xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h>	/* for boot_cpu_data */
71 
72 #if defined(BOOTLOADER)
73 # undef  spin_lock_irqsave
74 # define spin_lock_irqsave(a, b) { b = 1; }
75 # undef  spin_unlock_irqrestore
76 # define spin_unlock_irqrestore(a, b)
77 #else
78 static DEFINE_SPINLOCK(pdc_lock);
79 #endif
80 
81 extern unsigned long pdc_result[NUM_PDC_RESULT];
82 extern unsigned long pdc_result2[NUM_PDC_RESULT];
83 
84 #ifdef CONFIG_64BIT
85 #define WIDE_FIRMWARE 0x1
86 #define NARROW_FIRMWARE 0x2
87 
88 /* Firmware needs to be initially set to narrow to determine the
89  * actual firmware width. */
90 int parisc_narrow_firmware __read_mostly = 1;
91 #endif
92 
93 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
94  * and MEM_PDC calls are always the same width as the OS.
95  * Some PAT boxes may have 64-bit IODC I/O.
96  *
97  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
98  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
99  * This allowed wide kernels to run on Cxxx boxes.
100  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
101  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
102  */
103 
104 #ifdef CONFIG_64BIT
105 long real64_call(unsigned long function, ...);
106 #endif
107 long real32_call(unsigned long function, ...);
108 
109 #ifdef CONFIG_64BIT
110 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
111 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
112 #else
113 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
114 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
115 #endif
116 
117 
118 /**
119  * f_extend - Convert PDC addresses to kernel addresses.
120  * @address: Address returned from PDC.
121  *
122  * This function is used to convert PDC addresses into kernel addresses
123  * when the PDC address size and kernel address size are different.
124  */
125 static unsigned long f_extend(unsigned long address)
126 {
127 #ifdef CONFIG_64BIT
128 	if(unlikely(parisc_narrow_firmware)) {
129 		if((address & 0xff000000) == 0xf0000000)
130 			return 0xf0f0f0f000000000UL | (u32)address;
131 
132 		if((address & 0xf0000000) == 0xf0000000)
133 			return 0xffffffff00000000UL | (u32)address;
134 	}
135 #endif
136 	return address;
137 }
138 
139 /**
140  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
141  * @address: The return buffer from PDC.
142  *
143  * This function is used to convert the return buffer addresses retrieved from PDC
144  * into kernel addresses when the PDC address size and kernel address size are
145  * different.
146  */
147 static void convert_to_wide(unsigned long *addr)
148 {
149 #ifdef CONFIG_64BIT
150 	int i;
151 	unsigned int *p = (unsigned int *)addr;
152 
153 	if (unlikely(parisc_narrow_firmware)) {
154 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
155 			addr[i] = p[i];
156 	}
157 #endif
158 }
159 
160 #ifdef CONFIG_64BIT
161 void set_firmware_width_unlocked(void)
162 {
163 	int ret;
164 
165 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
166 		__pa(pdc_result), 0);
167 	convert_to_wide(pdc_result);
168 	if (pdc_result[0] != NARROW_FIRMWARE)
169 		parisc_narrow_firmware = 0;
170 }
171 
172 /**
173  * set_firmware_width - Determine if the firmware is wide or narrow.
174  *
175  * This function must be called before any pdc_* function that uses the
176  * convert_to_wide function.
177  */
178 void set_firmware_width(void)
179 {
180 	unsigned long flags;
181 	spin_lock_irqsave(&pdc_lock, flags);
182 	set_firmware_width_unlocked();
183 	spin_unlock_irqrestore(&pdc_lock, flags);
184 }
185 #else
186 void set_firmware_width_unlocked(void)
187 {
188 	return;
189 }
190 
191 void set_firmware_width(void)
192 {
193 	return;
194 }
195 #endif /*CONFIG_64BIT*/
196 
197 
198 #if !defined(BOOTLOADER)
199 /**
200  * pdc_emergency_unlock - Unlock the linux pdc lock
201  *
202  * This call unlocks the linux pdc lock in case we need some PDC functions
203  * (like pdc_add_valid) during kernel stack dump.
204  */
205 void pdc_emergency_unlock(void)
206 {
207  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
208         if (spin_is_locked(&pdc_lock))
209 		spin_unlock(&pdc_lock);
210 }
211 
212 
213 /**
214  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
215  * @address: Address to be verified.
