1 /* 2 * arch/parisc/kernel/firmware.c - safe PDC access routines 3 * 4 * PDC == Processor Dependent Code 5 * 6 * See http://www.parisc-linux.org/documentation/index.html 7 * for documentation describing the entry points and calling 8 * conventions defined below. 9 * 10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 12 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 14 * Copyright 2004 Thibaut VARENE <varenet@parisc-linux.org> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License as published by 18 * the Free Software Foundation; either version 2 of the License, or 19 * (at your option) any later version. 20 * 21 */ 22 23 /* I think it would be in everyone's best interest to follow this 24 * guidelines when writing PDC wrappers: 25 * 26 * - the name of the pdc wrapper should match one of the macros 27 * used for the first two arguments 28 * - don't use caps for random parts of the name 29 * - use the static PDC result buffers and "copyout" to structs 30 * supplied by the caller to encapsulate alignment restrictions 31 * - hold pdc_lock while in PDC or using static result buffers 32 * - use __pa() to convert virtual (kernel) pointers to physical 33 * ones. 34 * - the name of the struct used for pdc return values should equal 35 * one of the macros used for the first two arguments to the 36 * corresponding PDC call 37 * - keep the order of arguments 38 * - don't be smart (setting trailing NUL bytes for strings, return 39 * something useful even if the call failed) unless you are sure 40 * it's not going to affect functionality or performance 41 * 42 * Example: 43 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 44 * { 45 * int retval; 46 * 47 * spin_lock_irq(&pdc_lock); 48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 49 * convert_to_wide(pdc_result); 50 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 51 * spin_unlock_irq(&pdc_lock); 52 * 53 * return retval; 54 * } 55 * prumpf 991016 56 */ 57 58 #include <stdarg.h> 59 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/module.h> 64 #include <linux/string.h> 65 #include <linux/spinlock.h> 66 67 #include <asm/page.h> 68 #include <asm/pdc.h> 69 #include <asm/pdcpat.h> 70 #include <asm/system.h> 71 #include <asm/processor.h> /* for boot_cpu_data */ 72 73 static DEFINE_SPINLOCK(pdc_lock); 74 static unsigned long pdc_result[32] __attribute__ ((aligned (8))); 75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8))); 76 77 #ifdef __LP64__ 78 #define WIDE_FIRMWARE 0x1 79 #define NARROW_FIRMWARE 0x2 80 81 /* Firmware needs to be initially set to narrow to determine the 82 * actual firmware width. */ 83 int parisc_narrow_firmware = 1; 84 #endif 85 86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 87 * and MEM_PDC calls are always the same width as the OS. 88 * Some PAT boxes may have 64-bit IODC I/O. 89 * 90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 92 * This allowed wide kernels to run on Cxxx boxes. 93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 95 */ 96 97 #ifdef __LP64__ 98 long real64_call(unsigned long function, ...); 99 #endif 100 long real32_call(unsigned long function, ...); 101 102 #ifdef __LP64__ 103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 105 #else 106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 108 #endif 109 110 111 /** 112 * f_extend - Convert PDC addresses to kernel addresses. 113 * @address: Address returned from PDC. 114 * 115 * This function is used to convert PDC addresses into kernel addresses 116 * when the PDC address size and kernel address size are different. 117 */ 118 static unsigned long f_extend(unsigned long address) 119 { 120 #ifdef __LP64__ 121 if(unlikely(parisc_narrow_firmware)) { 122 if((address & 0xff000000) == 0xf0000000) 123 return 0xf0f0f0f000000000UL | (u32)address; 124 125 if((address & 0xf0000000) == 0xf0000000) 126 return 0xffffffff00000000UL | (u32)address; 127 } 128 #endif 129 return address; 130 } 131 132 /** 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 134 * @address: The return buffer from PDC. 135 * 136 * This function is used to convert the return buffer addresses retrieved from PDC 137 * into kernel addresses when the PDC address size and kernel address size are 138 * different. 139 */ 140 static void convert_to_wide(unsigned long *addr) 141 { 142 #ifdef __LP64__ 143 int i; 144 unsigned int *p = (unsigned int *)addr; 145 146 if(unlikely(parisc_narrow_firmware)) { 147 for(i = 31; i >= 0; --i) 148 addr[i] = p[i]; 149 } 150 #endif 151 } 152 153 /** 154 * set_firmware_width - Determine if the firmware is wide or narrow. 155 * 156 * This function must be called before any pdc_* function that uses the convert_to_wide 157 * function. 158 */ 159 void __init set_firmware_width(void) 160 { 161 #ifdef __LP64__ 162 int retval; 163 164 spin_lock_irq(&pdc_lock); 165 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 166 convert_to_wide(pdc_result); 167 if(pdc_result[0] != NARROW_FIRMWARE) 168 parisc_narrow_firmware = 0; 169 spin_unlock_irq(&pdc_lock); 170 #endif 171 } 172 173 /** 174 * pdc_emergency_unlock - Unlock the linux pdc lock 175 * 176 * This call unlocks the linux pdc lock in case we need some PDC functions 177 * (like pdc_add_valid) during kernel stack dump. 178 */ 179 void pdc_emergency_unlock(void) 180 { 181 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 182 if (spin_is_locked(&pdc_lock)) 183 spin_unlock(&pdc_lock); 184 } 185 186 187 /** 188 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 189 * @address: Address to be verified. 