 
389 	return retval;
390 }
391 EXPORT_SYMBOL(pdc_iodc_read);
392 
393 /**
394  * pdc_system_map_find_mods - Locate unarchitected modules.
395  * @pdc_mod_info: Return buffer address.
396  * @mod_path: pointer to dev path structure.
397  * @mod_index: fixed address module index.
398  *
399  * To locate and identify modules which reside at fixed I/O addresses, which
400  * do not self-identify via architected bus walks.
401  */
402 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
403 			     struct pdc_module_path *mod_path, long mod_index)
404 {
405 	int retval;
406 	unsigned long flags;
407 
408 	spin_lock_irqsave(&pdc_lock, flags);
409 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
410 			      __pa(pdc_result2), mod_index);
411 	convert_to_wide(pdc_result);
412 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
413 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
414 	spin_unlock_irqrestore(&pdc_lock, flags);
415 
416 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
417 	return retval;
418 }
419 
420 /**
421  * pdc_system_map_find_addrs - Retrieve additional address ranges.
422  * @pdc_addr_info: Return buffer address.
423  * @mod_index: Fixed address module index.
424  * @addr_index: Address range index.
425  *
426  * Retrieve additional information about subsequent address ranges for modules
427  * with multiple address ranges.
428  */
429 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
430 			      long mod_index, long addr_index)
431 {
432 	int retval;
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&pdc_lock, flags);
436 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
437 			      mod_index, addr_index);
438 	convert_to_wide(pdc_result);
439 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
440 	spin_unlock_irqrestore(&pdc_lock, flags);
441 
442 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
443 	return retval;
444 }
445 
446 /**
447  * pdc_model_info - Return model information about the processor.
448  * @model: The return buffer.
449  *
450  * Returns the version numbers, identifiers, and capabilities from the processor module.
451  */
452 int pdc_model_info(struct pdc_model *model)
453 {
454 	int retval;
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&pdc_lock, flags);
458 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
459 	convert_to_wide(pdc_result);
460 	memcpy(model, pdc_result, sizeof(*model));
461 	spin_unlock_irqrestore(&pdc_lock, flags);
462 
463 	return retval;
464 }
465 
466 /**
467  * pdc_model_sysmodel - Get the system model name.
468  * @name: A char array of at least 81 characters.
469  *
470  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
471  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
472  * on HP/UX.
473  */
474 int pdc_model_sysmodel(char *name)
475 {
476         int retval;
477 	unsigned long flags;
478 
479         spin_lock_irqsave(&pdc_lock, flags);
480         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
481                               OS_ID_HPUX, __pa(name));
482         convert_to_wide(pdc_result);
483 
484         if (retval == PDC_OK) {
485                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
486         } else {
487                 name[0] = 0;
488         }
489         spin_unlock_irqrestore(&pdc_lock, flags);
490 
491         return retval;
492 }
493 
494 /**
495  * pdc_model_versions - Identify the version number of each processor.
496  * @cpu_id: The return buffer.
497  * @id: The id of the processor to check.
498  *
499  * Returns the version number for each processor component.
500  *
501  * This comment was here before, but I do not know what it means :( -RB
502  * id: 0 = cpu revision, 1 = boot-rom-version
503  */
504 int pdc_model_versions(unsigned long *versions, int id)
505 {
506         int retval;
507 	unsigned long flags;
508 
509         spin_lock_irqsave(&pdc_lock, flags);
510         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
511         convert_to_wide(pdc_result);
512         *versions = pdc_result[0];
513         spin_unlock_irqrestore(&pdc_lock, flags);
514 
515         return retval;
516 }
517 
518 /**
519  * pdc_model_cpuid - Returns the CPU_ID.
520  * @cpu_id: The return buffer.
521  *
522  * Returns the CPU_ID value which uniquely identifies the cpu portion of
523  * the processor module.
524  */
525 int pdc_model_cpuid(unsigned long *cpu_id)
526 {
527         int retval;
528 	unsigned long flags;
529 
530         spin_lock_irqsave(&pdc_lock, flags);
531         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
532         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
533         convert_to_wide(pdc_result);
534         *cpu_id = pdc_result[0];
535         spin_unlock_irqrestore(&pdc_lock, flags);
536 
537         return retval;
538 }
539 
540 /**
541  * pdc_model_capabilities - Returns the platform capabilities.
542  * @capabilities: The return buffer.
543  *
544  * Returns information about platform support for 32- and/or 64-bit
545  * OSes, IO-PDIR coherency, and virtual aliasing.
546  */
547 int pdc_model_capabilities(unsigned long *capabilities)
548 {
549         int retval;
550 	unsigned long flags;
551 
552         spin_lock_irqsave(&pdc_lock, flags);
553         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
554         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
555         convert_to_wide(pdc_result);
556         if (retval == PDC_OK) {
557                 *capabilities = pdc_result[0];
558         } else {
559                 *capabilities = PDC_MODEL_OS32;
560         }
561         spin_unlock_irqrestore(&pdc_lock, flags);
562 
563         return retval;
564 }
565 
566 /**
567  * pdc_model_platform_info - Returns machine product and serial number.
568  * @orig_prod_num: Return buffer for original product number.
569  * @current_prod_num: Return buffer for current product number.
570  * @serial_no: Return buffer for serial number.