216  *
217  * This PDC call attempts to read from the specified address and verifies
218  * if the address is valid.
219  *
220  * The return value is PDC_OK (0) in case accessing this address is valid.
221  */
222 int pdc_add_valid(unsigned long address)
223 {
224         int retval;
225 	unsigned long flags;
226 
227         spin_lock_irqsave(&pdc_lock, flags);
228         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
229         spin_unlock_irqrestore(&pdc_lock, flags);
230 
231         return retval;
232 }
233 EXPORT_SYMBOL(pdc_add_valid);
234 
235 /**
236  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
237  * @instr: Pointer to variable which will get instruction opcode.
238  *
239  * The return value is PDC_OK (0) in case call succeeded.
240  */
241 int __init pdc_instr(unsigned int *instr)
242 {
243 	int retval;
244 	unsigned long flags;
245 
246 	spin_lock_irqsave(&pdc_lock, flags);
247 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
248 	convert_to_wide(pdc_result);
249 	*instr = pdc_result[0];
250 	spin_unlock_irqrestore(&pdc_lock, flags);
251 
252 	return retval;
253 }
254 
255 /**
256  * pdc_chassis_info - Return chassis information.
257  * @result: The return buffer.
258  * @chassis_info: The memory buffer address.
259  * @len: The size of the memory buffer address.
260  *
261  * An HVERSION dependent call for returning the chassis information.
262  */
263 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
264 {
265         int retval;
266 	unsigned long flags;
267 
268         spin_lock_irqsave(&pdc_lock, flags);
269         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
270         memcpy(&pdc_result2, led_info, len);
271         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
272                               __pa(pdc_result), __pa(pdc_result2), len);
273         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
274         memcpy(led_info, pdc_result2, len);
275         spin_unlock_irqrestore(&pdc_lock, flags);
276 
277         return retval;
278 }
279 
280 /**
281  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
282  * @retval: -1 on error, 0 on success. Other value are PDC errors
283  *
284  * Must be correctly formatted or expect system crash
285  */
286 #ifdef CONFIG_64BIT
287 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
288 {
289 	int retval = 0;
290 	unsigned long flags;
291 
292 	if (!is_pdc_pat())
293 		return -1;
294 
295 	spin_lock_irqsave(&pdc_lock, flags);
296 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
297 	spin_unlock_irqrestore(&pdc_lock, flags);
298 
299 	return retval;
300 }
301 #endif
302 
303 /**
304  * pdc_chassis_disp - Updates chassis code
305  * @retval: -1 on error, 0 on success
306  */
307 int pdc_chassis_disp(unsigned long disp)
308 {
309 	int retval = 0;
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&pdc_lock, flags);
313 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
314 	spin_unlock_irqrestore(&pdc_lock, flags);
315 
316 	return retval;
317 }
318 
319 /**
320  * pdc_chassis_warn - Fetches chassis warnings
321  * @retval: -1 on error, 0 on success
322  */
323 int pdc_chassis_warn(unsigned long *warn)
324 {
325 	int retval = 0;
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(&pdc_lock, flags);
329 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
330 	*warn = pdc_result[0];
331 	spin_unlock_irqrestore(&pdc_lock, flags);
332 
333 	return retval;
334 }
335 
336 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
337 {
338 	int ret;
339 
340 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
341 	convert_to_wide(pdc_result);
342 	pdc_coproc_info->ccr_functional = pdc_result[0];
343 	pdc_coproc_info->ccr_present = pdc_result[1];
344 	pdc_coproc_info->revision = pdc_result[17];
345 	pdc_coproc_info->model = pdc_result[18];
346 
347 	return ret;
348 }
349 
350 /**
351  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
352  * @pdc_coproc_info: Return buffer address.
353  *
354  * This PDC call returns the presence and status of all the coprocessors
355  * attached to the processor.
356  */
357 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
358 {
359 	int ret;
360 	unsigned long flags;
361 
362 	spin_lock_irqsave(&pdc_lock, flags);
363 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
364 	spin_unlock_irqrestore(&pdc_lock, flags);
365 
366 	return ret;
367 }
368 
369 /**
370  * pdc_iodc_read - Read data from the modules IODC.
371  * @actcnt: The actual number of bytes.
372  * @hpa: The HPA of the module for the iodc read.