190 * 191 * This PDC call attempts to read from the specified address and verifies 192 * if the address is valid. 193 * 194 * The return value is PDC_OK (0) in case accessing this address is valid. 195 */ 196 int pdc_add_valid(unsigned long address) 197 { 198 int retval; 199 200 spin_lock_irq(&pdc_lock); 201 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 202 spin_unlock_irq(&pdc_lock); 203 204 return retval; 205 } 206 EXPORT_SYMBOL(pdc_add_valid); 207 208 /** 209 * pdc_chassis_info - Return chassis information. 210 * @result: The return buffer. 211 * @chassis_info: The memory buffer address. 212 * @len: The size of the memory buffer address. 213 * 214 * An HVERSION dependent call for returning the chassis information. 215 */ 216 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 217 { 218 int retval; 219 220 spin_lock_irq(&pdc_lock); 221 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 222 memcpy(&pdc_result2, led_info, len); 223 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 224 __pa(pdc_result), __pa(pdc_result2), len); 225 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 226 memcpy(led_info, pdc_result2, len); 227 spin_unlock_irq(&pdc_lock); 228 229 return retval; 230 } 231 232 /** 233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 234 * @retval: -1 on error, 0 on success. Other value are PDC errors 235 * 236 * Must be correctly formatted or expect system crash 237 */ 238 #ifdef __LP64__ 239 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 240 { 241 int retval = 0; 242 243 if (!is_pdc_pat()) 244 return -1; 245 246 spin_lock_irq(&pdc_lock); 247 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 248 spin_unlock_irq(&pdc_lock); 249 250 return retval; 251 } 252 #endif 253 254 /** 255 * pdc_chassis_disp - Updates display 256 * @retval: -1 on error, 0 on success 257 * 258 * Works on old PDC only (E class, others?) 259 */ 260 int pdc_chassis_disp(unsigned long disp) 261 { 262 int retval = 0; 263 264 spin_lock_irq(&pdc_lock); 265 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 266 spin_unlock_irq(&pdc_lock); 267 268 return retval; 269 } 270 271 /** 272 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 273 * @pdc_coproc_info: Return buffer address. 274 * 275 * This PDC call returns the presence and status of all the coprocessors 276 * attached to the processor. 277 */ 278 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 279 { 280 int retval; 281 282 spin_lock_irq(&pdc_lock); 283 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 284 convert_to_wide(pdc_result); 285 pdc_coproc_info->ccr_functional = pdc_result[0]; 286 pdc_coproc_info->ccr_present = pdc_result[1]; 287 pdc_coproc_info->revision = pdc_result[17]; 288 pdc_coproc_info->model = pdc_result[18]; 289 spin_unlock_irq(&pdc_lock); 290 291 return retval; 292 } 293 294 /** 295 * pdc_iodc_read - Read data from the modules IODC. 296 * @actcnt: The actual number of bytes. 297 * @hpa: The HPA of the module for the iodc read. 298 * @index: The iodc entry point. 299 * @iodc_data: A buffer memory for the iodc options. 300 * @iodc_data_size: Size of the memory buffer. 301 * 302 * This PDC call reads from the IODC of the module specified by the hpa 303 * argument. 304 */ 305 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 306 void *iodc_data, unsigned int iodc_data_size) 307 { 308 int retval; 309 310 spin_lock_irq(&pdc_lock); 311 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 312 index, __pa(pdc_result2), iodc_data_size); 313 convert_to_wide(pdc_result); 314 *actcnt = pdc_result[0]; 315 memcpy(iodc_data, pdc_result2, iodc_data_size); 316 spin_unlock_irq(&pdc_lock); 317 318 return retval; 319 } 320 EXPORT_SYMBOL(pdc_iodc_read); 321 322 /** 323 * pdc_system_map_find_mods - Locate unarchitected modules. 324 * @pdc_mod_info: Return buffer address. 325 * @mod_path: pointer to dev path structure. 326 * @mod_index: fixed address module index. 327 * 328 * To locate and identify modules which reside at fixed I/O addresses, which 329 * do not self-identify via architected bus walks. 330 */ 331 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 332 struct pdc_module_path *mod_path, long mod_index) 333 { 334 int retval; 335 336 spin_lock_irq(&pdc_lock); 337 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 338 __pa(pdc_result2), mod_index); 339 convert_to_wide(pdc_result); 340 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 341 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 342 spin_unlock_irq(&pdc_lock); 343 344 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 345 return retval; 346 } 347 348 /** 349 * pdc_system_map_find_addrs - Retrieve additional address ranges. 350 * @pdc_addr_info: Return buffer address. 351 * @mod_index: Fixed address module index. 