571  *
572  * Returns strings containing the original and current product numbers and the
573  * serial number of the system.
574  */
575 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
576 		char *serial_no)
577 {
578 	int retval;
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&pdc_lock, flags);
582 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
583 		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
584 	convert_to_wide(pdc_result);
585 	spin_unlock_irqrestore(&pdc_lock, flags);
586 
587 	return retval;
588 }
589 
590 /**
591  * pdc_cache_info - Return cache and TLB information.
592  * @cache_info: The return buffer.
593  *
594  * Returns information about the processor's cache and TLB.
595  */
596 int pdc_cache_info(struct pdc_cache_info *cache_info)
597 {
598         int retval;
599 	unsigned long flags;
600 
601         spin_lock_irqsave(&pdc_lock, flags);
602         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
603         convert_to_wide(pdc_result);
604         memcpy(cache_info, pdc_result, sizeof(*cache_info));
605         spin_unlock_irqrestore(&pdc_lock, flags);
606 
607         return retval;
608 }
609 
610 /**
611  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
612  * @space_bits: Should be 0, if not, bad mojo!
613  *
614  * Returns information about Space ID hashing.
615  */
616 int pdc_spaceid_bits(unsigned long *space_bits)
617 {
618 	int retval;
619 	unsigned long flags;
620 
621 	spin_lock_irqsave(&pdc_lock, flags);
622 	pdc_result[0] = 0;
623 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
624 	convert_to_wide(pdc_result);
625 	*space_bits = pdc_result[0];
626 	spin_unlock_irqrestore(&pdc_lock, flags);
627 
628 	return retval;
629 }
630 
631 #ifndef CONFIG_PA20
632 /**
633  * pdc_btlb_info - Return block TLB information.
634  * @btlb: The return buffer.
635  *
636  * Returns information about the hardware Block TLB.
637  */
638 int pdc_btlb_info(struct pdc_btlb_info *btlb)
639 {
640         int retval;
641 	unsigned long flags;
642 
643         spin_lock_irqsave(&pdc_lock, flags);
644         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
645         memcpy(btlb, pdc_result, sizeof(*btlb));
646         spin_unlock_irqrestore(&pdc_lock, flags);
647 
648         if(retval < 0) {
649                 btlb->max_size = 0;
650         }
651         return retval;
652 }
653 
654 /**
655  * pdc_mem_map_hpa - Find fixed module information.
656  * @address: The return buffer
657  * @mod_path: pointer to dev path structure.
658  *
659  * This call was developed for S700 workstations to allow the kernel to find
660  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
661  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
662  * call.
663  *
664  * This call is supported by all existing S700 workstations (up to  Gecko).
665  */
666 int pdc_mem_map_hpa(struct pdc_memory_map *address,
667 		struct pdc_module_path *mod_path)
668 {
669         int retval;
670 	unsigned long flags;
671 
672         spin_lock_irqsave(&pdc_lock, flags);
673         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
674         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
675 				__pa(pdc_result2));
676         memcpy(address, pdc_result, sizeof(*address));
677         spin_unlock_irqrestore(&pdc_lock, flags);
678 
679         return retval;
680 }
681 #endif	/* !CONFIG_PA20 */
682 
683 /**
684  * pdc_lan_station_id - Get the LAN address.
685  * @lan_addr: The return buffer.
686  * @hpa: The network device HPA.
687  *
688  * Get the LAN station address when it is not directly available from the LAN hardware.
689  */
690 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
691 {
692 	int retval;
693 	unsigned long flags;
694 
695 	spin_lock_irqsave(&pdc_lock, flags);
696 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
697 			__pa(pdc_result), hpa);
698 	if (retval < 0) {
699 		/* FIXME: else read MAC from NVRAM */
700 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
701 	} else {
702 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
703 	}
704 	spin_unlock_irqrestore(&pdc_lock, flags);
705 
706 	return retval;
707 }
708 EXPORT_SYMBOL(pdc_lan_station_id);
709 
710 /**
711  * pdc_stable_read - Read data from Stable Storage.
712  * @staddr: Stable Storage address to access.
713  * @memaddr: The memory address where Stable Storage data shall be copied.
714  * @count: number of bytes to transfer. count is multiple of 4.
715  *
716  * This PDC call reads from the Stable Storage address supplied in staddr
717  * and copies count bytes to the memory address memaddr.
718  * The call will fail if staddr+count > PDC_STABLE size.
719  */
720 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
721 {
722        int retval;
723 	unsigned long flags;
724 
725        spin_lock_irqsave(&pdc_lock, flags);
726        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
727                __pa(pdc_result), count);
728        convert_to_wide(pdc_result);
729        memcpy(memaddr, pdc_result, count);
730        spin_unlock_irqrestore(&pdc_lock, flags);
731 
732        return retval;
733 }
734 EXPORT_SYMBOL(pdc_stable_read);
735 
736 /**
737  * pdc_stable_write - Write data to Stable Storage.
738  * @staddr: Stable Storage address to access.
739  * @memaddr: The memory address where Stable Storage data shall be read from.
740  * @count: number of bytes to transfer. count is multiple of 4.
741  *
742  * This PDC call reads count bytes from the supplied memaddr address,
743  * and copies count bytes to the Stable Storage address staddr.
744  * The call will fail if staddr+count > PDC_STABLE size.