373  * @index: The iodc entry point.
374  * @iodc_data: A buffer memory for the iodc options.
375  * @iodc_data_size: Size of the memory buffer.
376  *
377  * This PDC call reads from the IODC of the module specified by the hpa
378  * argument.
379  */
380 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
381 		  void *iodc_data, unsigned int iodc_data_size)
382 {
383 	int retval;
384 	unsigned long flags;
385 
386 	spin_lock_irqsave(&pdc_lock, flags);
387 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
388 			      index, __pa(pdc_result2), iodc_data_size);
389 	convert_to_wide(pdc_result);
390 	*actcnt = pdc_result[0];
391 	memcpy(iodc_data, pdc_result2, iodc_data_size);
392 	spin_unlock_irqrestore(&pdc_lock, flags);
393 
394 	return retval;
395 }
396 EXPORT_SYMBOL(pdc_iodc_read);
397 
398 /**
399  * pdc_system_map_find_mods - Locate unarchitected modules.
400  * @pdc_mod_info: Return buffer address.
401  * @mod_path: pointer to dev path structure.
402  * @mod_index: fixed address module index.
403  *
404  * To locate and identify modules which reside at fixed I/O addresses, which
405  * do not self-identify via architected bus walks.
406  */
407 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
408 			     struct pdc_module_path *mod_path, long mod_index)
409 {
410 	int retval;
411 	unsigned long flags;
412 
413 	spin_lock_irqsave(&pdc_lock, flags);
414 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
415 			      __pa(pdc_result2), mod_index);
416 	convert_to_wide(pdc_result);
417 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
418 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
419 	spin_unlock_irqrestore(&pdc_lock, flags);
420 
421 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
422 	return retval;
423 }
424 
425 /**
426  * pdc_system_map_find_addrs - Retrieve additional address ranges.
427  * @pdc_addr_info: Return buffer address.
428  * @mod_index: Fixed address module index.
429  * @addr_index: Address range index.
430  *
431  * Retrieve additional information about subsequent address ranges for modules
432  * with multiple address ranges.
433  */
434 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
435 			      long mod_index, long addr_index)
436 {
437 	int retval;
438 	unsigned long flags;
439 
440 	spin_lock_irqsave(&pdc_lock, flags);
441 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
442 			      mod_index, addr_index);
443 	convert_to_wide(pdc_result);
444 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
445 	spin_unlock_irqrestore(&pdc_lock, flags);
446 
447 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
448 	return retval;
449 }
450 
451 /**
452  * pdc_model_info - Return model information about the processor.
453  * @model: The return buffer.
454  *
455  * Returns the version numbers, identifiers, and capabilities from the processor module.
456  */
457 int pdc_model_info(struct pdc_model *model)
458 {
459 	int retval;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&pdc_lock, flags);
463 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
464 	convert_to_wide(pdc_result);
465 	memcpy(model, pdc_result, sizeof(*model));
466 	spin_unlock_irqrestore(&pdc_lock, flags);
467 
468 	return retval;
469 }
470 
471 /**
472  * pdc_model_sysmodel - Get the system model name.
473  * @name: A char array of at least 81 characters.
474  *
475  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
476  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
477  * on HP/UX.
478  */
479 int pdc_model_sysmodel(char *name)
480 {
481         int retval;
482 	unsigned long flags;
483 
484         spin_lock_irqsave(&pdc_lock, flags);
485         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
486                               OS_ID_HPUX, __pa(name));
487         convert_to_wide(pdc_result);
488 
489         if (retval == PDC_OK) {
490                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
491         } else {
492                 name[0] = 0;
493         }
494         spin_unlock_irqrestore(&pdc_lock, flags);
495 
496         return retval;
497 }
498 
499 /**
500  * pdc_model_versions - Identify the version number of each processor.
501  * @cpu_id: The return buffer.
502  * @id: The id of the processor to check.
503  *
504  * Returns the version number for each processor component.
505  *
506  * This comment was here before, but I do not know what it means :( -RB
507  * id: 0 = cpu revision, 1 = boot-rom-version
508  */
509 int pdc_model_versions(unsigned long *versions, int id)
510 {
511         int retval;
512 	unsigned long flags;
513 
514         spin_lock_irqsave(&pdc_lock, flags);
515         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
516         convert_to_wide(pdc_result);
517         *versions = pdc_result[0];
518         spin_unlock_irqrestore(&pdc_lock, flags);
519 
520         return retval;
521 }
522 
523 /**
524  * pdc_model_cpuid - Returns the CPU_ID.