352 * @addr_index: Address range index. 353 * 354 * Retrieve additional information about subsequent address ranges for modules 355 * with multiple address ranges. 356 */ 357 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 358 long mod_index, long addr_index) 359 { 360 int retval; 361 362 spin_lock_irq(&pdc_lock); 363 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 364 mod_index, addr_index); 365 convert_to_wide(pdc_result); 366 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 367 spin_unlock_irq(&pdc_lock); 368 369 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 370 return retval; 371 } 372 373 /** 374 * pdc_model_info - Return model information about the processor. 375 * @model: The return buffer. 376 * 377 * Returns the version numbers, identifiers, and capabilities from the processor module. 378 */ 379 int pdc_model_info(struct pdc_model *model) 380 { 381 int retval; 382 383 spin_lock_irq(&pdc_lock); 384 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 385 convert_to_wide(pdc_result); 386 memcpy(model, pdc_result, sizeof(*model)); 387 spin_unlock_irq(&pdc_lock); 388 389 return retval; 390 } 391 392 /** 393 * pdc_model_sysmodel - Get the system model name. 394 * @name: A char array of at least 81 characters. 395 * 396 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L) 397 */ 398 int pdc_model_sysmodel(char *name) 399 { 400 int retval; 401 402 spin_lock_irq(&pdc_lock); 403 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 404 OS_ID_HPUX, __pa(name)); 405 convert_to_wide(pdc_result); 406 407 if (retval == PDC_OK) { 408 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 409 } else { 410 name[0] = 0; 411 } 412 spin_unlock_irq(&pdc_lock); 413 414 return retval; 415 } 416 417 /** 418 * pdc_model_versions - Identify the version number of each processor. 419 * @cpu_id: The return buffer. 420 * @id: The id of the processor to check. 421 * 422 * Returns the version number for each processor component. 423 * 424 * This comment was here before, but I do not know what it means :( -RB 425 * id: 0 = cpu revision, 1 = boot-rom-version 426 */ 427 int pdc_model_versions(unsigned long *versions, int id) 428 { 429 int retval; 430 431 spin_lock_irq(&pdc_lock); 432 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 433 convert_to_wide(pdc_result); 434 *versions = pdc_result[0]; 435 spin_unlock_irq(&pdc_lock); 436 437 return retval; 438 } 439 440 /** 441 * pdc_model_cpuid - Returns the CPU_ID. 442 * @cpu_id: The return buffer. 443 * 444 * Returns the CPU_ID value which uniquely identifies the cpu portion of 445 * the processor module. 446 */ 447 int pdc_model_cpuid(unsigned long *cpu_id) 448 { 449 int retval; 450 451 spin_lock_irq(&pdc_lock); 452 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 453 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 454 convert_to_wide(pdc_result); 455 *cpu_id = pdc_result[0]; 456 spin_unlock_irq(&pdc_lock); 457 458 return retval; 459 } 460 461 /** 462 * pdc_model_capabilities - Returns the platform capabilities. 463 * @capabilities: The return buffer. 464 * 465 * Returns information about platform support for 32- and/or 64-bit 466 * OSes, IO-PDIR coherency, and virtual aliasing. 467 */ 468 int pdc_model_capabilities(unsigned long *capabilities) 469 { 470 int retval; 471 472 spin_lock_irq(&pdc_lock); 473 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 474 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 475 convert_to_wide(pdc_result); 476 *capabilities = pdc_result[0]; 477 spin_unlock_irq(&pdc_lock); 478 479 return retval; 480 } 481 482 /** 483 * pdc_cache_info - Return cache and TLB information. 484 * @cache_info: The return buffer. 485 * 486 * Returns information about the processor's cache and TLB. 487 */ 488 int pdc_cache_info(struct pdc_cache_info *cache_info) 489 { 490 int retval; 491 492 spin_lock_irq(&pdc_lock); 493 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 494 convert_to_wide(pdc_result); 495 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 496 spin_unlock_irq(&pdc_lock); 497 498 return retval; 499 } 500 501 #ifndef CONFIG_PA20 502 /** 503 * pdc_btlb_info - Return block TLB information. 504 * @btlb: The return buffer. 505 * 506 * Returns information about the hardware Block TLB. 507 */ 508 int pdc_btlb_info(struct pdc_btlb_info *btlb) 509 { 510 int retval; 511 512 spin_lock_irq(&pdc_lock); 513 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 514 memcpy(btlb, pdc_result, sizeof(*btlb)); 515 spin_unlock_irq(&pdc_lock); 516 517 if(retval < 0) { 518 btlb->max_size = 0; 519 } 520 return retval; 521 } 522 523 /** 524 * pdc_mem_map_hpa - Find fixed module information. 525 * @address: The return buffer 526 * @mod_path: pointer to dev path structure. 527 * 528 * This call was developed for S700 workstations to allow the kernel to find 529 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 530 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 531 * call. 532 * 533 * This call is supported by all existing S700 workstations (up to Gecko). 