745  */
746 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
747 {
748        int retval;
749 	unsigned long flags;
750 
751        spin_lock_irqsave(&pdc_lock, flags);
752        memcpy(pdc_result, memaddr, count);
753        convert_to_wide(pdc_result);
754        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
755                __pa(pdc_result), count);
756        spin_unlock_irqrestore(&pdc_lock, flags);
757 
758        return retval;
759 }
760 EXPORT_SYMBOL(pdc_stable_write);
761 
762 /**
763  * pdc_stable_get_size - Get Stable Storage size in bytes.
764  * @size: pointer where the size will be stored.
765  *
766  * This PDC call returns the number of bytes in the processor's Stable
767  * Storage, which is the number of contiguous bytes implemented in Stable
768  * Storage starting from staddr=0. size in an unsigned 64-bit integer
769  * which is a multiple of four.
770  */
771 int pdc_stable_get_size(unsigned long *size)
772 {
773        int retval;
774 	unsigned long flags;
775 
776        spin_lock_irqsave(&pdc_lock, flags);
777        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
778        *size = pdc_result[0];
779        spin_unlock_irqrestore(&pdc_lock, flags);
780 
781        return retval;
782 }
783 EXPORT_SYMBOL(pdc_stable_get_size);
784 
785 /**
786  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
787  *
788  * This PDC call is meant to be used to check the integrity of the current
789  * contents of Stable Storage.
790  */
791 int pdc_stable_verify_contents(void)
792 {
793        int retval;
794 	unsigned long flags;
795 
796        spin_lock_irqsave(&pdc_lock, flags);
797        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
798        spin_unlock_irqrestore(&pdc_lock, flags);
799 
800        return retval;
801 }
802 EXPORT_SYMBOL(pdc_stable_verify_contents);
803 
804 /**
805  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
806  * the validity indicator.
807  *
808  * This PDC call will erase all contents of Stable Storage. Use with care!
809  */
810 int pdc_stable_initialize(void)
811 {
812        int retval;
813 	unsigned long flags;
814 
815        spin_lock_irqsave(&pdc_lock, flags);
816        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
817        spin_unlock_irqrestore(&pdc_lock, flags);
818 
819        return retval;
820 }
821 EXPORT_SYMBOL(pdc_stable_initialize);
822 
823 /**
824  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
825  * @hwpath: fully bc.mod style path to the device.
826  * @initiator: the array to return the result into
827  *
828  * Get the SCSI operational parameters from PDC.
829  * Needed since HPUX never used BIOS or symbios card NVRAM.
830  * Most ncr/sym cards won't have an entry and just use whatever
831  * capabilities of the card are (eg Ultra, LVD). But there are
832  * several cases where it's useful:
833  *    o set SCSI id for Multi-initiator clusters,
834  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
835  *    o bus width exported is less than what the interface chip supports.
836  */
837 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
838 {
839 	int retval;
840 	unsigned long flags;
841 
842 	spin_lock_irqsave(&pdc_lock, flags);
843 
844 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
845 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
846 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
847 
848 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
849 			      __pa(pdc_result), __pa(hwpath));
850 	if (retval < PDC_OK)
851 		goto out;
852 
853 	if (pdc_result[0] < 16) {
854 		initiator->host_id = pdc_result[0];
855 	} else {
856 		initiator->host_id = -1;
857 	}
858 
859 	/*
860 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
861 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
862 	 */
863 	switch (pdc_result[1]) {
864 		case  1: initiator->factor = 50; break;
865 		case  2: initiator->factor = 25; break;
866 		case  5: initiator->factor = 12; break;
867 		case 25: initiator->factor = 10; break;
868 		case 20: initiator->factor = 12; break;
869 		case 40: initiator->factor = 10; break;
870 		default: initiator->factor = -1; break;
871 	}
872 
873 	if (IS_SPROCKETS()) {
874 		initiator->width = pdc_result[4];
875 		initiator->mode = pdc_result[5];
876 	} else {
877 		initiator->width = -1;
878 		initiator->mode = -1;
879 	}
880 
881  out:
882 	spin_unlock_irqrestore(&pdc_lock, flags);
883 
884 	return (retval >= PDC_OK);
885 }
886 EXPORT_SYMBOL(pdc_get_initiator);
887 
888 
889 /**
890  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
891  * @num_entries: The return value.
892  * @hpa: The HPA for the device.
893  *
894  * This PDC function returns the number of entries in the specified cell's
895  * interrupt table.
896  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
897  */
898 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
899 {
900 	int retval;
901 	unsigned long flags;
902 
903 	spin_lock_irqsave(&pdc_lock, flags);
904 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
905 			      __pa(pdc_result), hpa);
906 	convert_to_wide(pdc_result);
907 	*num_entries = pdc_result[0];
908 	spin_unlock_irqrestore(&pdc_lock, flags);
909 
910 	return retval;
911 }
912 
913 /**
914  * pdc_pci_irt - Get the PCI interrupt routing table.
915  * @num_entries: The number of entries in the table.
916  * @hpa: The Hard Physical Address of the device.
917  * @tbl:
918  *
919  * Get the PCI interrupt routing table for the device at the given HPA.