525  * @cpu_id: The return buffer.
526  *
527  * Returns the CPU_ID value which uniquely identifies the cpu portion of
528  * the processor module.
529  */
530 int pdc_model_cpuid(unsigned long *cpu_id)
531 {
532         int retval;
533 	unsigned long flags;
534 
535         spin_lock_irqsave(&pdc_lock, flags);
536         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
537         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
538         convert_to_wide(pdc_result);
539         *cpu_id = pdc_result[0];
540         spin_unlock_irqrestore(&pdc_lock, flags);
541 
542         return retval;
543 }
544 
545 /**
546  * pdc_model_capabilities - Returns the platform capabilities.
547  * @capabilities: The return buffer.
548  *
549  * Returns information about platform support for 32- and/or 64-bit
550  * OSes, IO-PDIR coherency, and virtual aliasing.
551  */
552 int pdc_model_capabilities(unsigned long *capabilities)
553 {
554         int retval;
555 	unsigned long flags;
556 
557         spin_lock_irqsave(&pdc_lock, flags);
558         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
559         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
560         convert_to_wide(pdc_result);
561         if (retval == PDC_OK) {
562                 *capabilities = pdc_result[0];
563         } else {
564                 *capabilities = PDC_MODEL_OS32;
565         }
566         spin_unlock_irqrestore(&pdc_lock, flags);
567 
568         return retval;
569 }
570 
571 /**
572  * pdc_cache_info - Return cache and TLB information.
573  * @cache_info: The return buffer.
574  *
575  * Returns information about the processor's cache and TLB.
576  */
577 int pdc_cache_info(struct pdc_cache_info *cache_info)
578 {
579         int retval;
580 	unsigned long flags;
581 
582         spin_lock_irqsave(&pdc_lock, flags);
583         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
584         convert_to_wide(pdc_result);
585         memcpy(cache_info, pdc_result, sizeof(*cache_info));
586         spin_unlock_irqrestore(&pdc_lock, flags);
587 
588         return retval;
589 }
590 
591 /**
592  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
593  * @space_bits: Should be 0, if not, bad mojo!
594  *
595  * Returns information about Space ID hashing.
596  */
597 int pdc_spaceid_bits(unsigned long *space_bits)
598 {
599 	int retval;
600 	unsigned long flags;
601 
602 	spin_lock_irqsave(&pdc_lock, flags);
603 	pdc_result[0] = 0;
604 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
605 	convert_to_wide(pdc_result);
606 	*space_bits = pdc_result[0];
607 	spin_unlock_irqrestore(&pdc_lock, flags);
608 
609 	return retval;
610 }
611 
612 #ifndef CONFIG_PA20
613 /**
614  * pdc_btlb_info - Return block TLB information.
615  * @btlb: The return buffer.
616  *
617  * Returns information about the hardware Block TLB.
618  */
619 int pdc_btlb_info(struct pdc_btlb_info *btlb)
620 {
621         int retval;
622 	unsigned long flags;
623 
624         spin_lock_irqsave(&pdc_lock, flags);
625         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
626         memcpy(btlb, pdc_result, sizeof(*btlb));
627         spin_unlock_irqrestore(&pdc_lock, flags);
628 
629         if(retval < 0) {
630                 btlb->max_size = 0;
631         }
632         return retval;
633 }
634 
635 /**
636  * pdc_mem_map_hpa - Find fixed module information.
637  * @address: The return buffer
638  * @mod_path: pointer to dev path structure.
639  *
640  * This call was developed for S700 workstations to allow the kernel to find
641  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
642  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
643  * call.
644  *
645  * This call is supported by all existing S700 workstations (up to  Gecko).
646  */
647 int pdc_mem_map_hpa(struct pdc_memory_map *address,
648 		struct pdc_module_path *mod_path)
649 {
650         int retval;
651 	unsigned long flags;
652 
653         spin_lock_irqsave(&pdc_lock, flags);
654         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
655         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
656 				__pa(pdc_result2));
657         memcpy(address, pdc_result, sizeof(*address));
658         spin_unlock_irqrestore(&pdc_lock, flags);
659 
660         return retval;
661 }
662 #endif	/* !CONFIG_PA20 */
663 
664 /**
665  * pdc_lan_station_id - Get the LAN address.