534 */ 535 int pdc_mem_map_hpa(struct pdc_memory_map *address, 536 struct pdc_module_path *mod_path) 537 { 538 int retval; 539 540 spin_lock_irq(&pdc_lock); 541 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 542 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 543 __pa(pdc_result2)); 544 memcpy(address, pdc_result, sizeof(*address)); 545 spin_unlock_irq(&pdc_lock); 546 547 return retval; 548 } 549 #endif /* !CONFIG_PA20 */ 550 551 /** 552 * pdc_lan_station_id - Get the LAN address. 553 * @lan_addr: The return buffer. 554 * @hpa: The network device HPA. 555 * 556 * Get the LAN station address when it is not directly available from the LAN hardware. 557 */ 558 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 559 { 560 int retval; 561 562 spin_lock_irq(&pdc_lock); 563 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 564 __pa(pdc_result), hpa); 565 if (retval < 0) { 566 /* FIXME: else read MAC from NVRAM */ 567 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 568 } else { 569 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 570 } 571 spin_unlock_irq(&pdc_lock); 572 573 return retval; 574 } 575 EXPORT_SYMBOL(pdc_lan_station_id); 576 577 /** 578 * pdc_stable_read - Read data from Stable Storage. 579 * @staddr: Stable Storage address to access. 580 * @memaddr: The memory address where Stable Storage data shall be copied. 581 * @count: number of bytes to transfert. count is multiple of 4. 582 * 583 * This PDC call reads from the Stable Storage address supplied in staddr 584 * and copies count bytes to the memory address memaddr. 585 * The call will fail if staddr+count > PDC_STABLE size. 586 */ 587 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 588 { 589 int retval; 590 591 spin_lock_irq(&pdc_lock); 592 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 593 __pa(pdc_result), count); 594 convert_to_wide(pdc_result); 595 memcpy(memaddr, pdc_result, count); 596 spin_unlock_irq(&pdc_lock); 597 598 return retval; 599 } 600 EXPORT_SYMBOL(pdc_stable_read); 601 602 /** 603 * pdc_stable_write - Write data to Stable Storage. 604 * @staddr: Stable Storage address to access. 605 * @memaddr: The memory address where Stable Storage data shall be read from. 606 * @count: number of bytes to transfert. count is multiple of 4. 607 * 608 * This PDC call reads count bytes from the supplied memaddr address, 609 * and copies count bytes to the Stable Storage address staddr. 610 * The call will fail if staddr+count > PDC_STABLE size. 611 */ 612 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 613 { 614 int retval; 615 616 spin_lock_irq(&pdc_lock); 617 memcpy(pdc_result, memaddr, count); 618 convert_to_wide(pdc_result); 619 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 620 __pa(pdc_result), count); 621 spin_unlock_irq(&pdc_lock); 622 623 return retval; 624 } 625 EXPORT_SYMBOL(pdc_stable_write); 626 627 /** 628 * pdc_stable_get_size - Get Stable Storage size in bytes. 629 * @size: pointer where the size will be stored. 630 * 631 * This PDC call returns the number of bytes in the processor's Stable 632 * Storage, which is the number of contiguous bytes implemented in Stable 633 * Storage starting from staddr=0. size in an unsigned 64-bit integer 634 * which is a multiple of four. 635 */ 636 int pdc_stable_get_size(unsigned long *size) 637 { 638 int retval; 639 640 spin_lock_irq(&pdc_lock); 641 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 642 *size = pdc_result[0]; 643 spin_unlock_irq(&pdc_lock); 644 645 return retval; 646 } 647 EXPORT_SYMBOL(pdc_stable_get_size); 648 649 /** 650 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 651 * 652 * This PDC call is meant to be used to check the integrity of the current 653 * contents of Stable Storage. 654 */ 655 int pdc_stable_verify_contents(void) 656 { 657 int retval; 658 659 spin_lock_irq(&pdc_lock); 660 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 661 spin_unlock_irq(&pdc_lock); 662 663 return retval; 664 } 665 EXPORT_SYMBOL(pdc_stable_verify_contents); 666 667 /** 668 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 669 * the validity indicator. 670 * 671 * This PDC call will erase all contents of Stable Storage. Use with care! 672 */ 673 int pdc_stable_initialize(void) 674 { 675 int retval; 676 677 spin_lock_irq(&pdc_lock); 678 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 679 spin_unlock_irq(&pdc_lock); 680 681 return retval; 682 } 683 EXPORT_SYMBOL(pdc_stable_initialize); 684 685 /** 686 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 687 * @hwpath: fully bc.mod style path to the device. 688 * @initiator: the array to return the result into 689 * 690 * Get the SCSI operational parameters from PDC. 691 * Needed since HPUX never used BIOS or symbios card NVRAM. 692 * Most ncr/sym cards won't have an entry and just use whatever 693 * capabilities of the card are (eg Ultra, LVD). But there are 694 * several cases where it's useful: 695 * o set SCSI id for Multi-initiator clusters, 696 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 697 * o bus width exported is less than what the interface chip supports. 