920  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
921  */
922 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
923 {
924 	int retval;
925 	unsigned long flags;
926 
927 	BUG_ON((unsigned long)tbl & 0x7);
928 
929 	spin_lock_irqsave(&pdc_lock, flags);
930 	pdc_result[0] = num_entries;
931 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
932 			      __pa(pdc_result), hpa, __pa(tbl));
933 	spin_unlock_irqrestore(&pdc_lock, flags);
934 
935 	return retval;
936 }
937 
938 
939 #if 0	/* UNTEST CODE - left here in case someone needs it */
940 
941 /**
942  * pdc_pci_config_read - read PCI config space.
943  * @hpa		token from PDC to indicate which PCI device
944  * @pci_addr	configuration space address to read from
945  *
946  * Read PCI Configuration space *before* linux PCI subsystem is running.
947  */
948 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
949 {
950 	int retval;
951 	unsigned long flags;
952 
953 	spin_lock_irqsave(&pdc_lock, flags);
954 	pdc_result[0] = 0;
955 	pdc_result[1] = 0;
956 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
957 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
958 	spin_unlock_irqrestore(&pdc_lock, flags);
959 
960 	return retval ? ~0 : (unsigned int) pdc_result[0];
961 }
962 
963 
964 /**
965  * pdc_pci_config_write - read PCI config space.
966  * @hpa		token from PDC to indicate which PCI device
967  * @pci_addr	configuration space address to write
968  * @val		value we want in the 32-bit register
969  *
970  * Write PCI Configuration space *before* linux PCI subsystem is running.
971  */
972 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
973 {
974 	int retval;
975 	unsigned long flags;
976 
977 	spin_lock_irqsave(&pdc_lock, flags);
978 	pdc_result[0] = 0;
979 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
980 			      __pa(pdc_result), hpa,
981 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
982 	spin_unlock_irqrestore(&pdc_lock, flags);
983 
984 	return retval;
985 }
986 #endif /* UNTESTED CODE */
987 
988 /**
989  * pdc_tod_read - Read the Time-Of-Day clock.
990  * @tod: The return buffer:
991  *
992  * Read the Time-Of-Day clock
993  */
994 int pdc_tod_read(struct pdc_tod *tod)
995 {
996         int retval;
997 	unsigned long flags;
998 
999         spin_lock_irqsave(&pdc_lock, flags);
1000         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1001         convert_to_wide(pdc_result);
1002         memcpy(tod, pdc_result, sizeof(*tod));
1003         spin_unlock_irqrestore(&pdc_lock, flags);
1004 
1005         return retval;
1006 }
1007 EXPORT_SYMBOL(pdc_tod_read);
1008 
1009 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1010 {
1011 	int retval;
1012 	unsigned long flags;
1013 
1014 	spin_lock_irqsave(&pdc_lock, flags);
1015 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1016 	convert_to_wide(pdc_result);
1017 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1018 	spin_unlock_irqrestore(&pdc_lock, flags);
1019 
1020 	return retval;
1021 }
1022 
1023 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1024 		unsigned long *pdt_entries_ptr)
1025 {
1026 	int retval;
1027 	unsigned long flags;
1028 
1029 	spin_lock_irqsave(&pdc_lock, flags);
1030 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1031 			__pa(pdt_entries_ptr));
1032 	if (retval == PDC_OK) {
1033 		convert_to_wide(pdc_result);
1034 		memcpy(pret, pdc_result, sizeof(*pret));
1035 	}
1036 	spin_unlock_irqrestore(&pdc_lock, flags);
1037 
1038 #ifdef CONFIG_64BIT
1039 	/*
1040 	 * 64-bit kernels should not call this PDT function in narrow mode.
1041 	 * The pdt_entries_ptr array above will now contain 32-bit values
1042 	 */
1043 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1044 		return PDC_ERROR;
1045 #endif
1046 
1047 	return retval;
1048 }
1049 
1050 /**
1051  * pdc_tod_set - Set the Time-Of-Day clock.
1052  * @sec: The number of seconds since epoch.
1053  * @usec: The number of micro seconds.
1054  *
1055  * Set the Time-Of-Day clock.
1056  */
1057 int pdc_tod_set(unsigned long sec, unsigned long usec)
1058 {
1059         int retval;
1060 	unsigned long flags;
1061 
1062         spin_lock_irqsave(&pdc_lock, flags);
1063         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1064         spin_unlock_irqrestore(&pdc_lock, flags);
1065 
1066         return retval;
1067 }
1068 EXPORT_SYMBOL(pdc_tod_set);
1069 
1070 #ifdef CONFIG_64BIT
1071 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1072 		struct pdc_memory_table *tbl, unsigned long entries)
1073 {
1074 	int retval;
1075 	unsigned long flags;
1076 
1077 	spin_lock_irqsave(&pdc_lock, flags);
1078 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1079 	convert_to_wide(pdc_result);
1080 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1081 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1082 	spin_unlock_irqrestore(&pdc_lock, flags);
1083 
1084 	return retval;
1085 }
1086 #endif /* CONFIG_64BIT */
1087 
1088 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1089  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1090  * it later. :)
1091  */
1092 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1093 {
1094         int retval;
1095 	unsigned long flags;
1096 
1097         spin_lock_irqsave(&pdc_lock, flags);
1098         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1099                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1100         spin_unlock_irqrestore(&pdc_lock, flags);
1101 
1102         return retval;
1103 }
1104 
1105 /*
1106  * pdc_do_reset - Reset the system.