666  * @lan_addr: The return buffer.
667  * @hpa: The network device HPA.
668  *
669  * Get the LAN station address when it is not directly available from the LAN hardware.
670  */
671 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
672 {
673 	int retval;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&pdc_lock, flags);
677 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
678 			__pa(pdc_result), hpa);
679 	if (retval < 0) {
680 		/* FIXME: else read MAC from NVRAM */
681 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
682 	} else {
683 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
684 	}
685 	spin_unlock_irqrestore(&pdc_lock, flags);
686 
687 	return retval;
688 }
689 EXPORT_SYMBOL(pdc_lan_station_id);
690 
691 /**
692  * pdc_stable_read - Read data from Stable Storage.
693  * @staddr: Stable Storage address to access.
694  * @memaddr: The memory address where Stable Storage data shall be copied.
695  * @count: number of bytes to transfer. count is multiple of 4.
696  *
697  * This PDC call reads from the Stable Storage address supplied in staddr
698  * and copies count bytes to the memory address memaddr.
699  * The call will fail if staddr+count > PDC_STABLE size.
700  */
701 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
702 {
703        int retval;
704 	unsigned long flags;
705 
706        spin_lock_irqsave(&pdc_lock, flags);
707        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
708                __pa(pdc_result), count);
709        convert_to_wide(pdc_result);
710        memcpy(memaddr, pdc_result, count);
711        spin_unlock_irqrestore(&pdc_lock, flags);
712 
713        return retval;
714 }
715 EXPORT_SYMBOL(pdc_stable_read);
716 
717 /**
718  * pdc_stable_write - Write data to Stable Storage.
719  * @staddr: Stable Storage address to access.
720  * @memaddr: The memory address where Stable Storage data shall be read from.
721  * @count: number of bytes to transfer. count is multiple of 4.
722  *
723  * This PDC call reads count bytes from the supplied memaddr address,
724  * and copies count bytes to the Stable Storage address staddr.
725  * The call will fail if staddr+count > PDC_STABLE size.
726  */
727 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
728 {
729        int retval;
730 	unsigned long flags;
731 
732        spin_lock_irqsave(&pdc_lock, flags);
733        memcpy(pdc_result, memaddr, count);
734        convert_to_wide(pdc_result);
735        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
736                __pa(pdc_result), count);
737        spin_unlock_irqrestore(&pdc_lock, flags);
738 
739        return retval;
740 }
741 EXPORT_SYMBOL(pdc_stable_write);
742 
743 /**
744  * pdc_stable_get_size - Get Stable Storage size in bytes.
745  * @size: pointer where the size will be stored.
746  *
747  * This PDC call returns the number of bytes in the processor's Stable
748  * Storage, which is the number of contiguous bytes implemented in Stable
749  * Storage starting from staddr=0. size in an unsigned 64-bit integer
750  * which is a multiple of four.
751  */
752 int pdc_stable_get_size(unsigned long *size)
753 {
754        int retval;
755 	unsigned long flags;
756 
757        spin_lock_irqsave(&pdc_lock, flags);
758        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
759        *size = pdc_result[0];
760        spin_unlock_irqrestore(&pdc_lock, flags);
761 
762        return retval;
763 }
764 EXPORT_SYMBOL(pdc_stable_get_size);
765 
766 /**
767  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
768  *
769  * This PDC call is meant to be used to check the integrity of the current
770  * contents of Stable Storage.
771  */
772 int pdc_stable_verify_contents(void)
773 {
774        int retval;
775 	unsigned long flags;
776 
777        spin_lock_irqsave(&pdc_lock, flags);
778        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
779        spin_unlock_irqrestore(&pdc_lock, flags);
780 
781        return retval;
782 }
783 EXPORT_SYMBOL(pdc_stable_verify_contents);
784 
785 /**
786  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
787  * the validity indicator.
788  *
789  * This PDC call will erase all contents of Stable Storage. Use with care!