698 */ 699 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 700 { 701 int retval; 702 703 spin_lock_irq(&pdc_lock); 704 705 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 706 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 707 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 708 709 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 710 __pa(pdc_result), __pa(hwpath)); 711 if (retval < PDC_OK) 712 goto out; 713 714 if (pdc_result[0] < 16) { 715 initiator->host_id = pdc_result[0]; 716 } else { 717 initiator->host_id = -1; 718 } 719 720 /* 721 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 722 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 723 */ 724 switch (pdc_result[1]) { 725 case 1: initiator->factor = 50; break; 726 case 2: initiator->factor = 25; break; 727 case 5: initiator->factor = 12; break; 728 case 25: initiator->factor = 10; break; 729 case 20: initiator->factor = 12; break; 730 case 40: initiator->factor = 10; break; 731 default: initiator->factor = -1; break; 732 } 733 734 if (IS_SPROCKETS()) { 735 initiator->width = pdc_result[4]; 736 initiator->mode = pdc_result[5]; 737 } else { 738 initiator->width = -1; 739 initiator->mode = -1; 740 } 741 742 out: 743 spin_unlock_irq(&pdc_lock); 744 return (retval >= PDC_OK); 745 } 746 EXPORT_SYMBOL(pdc_get_initiator); 747 748 749 /** 750 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 751 * @num_entries: The return value. 752 * @hpa: The HPA for the device. 753 * 754 * This PDC function returns the number of entries in the specified cell's 755 * interrupt table. 756 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 757 */ 758 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 759 { 760 int retval; 761 762 spin_lock_irq(&pdc_lock); 763 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 764 __pa(pdc_result), hpa); 765 convert_to_wide(pdc_result); 766 *num_entries = pdc_result[0]; 767 spin_unlock_irq(&pdc_lock); 768 769 return retval; 770 } 771 772 /** 773 * pdc_pci_irt - Get the PCI interrupt routing table. 774 * @num_entries: The number of entries in the table. 775 * @hpa: The Hard Physical Address of the device. 776 * @tbl: 777 * 778 * Get the PCI interrupt routing table for the device at the given HPA. 779 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 780 */ 781 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 782 { 783 int retval; 784 785 BUG_ON((unsigned long)tbl & 0x7); 786 787 spin_lock_irq(&pdc_lock); 788 pdc_result[0] = num_entries; 789 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 790 __pa(pdc_result), hpa, __pa(tbl)); 791 spin_unlock_irq(&pdc_lock); 792 793 return retval; 794 } 795 796 797 #if 0 /* UNTEST CODE - left here in case someone needs it */ 798 799 /** 800 * pdc_pci_config_read - read PCI config space. 801 * @hpa token from PDC to indicate which PCI device 802 * @pci_addr configuration space address to read from 803 * 804 * Read PCI Configuration space *before* linux PCI subsystem is running. 805 */ 806 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 807 { 808 int retval; 809 spin_lock_irq(&pdc_lock); 810 pdc_result[0] = 0; 811 pdc_result[1] = 0; 812 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 813 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 814 spin_unlock_irq(&pdc_lock); 815 return retval ? ~0 : (unsigned int) pdc_result[0]; 816 } 817 818 819 /** 820 * pdc_pci_config_write - read PCI config space. 821 * @hpa token from PDC to indicate which PCI device 822 * @pci_addr configuration space address to write 823 * @val value we want in the 32-bit register 824 * 825 * Write PCI Configuration space *before* linux PCI subsystem is running. 826 */ 827 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 828 { 829 int retval; 830 spin_lock_irq(&pdc_lock); 831 pdc_result[0] = 0; 832 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 833 __pa(pdc_result), hpa, 834 cfg_addr&~3UL, 4UL, (unsigned long) val); 835 spin_unlock_irq(&pdc_lock); 836 return retval; 837 } 838 #endif /* UNTESTED CODE */ 839 840 /** 841 * pdc_tod_read - Read the Time-Of-Day clock. 842 * @tod: The return buffer: 843 * 844 * Read the Time-Of-Day clock 845 */ 846 int pdc_tod_read(struct pdc_tod *tod) 847 { 848 int retval; 849 850 spin_lock_irq(&pdc_lock); 851 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 852 convert_to_wide(pdc_result); 853 memcpy(tod, pdc_result, sizeof(*tod)); 854 spin_unlock_irq(&pdc_lock); 855 856 return retval; 857 } 858 EXPORT_SYMBOL(pdc_tod_read); 859 860 /** 861 * pdc_tod_set - Set the Time-Of-Day clock. 862 * @sec: The number of seconds since epoch. 863 * @usec: The number of micro seconds. 864 * 865 * Set the Time-Of-Day clock. 