1107  *
1108  * Reset the system.
1109  */
1110 int pdc_do_reset(void)
1111 {
1112         int retval;
1113 	unsigned long flags;
1114 
1115         spin_lock_irqsave(&pdc_lock, flags);
1116         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1117         spin_unlock_irqrestore(&pdc_lock, flags);
1118 
1119         return retval;
1120 }
1121 
1122 /*
1123  * pdc_soft_power_info - Enable soft power switch.
1124  * @power_reg: address of soft power register
1125  *
1126  * Return the absolute address of the soft power switch register
1127  */
1128 int __init pdc_soft_power_info(unsigned long *power_reg)
1129 {
1130 	int retval;
1131 	unsigned long flags;
1132 
1133 	*power_reg = (unsigned long) (-1);
1134 
1135 	spin_lock_irqsave(&pdc_lock, flags);
1136 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1137 	if (retval == PDC_OK) {
1138                 convert_to_wide(pdc_result);
1139                 *power_reg = f_extend(pdc_result[0]);
1140 	}
1141 	spin_unlock_irqrestore(&pdc_lock, flags);
1142 
1143 	return retval;
1144 }
1145 
1146 /*
1147  * pdc_soft_power_button - Control the soft power button behaviour
1148  * @sw_control: 0 for hardware control, 1 for software control
1149  *
1150  *
1151  * This PDC function places the soft power button under software or
1152  * hardware control.
1153  * Under software control the OS may control to when to allow to shut
1154  * down the system. Under hardware control pressing the power button
1155  * powers off the system immediately.
1156  */
1157 int pdc_soft_power_button(int sw_control)
1158 {
1159 	int retval;
1160 	unsigned long flags;
1161 
1162 	spin_lock_irqsave(&pdc_lock, flags);
1163 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1164 	spin_unlock_irqrestore(&pdc_lock, flags);
1165 
1166 	return retval;
1167 }
1168 
1169 /*
1170  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1171  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1172  * who knows what other platform firmware might do with this OS "hook".
1173  */
1174 void pdc_io_reset(void)
1175 {
1176 	unsigned long flags;
1177 
1178 	spin_lock_irqsave(&pdc_lock, flags);
1179 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1180 	spin_unlock_irqrestore(&pdc_lock, flags);
1181 }
1182 
1183 /*
1184  * pdc_io_reset_devices - Hack to Stop USB controller
1185  *
1186  * If PDC used the usb controller, the usb controller
1187  * is still running and will crash the machines during iommu
1188  * setup, because of still running DMA. This PDC call
1189  * stops the USB controller.
1190  * Normally called after calling pdc_io_reset().
1191  */
1192 void pdc_io_reset_devices(void)
1193 {
1194 	unsigned long flags;
1195 
1196 	spin_lock_irqsave(&pdc_lock, flags);
1197 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1198 	spin_unlock_irqrestore(&pdc_lock, flags);
1199 }
1200 
1201 #endif /* defined(BOOTLOADER) */
1202 
1203 /* locked by pdc_console_lock */
1204 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1205 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1206 
1207 /**
1208  * pdc_iodc_print - Console print using IODC.
1209  * @str: the string to output.
1210  * @count: length of str
1211  *
1212  * Note that only these special chars are architected for console IODC io:
1213  * BEL, BS, CR, and LF. Others are passed through.
1214  * Since the HP console requires CR+LF to perform a 'newline', we translate
1215  * "\n" to "\r\n".
1216  */
1217 int pdc_iodc_print(const unsigned char *str, unsigned count)
1218 {
1219 	unsigned int i;
1220 	unsigned long flags;
1221 
1222 	for (i = 0; i < count;) {
1223 		switch(str[i]) {
1224 		case '\n':
1225 			iodc_dbuf[i+0] = '\r';
1226 			iodc_dbuf[i+1] = '\n';
1227 			i += 2;
1228 			goto print;
1229 		default:
1230 			iodc_dbuf[i] = str[i];
1231 			i++;
1232 			break;
1233 		}
1234 	}
1235 
1236 print:
1237         spin_lock_irqsave(&pdc_lock, flags);
1238         real32_call(PAGE0->mem_cons.iodc_io,
1239                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1240                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1241                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1242         spin_unlock_irqrestore(&pdc_lock, flags);
1243 
1244 	return i;
1245 }
1246 
1247 #if !defined(BOOTLOADER)
1248 /**
1249  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1250  *
1251  * Read a character (non-blocking) from the PDC console, returns -1 if
1252  * key is not present.
1253  */
1254 int pdc_iodc_getc(void)
1255 {
1256 	int ch;
1257 	int status;
1258 	unsigned long flags;
1259 
1260 	/* Bail if no console input device. */
1261 	if (!PAGE0->mem_kbd.iodc_io)
1262 		return 0;
1263 
1264 	/* wait for a keyboard (rs232)-input */
1265 	spin_lock_irqsave(&pdc_lock, flags);
1266 	real32_call(PAGE0->mem_kbd.iodc_io,
1267 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1268 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1269 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1270 
1271 	ch = *iodc_dbuf;
1272 	status = *iodc_retbuf;
1273 	spin_unlock_irqrestore(&pdc_lock, flags);
1274 
1275 	if (status == 0)
1276 	    return -1;
1277 
1278 	return ch;
1279 }
1280 
1281 int pdc_sti_call(unsigned long func, unsigned long flags,
1282                  unsigned long inptr, unsigned long outputr,
1283                  unsigned long glob_cfg)
1284 {
1285         int retval;
1286 	unsigned long irqflags;
1287 
1288         spin_lock_irqsave(&pdc_lock, irqflags);
1289         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1290         spin_unlock_irqrestore(&pdc_lock, irqflags);
1291 
1292         return retval;
1293 }
1294 EXPORT_SYMBOL(pdc_sti_call);
1295 
1296 #ifdef CONFIG_64BIT
1297 /**
1298  * pdc_pat_cell_get_number - Returns the cell number.