790  */
791 int pdc_stable_initialize(void)
792 {
793        int retval;
794 	unsigned long flags;
795 
796        spin_lock_irqsave(&pdc_lock, flags);
797        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
798        spin_unlock_irqrestore(&pdc_lock, flags);
799 
800        return retval;
801 }
802 EXPORT_SYMBOL(pdc_stable_initialize);
803 
804 /**
805  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
806  * @hwpath: fully bc.mod style path to the device.
807  * @initiator: the array to return the result into
808  *
809  * Get the SCSI operational parameters from PDC.
810  * Needed since HPUX never used BIOS or symbios card NVRAM.
811  * Most ncr/sym cards won't have an entry and just use whatever
812  * capabilities of the card are (eg Ultra, LVD). But there are
813  * several cases where it's useful:
814  *    o set SCSI id for Multi-initiator clusters,
815  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
816  *    o bus width exported is less than what the interface chip supports.
817  */
818 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
819 {
820 	int retval;
821 	unsigned long flags;
822 
823 	spin_lock_irqsave(&pdc_lock, flags);
824 
825 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
826 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
827 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
828 
829 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
830 			      __pa(pdc_result), __pa(hwpath));
831 	if (retval < PDC_OK)
832 		goto out;
833 
834 	if (pdc_result[0] < 16) {
835 		initiator->host_id = pdc_result[0];
836 	} else {
837 		initiator->host_id = -1;
838 	}
839 
840 	/*
841 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
842 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
843 	 */
844 	switch (pdc_result[1]) {
845 		case  1: initiator->factor = 50; break;
846 		case  2: initiator->factor = 25; break;
847 		case  5: initiator->factor = 12; break;
848 		case 25: initiator->factor = 10; break;
849 		case 20: initiator->factor = 12; break;
850 		case 40: initiator->factor = 10; break;
851 		default: initiator->factor = -1; break;
852 	}
853 
854 	if (IS_SPROCKETS()) {
855 		initiator->width = pdc_result[4];
856 		initiator->mode = pdc_result[5];
857 	} else {
858 		initiator->width = -1;
859 		initiator->mode = -1;
860 	}
861 
862  out:
863 	spin_unlock_irqrestore(&pdc_lock, flags);
864 
865 	return (retval >= PDC_OK);
866 }
867 EXPORT_SYMBOL(pdc_get_initiator);
868 
869 
870 /**
871  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
872  * @num_entries: The return value.
873  * @hpa: The HPA for the device.
874  *
875  * This PDC function returns the number of entries in the specified cell's
876  * interrupt table.
877  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
878  */
879 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
880 {
881 	int retval;
882 	unsigned long flags;
883 
884 	spin_lock_irqsave(&pdc_lock, flags);
885 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
886 			      __pa(pdc_result), hpa);
887 	convert_to_wide(pdc_result);
888 	*num_entries = pdc_result[0];
889 	spin_unlock_irqrestore(&pdc_lock, flags);
890 
891 	return retval;
892 }
893 
894 /**
895  * pdc_pci_irt - Get the PCI interrupt routing table.
896  * @num_entries: The number of entries in the table.
897  * @hpa: The Hard Physical Address of the device.
898  * @tbl:
899  *
900  * Get the PCI interrupt routing table for the device at the given HPA.
901  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
902  */
903 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
904 {
905 	int retval;
906 	unsigned long flags;
907 
908 	BUG_ON((unsigned long)tbl & 0x7);
909 
910 	spin_lock_irqsave(&pdc_lock, flags);
911 	pdc_result[0] = num_entries;
912 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
913 			      __pa(pdc_result), hpa, __pa(tbl));
914 	spin_unlock_irqrestore(&pdc_lock, flags);
915 
916 	return retval;
917 }
918 
919 
920 #if 0	/* UNTEST CODE - left here in case someone needs it */
921 
922 /**
923  * pdc_pci_config_read - read PCI config space.
924  * @hpa		token from PDC to indicate which PCI device
925  * @pci_addr	configuration space address to read from
926  *
927  * Read PCI Configuration space *before* linux PCI subsystem is running.
928  */
929 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
930 {
931 	int retval;
932 	unsigned long flags;
933 
934 	spin_lock_irqsave(&pdc_lock, flags);
935 	pdc_result[0] = 0;
936 	pdc_result[1] = 0;
937 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
938 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
939 	spin_unlock_irqrestore(&pdc_lock, flags);
940 
941 	return retval ? ~0 : (unsigned int) pdc_result[0];
942 }
943 
944 
945 /**
946  * pdc_pci_config_write - read PCI config space.