866 */ 867 int pdc_tod_set(unsigned long sec, unsigned long usec) 868 { 869 int retval; 870 871 spin_lock_irq(&pdc_lock); 872 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 873 spin_unlock_irq(&pdc_lock); 874 875 return retval; 876 } 877 EXPORT_SYMBOL(pdc_tod_set); 878 879 #ifdef __LP64__ 880 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 881 struct pdc_memory_table *tbl, unsigned long entries) 882 { 883 int retval; 884 885 spin_lock_irq(&pdc_lock); 886 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 887 convert_to_wide(pdc_result); 888 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 889 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 890 spin_unlock_irq(&pdc_lock); 891 892 return retval; 893 } 894 #endif /* __LP64__ */ 895 896 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 897 * so I guessed at unsigned long. Someone who knows what this does, can fix 898 * it later. :) 899 */ 900 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 901 { 902 int retval; 903 904 spin_lock_irq(&pdc_lock); 905 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 906 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 907 spin_unlock_irq(&pdc_lock); 908 909 return retval; 910 } 911 912 /* 913 * pdc_do_reset - Reset the system. 914 * 915 * Reset the system. 916 */ 917 int pdc_do_reset(void) 918 { 919 int retval; 920 921 spin_lock_irq(&pdc_lock); 922 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 923 spin_unlock_irq(&pdc_lock); 924 925 return retval; 926 } 927 928 /* 929 * pdc_soft_power_info - Enable soft power switch. 930 * @power_reg: address of soft power register 931 * 932 * Return the absolute address of the soft power switch register 933 */ 934 int __init pdc_soft_power_info(unsigned long *power_reg) 935 { 936 int retval; 937 938 *power_reg = (unsigned long) (-1); 939 940 spin_lock_irq(&pdc_lock); 941 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 942 if (retval == PDC_OK) { 943 convert_to_wide(pdc_result); 944 *power_reg = f_extend(pdc_result[0]); 945 } 946 spin_unlock_irq(&pdc_lock); 947 948 return retval; 949 } 950 951 /* 952 * pdc_soft_power_button - Control the soft power button behaviour 953 * @sw_control: 0 for hardware control, 1 for software control 954 * 955 * 956 * This PDC function places the soft power button under software or 957 * hardware control. 958 * Under software control the OS may control to when to allow to shut 959 * down the system. Under hardware control pressing the power button 960 * powers off the system immediately. 961 */ 962 int pdc_soft_power_button(int sw_control) 963 { 964 int retval; 965 spin_lock_irq(&pdc_lock); 966 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 967 spin_unlock_irq(&pdc_lock); 968 return retval; 969 } 970 971 /* 972 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 973 * Primarily a problem on T600 (which parisc-linux doesn't support) but 974 * who knows what other platform firmware might do with this OS "hook". 975 */ 976 void pdc_io_reset(void) 977 { 978 spin_lock_irq(&pdc_lock); 979 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 980 spin_unlock_irq(&pdc_lock); 981 } 982 983 /* 984 * pdc_io_reset_devices - Hack to Stop USB controller 985 * 986 * If PDC used the usb controller, the usb controller 987 * is still running and will crash the machines during iommu 988 * setup, because of still running DMA. This PDC call 989 * stops the USB controller. 990 * Normally called after calling pdc_io_reset(). 991 */ 992 void pdc_io_reset_devices(void) 993 { 994 spin_lock_irq(&pdc_lock); 995 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 996 spin_unlock_irq(&pdc_lock); 997 } 998 999 1000 /** 1001 * pdc_iodc_putc - Console character print using IODC. 1002 * @c: the character to output. 1003 * 1004 * Note that only these special chars are architected for console IODC io: 1005 * BEL, BS, CR, and LF. Others are passed through. 1006 * Since the HP console requires CR+LF to perform a 'newline', we translate 1007 * "\n" to "\r\n". 1008 */ 1009 void pdc_iodc_putc(unsigned char c) 1010 { 1011 /* XXX Should we spinlock posx usage */ 1012 static int posx; /* for simple TAB-Simulation... */ 1013 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1014 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1015 unsigned int n; 1016 unsigned int flags; 1017 1018 switch (c) { 1019 case '\n': 1020 iodc_dbuf[0] = '\r'; 1021 iodc_dbuf[1] = '\n'; 1022 n = 2; 1023 posx = 0; 1024 break; 1025 case '\t': 1026 pdc_iodc_putc(' '); 1027 while (posx & 7) /* expand TAB */ 1028 pdc_iodc_putc(' '); 1029 return; /* return since IODC can't handle this */ 1030 case '\b': 1031 posx-=2; /* BS */ 1032 default: 1033 iodc_dbuf[0] = c; 1034 n = 1; 1035 posx++; 1036 break; 1037 } 1038 1039 spin_lock_irqsave(&pdc_lock, flags); 1040 real32_call(PAGE0->mem_cons.iodc_io, 1041 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1042 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1043 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); 1044 spin_unlock_irqrestore(&pdc_lock, flags); 1045 } 1046 1047 /** 1048 * pdc_iodc_outc - Console character print using IODC (without conversions). 1049 * @c: the character to output. 1050 * 1051 * Write the character directly to the IODC console. 1052 */ 1053 void pdc_iodc_outc(unsigned char c) 1054 { 1055 unsigned int n, flags; 1056 1057 /* fill buffer with one caracter and print it */ 1058 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1059 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1060 1061 n = 1; 1062 iodc_dbuf[0] = c; 1063 1064 spin_lock_irqsave(&pdc_lock, flags); 1065 real32_call(PAGE0->mem_cons.iodc_io, 1066 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1067 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1068 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); 1069 spin_unlock_irqrestore(&pdc_lock, flags); 1070 } 1071 1072 /** 1073 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1074 * 1075 * Read a character (non-blocking) from the PDC console, returns -1 if 1076 * key is not present. 