1299  * @cell_info: The return buffer.
1300  *
1301  * This PDC call returns the cell number of the cell from which the call
1302  * is made.
1303  */
1304 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1305 {
1306 	int retval;
1307 	unsigned long flags;
1308 
1309 	spin_lock_irqsave(&pdc_lock, flags);
1310 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1311 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1312 	spin_unlock_irqrestore(&pdc_lock, flags);
1313 
1314 	return retval;
1315 }
1316 
1317 /**
1318  * pdc_pat_cell_module - Retrieve the cell's module information.
1319  * @actcnt: The number of bytes written to mem_addr.
1320  * @ploc: The physical location.
1321  * @mod: The module index.
1322  * @view_type: The view of the address type.
1323  * @mem_addr: The return buffer.
1324  *
1325  * This PDC call returns information about each module attached to the cell
1326  * at the specified location.
1327  */
1328 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1329 			unsigned long view_type, void *mem_addr)
1330 {
1331 	int retval;
1332 	unsigned long flags;
1333 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1334 
1335 	spin_lock_irqsave(&pdc_lock, flags);
1336 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1337 			      ploc, mod, view_type, __pa(&result));
1338 	if(!retval) {
1339 		*actcnt = pdc_result[0];
1340 		memcpy(mem_addr, &result, *actcnt);
1341 	}
1342 	spin_unlock_irqrestore(&pdc_lock, flags);
1343 
1344 	return retval;
1345 }
1346 
1347 /**
1348  * pdc_pat_cell_info - Retrieve the cell's information.
1349  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1350  * @actcnt: The number of bytes which should be written to info.
1351  * @offset: offset of the structure.
1352  * @cell_number: The cell number which should be asked, or -1 for current cell.
1353  *
1354  * This PDC call returns information about the given cell (or all cells).
1355  */
1356 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1357 		unsigned long *actcnt, unsigned long offset,
1358 		unsigned long cell_number)
1359 {
1360 	int retval;
1361 	unsigned long flags;
1362 	struct pdc_pat_cell_info_rtn_block result;
1363 
1364 	spin_lock_irqsave(&pdc_lock, flags);
1365 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1366 			__pa(pdc_result), __pa(&result), *actcnt,
1367 			offset, cell_number);
1368 	if (!retval) {
1369 		*actcnt = pdc_result[0];
1370 		memcpy(info, &result, *actcnt);
1371 	}
1372 	spin_unlock_irqrestore(&pdc_lock, flags);
1373 
1374 	return retval;
1375 }
1376 
1377 /**
1378  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1379  * @cpu_info: The return buffer.
1380  * @hpa: The Hard Physical Address of the CPU.
1381  *
1382  * Retrieve the cpu number for the cpu at the specified HPA.
1383  */
1384 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1385 {
1386 	int retval;
1387 	unsigned long flags;
1388 
1389 	spin_lock_irqsave(&pdc_lock, flags);
1390 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1391 			      __pa(&pdc_result), hpa);
1392 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1393 	spin_unlock_irqrestore(&pdc_lock, flags);
1394 
1395 	return retval;
1396 }
1397 
1398 /**
1399  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1400  * @num_entries: The return value.
1401  * @cell_num: The target cell.
1402  *
1403  * This PDC function returns the number of entries in the specified cell's
1404  * interrupt table.
1405  */
1406 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1407 {
1408 	int retval;
1409 	unsigned long flags;
1410 
1411 	spin_lock_irqsave(&pdc_lock, flags);
1412 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1413 			      __pa(pdc_result), cell_num);
1414 	*num_entries = pdc_result[0];
1415 	spin_unlock_irqrestore(&pdc_lock, flags);
1416 
1417 	return retval;
1418 }
1419 
1420 /**
1421  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1422  * @r_addr: The return buffer.
1423  * @cell_num: The target cell.
1424  *
1425  * This PDC function returns the actual interrupt table for the specified cell.
1426  */
1427 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1428 {
1429 	int retval;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&pdc_lock, flags);
1433 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1434 			      __pa(r_addr), cell_num);
1435 	spin_unlock_irqrestore(&pdc_lock, flags);
1436 
1437 	return retval;
1438 }
1439 
1440 /**
1441  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1442  * @actlen: The return buffer.
1443  * @mem_addr: Pointer to the memory buffer.
1444  * @count: The number of bytes to read from the buffer.
1445  * @offset: The offset with respect to the beginning of the buffer.