947  * @hpa		token from PDC to indicate which PCI device
948  * @pci_addr	configuration space address to write
949  * @val		value we want in the 32-bit register
950  *
951  * Write PCI Configuration space *before* linux PCI subsystem is running.
952  */
953 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
954 {
955 	int retval;
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&pdc_lock, flags);
959 	pdc_result[0] = 0;
960 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
961 			      __pa(pdc_result), hpa,
962 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
963 	spin_unlock_irqrestore(&pdc_lock, flags);
964 
965 	return retval;
966 }
967 #endif /* UNTESTED CODE */
968 
969 /**
970  * pdc_tod_read - Read the Time-Of-Day clock.
971  * @tod: The return buffer:
972  *
973  * Read the Time-Of-Day clock
974  */
975 int pdc_tod_read(struct pdc_tod *tod)
976 {
977         int retval;
978 	unsigned long flags;
979 
980         spin_lock_irqsave(&pdc_lock, flags);
981         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
982         convert_to_wide(pdc_result);
983         memcpy(tod, pdc_result, sizeof(*tod));
984         spin_unlock_irqrestore(&pdc_lock, flags);
985 
986         return retval;
987 }
988 EXPORT_SYMBOL(pdc_tod_read);
989 
990 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
991 {
992 	int retval;
993 	unsigned long flags;
994 
995 	spin_lock_irqsave(&pdc_lock, flags);
996 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
997 	convert_to_wide(pdc_result);
998 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
999 	spin_unlock_irqrestore(&pdc_lock, flags);
1000 
1001 	return retval;
1002 }
1003 
1004 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1005 		unsigned long *pdt_entries_ptr)
1006 {
1007 	int retval;
1008 	unsigned long flags;
1009 
1010 	spin_lock_irqsave(&pdc_lock, flags);
1011 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1012 			__pa(pdt_entries_ptr));
1013 	if (retval == PDC_OK) {
1014 		convert_to_wide(pdc_result);
1015 		memcpy(pret, pdc_result, sizeof(*pret));
1016 	}
1017 	spin_unlock_irqrestore(&pdc_lock, flags);
1018 
1019 #ifdef CONFIG_64BIT
1020 	/*
1021 	 * 64-bit kernels should not call this PDT function in narrow mode.
1022 	 * The pdt_entries_ptr array above will now contain 32-bit values
1023 	 */
1024 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1025 		return PDC_ERROR;
1026 #endif
1027 
1028 	return retval;
1029 }
1030 
1031 /**
1032  * pdc_tod_set - Set the Time-Of-Day clock.
1033  * @sec: The number of seconds since epoch.
1034  * @usec: The number of micro seconds.
1035  *
1036  * Set the Time-Of-Day clock.
1037  */
1038 int pdc_tod_set(unsigned long sec, unsigned long usec)
1039 {
1040         int retval;
1041 	unsigned long flags;
1042 
1043         spin_lock_irqsave(&pdc_lock, flags);
1044         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1045         spin_unlock_irqrestore(&pdc_lock, flags);
1046 
1047         return retval;
1048 }
1049 EXPORT_SYMBOL(pdc_tod_set);
1050 
1051 #ifdef CONFIG_64BIT
1052 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1053 		struct pdc_memory_table *tbl, unsigned long entries)
1054 {
1055 	int retval;
1056 	unsigned long flags;
1057 
1058 	spin_lock_irqsave(&pdc_lock, flags);
1059 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1060 	convert_to_wide(pdc_result);
1061 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1062 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1063 	spin_unlock_irqrestore(&pdc_lock, flags);
1064 
1065 	return retval;
1066 }
1067 #endif /* CONFIG_64BIT */
1068 
1069 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1070  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1071  * it later. :)
1072  */
1073 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1074 {
1075         int retval;
1076 	unsigned long flags;
1077 
1078         spin_lock_irqsave(&pdc_lock, flags);
1079         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1080                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1081         spin_unlock_irqrestore(&pdc_lock, flags);
1082 
1083         return retval;
1084 }
1085 
1086 /*
1087  * pdc_do_reset - Reset the system.
1088  *
1089  * Reset the system.