1077 */ 1078 int pdc_iodc_getc(void) 1079 { 1080 unsigned int flags; 1081 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1082 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1083 int ch; 1084 int status; 1085 1086 /* Bail if no console input device. */ 1087 if (!PAGE0->mem_kbd.iodc_io) 1088 return 0; 1089 1090 /* wait for a keyboard (rs232)-input */ 1091 spin_lock_irqsave(&pdc_lock, flags); 1092 real32_call(PAGE0->mem_kbd.iodc_io, 1093 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1094 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1095 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1096 1097 ch = *iodc_dbuf; 1098 status = *iodc_retbuf; 1099 spin_unlock_irqrestore(&pdc_lock, flags); 1100 1101 if (status == 0) 1102 return -1; 1103 1104 return ch; 1105 } 1106 1107 int pdc_sti_call(unsigned long func, unsigned long flags, 1108 unsigned long inptr, unsigned long outputr, 1109 unsigned long glob_cfg) 1110 { 1111 int retval; 1112 1113 spin_lock_irq(&pdc_lock); 1114 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1115 spin_unlock_irq(&pdc_lock); 1116 1117 return retval; 1118 } 1119 EXPORT_SYMBOL(pdc_sti_call); 1120 1121 #ifdef __LP64__ 1122 /** 1123 * pdc_pat_cell_get_number - Returns the cell number. 1124 * @cell_info: The return buffer. 1125 * 1126 * This PDC call returns the cell number of the cell from which the call 1127 * is made. 1128 */ 1129 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1130 { 1131 int retval; 1132 1133 spin_lock_irq(&pdc_lock); 1134 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1135 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1136 spin_unlock_irq(&pdc_lock); 1137 1138 return retval; 1139 } 1140 1141 /** 1142 * pdc_pat_cell_module - Retrieve the cell's module information. 1143 * @actcnt: The number of bytes written to mem_addr. 1144 * @ploc: The physical location. 1145 * @mod: The module index. 1146 * @view_type: The view of the address type. 1147 * @mem_addr: The return buffer. 1148 * 1149 * This PDC call returns information about each module attached to the cell 1150 * at the specified location. 1151 */ 1152 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1153 unsigned long view_type, void *mem_addr) 1154 { 1155 int retval; 1156 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1157 1158 spin_lock_irq(&pdc_lock); 1159 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1160 ploc, mod, view_type, __pa(&result)); 1161 if(!retval) { 1162 *actcnt = pdc_result[0]; 1163 memcpy(mem_addr, &result, *actcnt); 1164 } 1165 spin_unlock_irq(&pdc_lock); 1166 1167 return retval; 1168 } 1169 1170 /** 1171 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1172 * @cpu_info: The return buffer. 1173 * @hpa: The Hard Physical Address of the CPU. 1174 * 1175 * Retrieve the cpu number for the cpu at the specified HPA. 1176 */ 1177 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa) 1178 { 1179 int retval; 1180 1181 spin_lock_irq(&pdc_lock); 1182 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1183 __pa(&pdc_result), hpa); 1184 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1185 spin_unlock_irq(&pdc_lock); 1186 1187 return retval; 1188 } 1189 1190 /** 1191 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1192 * @num_entries: The return value. 1193 * @cell_num: The target cell. 1194 * 1195 * This PDC function returns the number of entries in the specified cell's 1196 * interrupt table. 1197 */ 1198 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1199 { 1200 int retval; 1201 1202 spin_lock_irq(&pdc_lock); 1203 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1204 __pa(pdc_result), cell_num); 1205 *num_entries = pdc_result[0]; 1206 spin_unlock_irq(&pdc_lock); 1207 1208 return retval; 1209 } 1210 1211 /** 1212 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1213 * @r_addr: The return buffer. 1214 * @cell_num: The target cell. 1215 * 1216 * This PDC function returns the actual interrupt table for the specified cell. 1217 */ 1218 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1219 { 1220 int retval; 1221 1222 spin_lock_irq(&pdc_lock); 1223 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1224 __pa(r_addr), cell_num); 1225 spin_unlock_irq(&pdc_lock); 1226 1227 return retval; 1228 } 1229 1230 /** 1231 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1232 * @actlen: The return buffer. 1233 * @mem_addr: Pointer to the memory buffer. 1234 * @count: The number of bytes to read from the buffer. 1235 * @offset: The offset with respect to the beginning of the buffer. 