1446  *
1447  */
1448 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1449 			    unsigned long count, unsigned long offset)
1450 {
1451 	int retval;
1452 	unsigned long flags;
1453 
1454 	spin_lock_irqsave(&pdc_lock, flags);
1455 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1456 			      __pa(pdc_result2), count, offset);
1457 	*actual_len = pdc_result[0];
1458 	memcpy(mem_addr, pdc_result2, *actual_len);
1459 	spin_unlock_irqrestore(&pdc_lock, flags);
1460 
1461 	return retval;
1462 }
1463 
1464 /**
1465  * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1466  * @legacy_rev: The legacy revision.
1467  * @pat_rev: The PAT revision.
1468  * @pdc_cap: The PDC capabilities.
1469  *
1470  */
1471 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1472 		unsigned long *pat_rev, unsigned long *pdc_cap)
1473 {
1474 	int retval;
1475 	unsigned long flags;
1476 
1477 	spin_lock_irqsave(&pdc_lock, flags);
1478 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1479 				__pa(pdc_result));
1480 	if (retval == PDC_OK) {
1481 		*legacy_rev = pdc_result[0];
1482 		*pat_rev = pdc_result[1];
1483 		*pdc_cap = pdc_result[2];
1484 	}
1485 	spin_unlock_irqrestore(&pdc_lock, flags);
1486 
1487 	return retval;
1488 }
1489 
1490 
1491 /**
1492  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1493  * @pci_addr: PCI configuration space address for which the read request is being made.
1494  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1495  * @mem_addr: Pointer to return memory buffer.
1496  *
1497  */
1498 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1499 {
1500 	int retval;
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&pdc_lock, flags);
1504 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1505 					__pa(pdc_result), pci_addr, pci_size);
1506 	switch(pci_size) {
1507 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1508 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1509 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1510 	}
1511 	spin_unlock_irqrestore(&pdc_lock, flags);
1512 
1513 	return retval;
1514 }
1515 
1516 /**
1517  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1518  * @pci_addr: PCI configuration space address for which the write  request is being made.
1519  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1520  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1521  *         written to PCI Config space.
1522  *
1523  */
1524 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1525 {
1526 	int retval;
1527 	unsigned long flags;
1528 
1529 	spin_lock_irqsave(&pdc_lock, flags);
1530 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1531 				pci_addr, pci_size, val);
1532 	spin_unlock_irqrestore(&pdc_lock, flags);
1533 
1534 	return retval;
1535 }
1536 
1537 /**
1538  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1539  * @rinfo: memory pdt information
1540  *
1541  */
1542 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1543 {
1544 	int retval;
1545 	unsigned long flags;
1546 
1547 	spin_lock_irqsave(&pdc_lock, flags);
1548 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1549 			__pa(&pdc_result));
1550 	if (retval == PDC_OK)
1551 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1552 	spin_unlock_irqrestore(&pdc_lock, flags);
1553 
1554 	return retval;
1555 }
1556 
1557 /**
1558  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1559  *				table of a cell
1560  * @rinfo: memory pdt information
1561  * @cell: cell number
1562  *
1563  */
1564 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1565 		unsigned long cell)
1566 {
1567 	int retval;
1568 	unsigned long flags;
1569 
1570 	spin_lock_irqsave(&pdc_lock, flags);
1571 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1572 			__pa(&pdc_result), cell);
1573 	if (retval == PDC_OK)
1574 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1575 	spin_unlock_irqrestore(&pdc_lock, flags);
1576 
1577 	return retval;
1578 }
1579 
1580 /**
1581  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1582  * @pret: array of PDT entries
1583  * @pdt_entries_ptr: ptr to hold number of PDT entries
1584  * @max_entries: maximum number of entries to be read
1585  *
1586  */
1587 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1588 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1589 {
1590 	int retval;
1591 	unsigned long flags, entries;
1592 
1593 	spin_lock_irqsave(&pdc_lock, flags);
1594 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1595 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1596 			__pa(&pdc_result), parisc_cell_num,
1597 			__pa(pdt_entries_ptr));
1598 
1599 	if (retval == PDC_OK) {
1600 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1601 		entries = min(pdc_result[0], max_entries);
1602 		pret->pdt_entries = entries;
1603 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1604 	}
1605 
1606 	spin_unlock_irqrestore(&pdc_lock, flags);
1607 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1608 
1609 	return retval;
1610 }
1611 /**
1612  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1613  * @pret: array of PDT entries
1614  * @pdt_entries_ptr: ptr to hold number of PDT entries
1615  * @count: number of bytes to read