1236 * 1237 */ 1238 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1239 unsigned long count, unsigned long offset) 1240 { 1241 int retval; 1242 1243 spin_lock_irq(&pdc_lock); 1244 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1245 __pa(pdc_result2), count, offset); 1246 *actual_len = pdc_result[0]; 1247 memcpy(mem_addr, pdc_result2, *actual_len); 1248 spin_unlock_irq(&pdc_lock); 1249 1250 return retval; 1251 } 1252 1253 /** 1254 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1255 * @pci_addr: PCI configuration space address for which the read request is being made. 1256 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1257 * @mem_addr: Pointer to return memory buffer. 1258 * 1259 */ 1260 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1261 { 1262 int retval; 1263 spin_lock_irq(&pdc_lock); 1264 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1265 __pa(pdc_result), pci_addr, pci_size); 1266 switch(pci_size) { 1267 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; 1268 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; 1269 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; 1270 } 1271 spin_unlock_irq(&pdc_lock); 1272 1273 return retval; 1274 } 1275 1276 /** 1277 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1278 * @pci_addr: PCI configuration space address for which the write request is being made. 1279 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1280 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1281 * written to PCI Config space. 1282 * 1283 */ 1284 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1285 { 1286 int retval; 1287 1288 spin_lock_irq(&pdc_lock); 1289 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1290 pci_addr, pci_size, val); 1291 spin_unlock_irq(&pdc_lock); 1292 1293 return retval; 1294 } 1295 #endif /* __LP64__ */ 1296 1297 1298 /***************** 32-bit real-mode calls ***********/ 1299 /* The struct below is used 1300 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1301 * real32_call_asm() then uses this stack in narrow real mode 1302 */ 1303 1304 struct narrow_stack { 1305 /* use int, not long which is 64 bits */ 1306 unsigned int arg13; 1307 unsigned int arg12; 1308 unsigned int arg11; 1309 unsigned int arg10; 1310 unsigned int arg9; 1311 unsigned int arg8; 1312 unsigned int arg7; 1313 unsigned int arg6; 1314 unsigned int arg5; 1315 unsigned int arg4; 1316 unsigned int arg3; 1317 unsigned int arg2; 1318 unsigned int arg1; 1319 unsigned int arg0; 1320 unsigned int frame_marker[8]; 1321 unsigned int sp; 1322 /* in reality, there's nearly 8k of stack after this */ 1323 }; 1324 1325 long real32_call(unsigned long fn, ...) 1326 { 1327 va_list args; 1328 extern struct narrow_stack real_stack; 1329 extern unsigned long real32_call_asm(unsigned int *, 1330 unsigned int *, 1331 unsigned int); 1332 1333 va_start(args, fn); 1334 real_stack.arg0 = va_arg(args, unsigned int); 1335 real_stack.arg1 = va_arg(args, unsigned int); 1336 real_stack.arg2 = va_arg(args, unsigned int); 1337 real_stack.arg3 = va_arg(args, unsigned int); 1338 real_stack.arg4 = va_arg(args, unsigned int); 1339 real_stack.arg5 = va_arg(args, unsigned int); 1340 real_stack.arg6 = va_arg(args, unsigned int); 1341 real_stack.arg7 = va_arg(args, unsigned int); 1342 real_stack.arg8 = va_arg(args, unsigned int); 1343 real_stack.arg9 = va_arg(args, unsigned int); 1344 real_stack.arg10 = va_arg(args, unsigned int); 1345 real_stack.arg11 = va_arg(args, unsigned int); 1346 real_stack.arg12 = va_arg(args, unsigned int); 1347 real_stack.arg13 = va_arg(args, unsigned int); 1348 va_end(args); 1349 1350 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1351 } 1352 1353 #ifdef __LP64__ 1354 /***************** 64-bit real-mode calls ***********/ 1355 1356 struct wide_stack { 1357 unsigned long arg0; 1358 unsigned long arg1; 1359 unsigned long arg2; 1360 unsigned long arg3; 1361 unsigned long arg4; 1362 unsigned long arg5; 1363 unsigned long arg6; 1364 unsigned long arg7; 1365 unsigned long arg8; 1366 unsigned long arg9; 1367 unsigned long arg10; 1368 unsigned long arg11; 1369 unsigned long arg12; 1370 unsigned long arg13; 1371 unsigned long frame_marker[2]; /* rp, previous sp */ 1372 unsigned long sp; 1373 /* in reality, there's nearly 8k of stack after this */ 1374 }; 1375 1376 long real64_call(unsigned long fn, ...) 1377 { 1378 va_list args; 1379 extern struct wide_stack real64_stack; 1380 extern unsigned long real64_call_asm(unsigned long *, 1381 unsigned long *, 1382 unsigned long); 1383 1384 va_start(args, fn); 1385 real64_stack.arg0 = va_arg(args, unsigned long); 1386 real64_stack.arg1 = va_arg(args, unsigned long); 1387 real64_stack.arg2 = va_arg(args, unsigned long); 1388 real64_stack.arg3 = va_arg(args, unsigned long); 1389 real64_stack.arg4 = va_arg(args, unsigned long); 1390 real64_stack.arg5 = va_arg(args, unsigned long); 1391 real64_stack.arg6 = va_arg(args, unsigned long); 1392 real64_stack.arg7 = va_arg(args, unsigned long); 1393 real64_stack.arg8 = va_arg(args, unsigned long); 1394 real64_stack.arg9 = va_arg(args, unsigned long); 1395 real64_stack.arg10 = va_arg(args, unsigned long); 1396 real64_stack.arg11 = va_arg(args, unsigned long); 1397 real64_stack.arg12 = va_arg(args, unsigned long); 1398 real64_stack.arg13 = va_arg(args, unsigned long); 1399 va_end(args); 1400 1401 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1402 } 1403 1404 #endif /* __LP64__ */ 1405 1406