1616  * @offset: offset to start (in bytes)
1617  *
1618  */
1619 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1620 		unsigned long *pdt_entries_ptr, unsigned long count,
1621 		unsigned long offset)
1622 {
1623 	int retval;
1624 	unsigned long flags, entries;
1625 
1626 	spin_lock_irqsave(&pdc_lock, flags);
1627 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1628 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1629 		count, offset);
1630 
1631 	if (retval == PDC_OK) {
1632 		entries = min(pdc_result[0], count);
1633 		pret->actual_count_bytes = entries;
1634 		pret->pdt_entries = entries / sizeof(unsigned long);
1635 	}
1636 
1637 	spin_unlock_irqrestore(&pdc_lock, flags);
1638 
1639 	return retval;
1640 }
1641 
1642 /**
1643  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1644  * @pret: ptr to hold returned information
1645  * @phys_addr: physical address to examine
1646  *
1647  */
1648 int pdc_pat_mem_get_dimm_phys_location(
1649 		struct pdc_pat_mem_phys_mem_location *pret,
1650 		unsigned long phys_addr)
1651 {
1652 	int retval;
1653 	unsigned long flags;
1654 
1655 	spin_lock_irqsave(&pdc_lock, flags);
1656 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1657 		__pa(&pdc_result), phys_addr);
1658 
1659 	if (retval == PDC_OK)
1660 		memcpy(pret, &pdc_result, sizeof(*pret));
1661 
1662 	spin_unlock_irqrestore(&pdc_lock, flags);
1663 
1664 	return retval;
1665 }
1666 #endif /* CONFIG_64BIT */
1667 #endif /* defined(BOOTLOADER) */
1668 
1669 
1670 /***************** 32-bit real-mode calls ***********/
1671 /* The struct below is used
1672  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1673  * real32_call_asm() then uses this stack in narrow real mode
1674  */
1675 
1676 struct narrow_stack {
1677 	/* use int, not long which is 64 bits */
1678 	unsigned int arg13;
1679 	unsigned int arg12;
1680 	unsigned int arg11;
1681 	unsigned int arg10;
1682 	unsigned int arg9;
1683 	unsigned int arg8;
1684 	unsigned int arg7;
1685 	unsigned int arg6;
1686 	unsigned int arg5;
1687 	unsigned int arg4;
1688 	unsigned int arg3;
1689 	unsigned int arg2;
1690 	unsigned int arg1;
1691 	unsigned int arg0;
1692 	unsigned int frame_marker[8];
1693 	unsigned int sp;
1694 	/* in reality, there's nearly 8k of stack after this */
1695 };
1696 
1697 long real32_call(unsigned long fn, ...)
1698 {
1699 	va_list args;
1700 	extern struct narrow_stack real_stack;
1701 	extern unsigned long real32_call_asm(unsigned int *,
1702 					     unsigned int *,
1703 					     unsigned int);
1704 
1705 	va_start(args, fn);
1706 	real_stack.arg0 = va_arg(args, unsigned int);
1707 	real_stack.arg1 = va_arg(args, unsigned int);
1708 	real_stack.arg2 = va_arg(args, unsigned int);
1709 	real_stack.arg3 = va_arg(args, unsigned int);
1710 	real_stack.arg4 = va_arg(args, unsigned int);
1711 	real_stack.arg5 = va_arg(args, unsigned int);
1712 	real_stack.arg6 = va_arg(args, unsigned int);
1713 	real_stack.arg7 = va_arg(args, unsigned int);
1714 	real_stack.arg8 = va_arg(args, unsigned int);
1715 	real_stack.arg9 = va_arg(args, unsigned int);
1716 	real_stack.arg10 = va_arg(args, unsigned int);
1717 	real_stack.arg11 = va_arg(args, unsigned int);
1718 	real_stack.arg12 = va_arg(args, unsigned int);
1719 	real_stack.arg13 = va_arg(args, unsigned int);
1720 	va_end(args);
1721 
1722 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1723 }
1724 
1725 #ifdef CONFIG_64BIT
1726 /***************** 64-bit real-mode calls ***********/
1727 
1728 struct wide_stack {
1729 	unsigned long arg0;
1730 	unsigned long arg1;
1731 	unsigned long arg2;
1732 	unsigned long arg3;
1733 	unsigned long arg4;
1734 	unsigned long arg5;
1735 	unsigned long arg6;
1736 	unsigned long arg7;
1737 	unsigned long arg8;
1738 	unsigned long arg9;
1739 	unsigned long arg10;
1740 	unsigned long arg11;
1741 	unsigned long arg12;
1742 	unsigned long arg13;
1743 	unsigned long frame_marker[2];	/* rp, previous sp */
1744 	unsigned long sp;
1745 	/* in reality, there's nearly 8k of stack after this */
1746 };
1747 
1748 long real64_call(unsigned long fn, ...)
1749 {
1750 	va_list args;
1751 	extern struct wide_stack real64_stack;
1752 	extern unsigned long real64_call_asm(unsigned long *,
1753 					     unsigned long *,
1754 					     unsigned long);
1755 
1756 	va_start(args, fn);
1757 	real64_stack.arg0 = va_arg(args, unsigned long);
1758 	real64_stack.arg1 = va_arg(args, unsigned long);
1759 	real64_stack.arg2 = va_arg(args, unsigned long);
1760 	real64_stack.arg3 = va_arg(args, unsigned long);
1761 	real64_stack.arg4 = va_arg(args, unsigned long);
1762 	real64_stack.arg5 = va_arg(args, unsigned long);
1763 	real64_stack.arg6 = va_arg(args, unsigned long);
1764 	real64_stack.arg7 = va_arg(args, unsigned long);
1765 	real64_stack.arg8 = va_arg(args, unsigned long);
1766 	real64_stack.arg9 = va_arg(args, unsigned long);
1767 	real64_stack.arg10 = va_arg(args, unsigned long);
1768 	real64_stack.arg11 = va_arg(args, unsigned long);
1769 	real64_stack.arg12 = va_arg(args, unsigned long);
1770 	real64_stack.arg13 = va_arg(args, unsigned long);
1771 	va_end(args);
1772 
1773 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1774 }
1775 
1776 #endif /* CONFIG_64BIT */
1777