1090  */
1091 int pdc_do_reset(void)
1092 {
1093         int retval;
1094 	unsigned long flags;
1095 
1096         spin_lock_irqsave(&pdc_lock, flags);
1097         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1098         spin_unlock_irqrestore(&pdc_lock, flags);
1099 
1100         return retval;
1101 }
1102 
1103 /*
1104  * pdc_soft_power_info - Enable soft power switch.
1105  * @power_reg: address of soft power register
1106  *
1107  * Return the absolute address of the soft power switch register
1108  */
1109 int __init pdc_soft_power_info(unsigned long *power_reg)
1110 {
1111 	int retval;
1112 	unsigned long flags;
1113 
1114 	*power_reg = (unsigned long) (-1);
1115 
1116 	spin_lock_irqsave(&pdc_lock, flags);
1117 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1118 	if (retval == PDC_OK) {
1119                 convert_to_wide(pdc_result);
1120                 *power_reg = f_extend(pdc_result[0]);
1121 	}
1122 	spin_unlock_irqrestore(&pdc_lock, flags);
1123 
1124 	return retval;
1125 }
1126 
1127 /*
1128  * pdc_soft_power_button - Control the soft power button behaviour
1129  * @sw_control: 0 for hardware control, 1 for software control
1130  *
1131  *
1132  * This PDC function places the soft power button under software or
1133  * hardware control.
1134  * Under software control the OS may control to when to allow to shut
1135  * down the system. Under hardware control pressing the power button
1136  * powers off the system immediately.
1137  */
1138 int pdc_soft_power_button(int sw_control)
1139 {
1140 	int retval;
1141 	unsigned long flags;
1142 
1143 	spin_lock_irqsave(&pdc_lock, flags);
1144 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1145 	spin_unlock_irqrestore(&pdc_lock, flags);
1146 
1147 	return retval;
1148 }
1149 
1150 /*
1151  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1152  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1153  * who knows what other platform firmware might do with this OS "hook".
1154  */
1155 void pdc_io_reset(void)
1156 {
1157 	unsigned long flags;
1158 
1159 	spin_lock_irqsave(&pdc_lock, flags);
1160 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1161 	spin_unlock_irqrestore(&pdc_lock, flags);
1162 }
1163 
1164 /*
1165  * pdc_io_reset_devices - Hack to Stop USB controller
1166  *
1167  * If PDC used the usb controller, the usb controller
1168  * is still running and will crash the machines during iommu
1169  * setup, because of still running DMA. This PDC call
1170  * stops the USB controller.
1171  * Normally called after calling pdc_io_reset().
1172  */
1173 void pdc_io_reset_devices(void)
1174 {
1175 	unsigned long flags;
1176 
1177 	spin_lock_irqsave(&pdc_lock, flags);
1178 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1179 	spin_unlock_irqrestore(&pdc_lock, flags);
1180 }
1181 
1182 #endif /* defined(BOOTLOADER) */
1183 
1184 /* locked by pdc_console_lock */
1185 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1186 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1187 
1188 /**
1189  * pdc_iodc_print - Console print using IODC.
1190  * @str: the string to output.
1191  * @count: length of str
1192  *
1193  * Note that only these special chars are architected for console IODC io:
1194  * BEL, BS, CR, and LF. Others are passed through.
1195  * Since the HP console requires CR+LF to perform a 'newline', we translate
1196  * "\n" to "\r\n".
1197  */
1198 int pdc_iodc_print(const unsigned char *str, unsigned count)
1199 {
1200 	unsigned int i;
1201 	unsigned long flags;
1202 
1203 	for (i = 0; i < count;) {
1204 		switch(str[i]) {
1205 		case '\n':
1206 			iodc_dbuf[i+0] = '\r';
1207 			iodc_dbuf[i+1] = '\n';
1208 			i += 2;
1209 			goto print;
1210 		default:
1211 			iodc_dbuf[i] = str[i];
1212 			i++;
1213 			break;
1214 		}
1215 	}
1216 
1217 print:
1218         spin_lock_irqsave(&pdc_lock, flags);
1219         real32_call(PAGE0->mem_cons.iodc_io,
1220                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1221                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1222                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1223         spin_unlock_irqrestore(&pdc_lock, flags);
1224 
1225 	return i;
1226 }
1227 
1228 #if !defined(BOOTLOADER)
1229 /**
1230  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1231  *
1232  * Read a character (non-blocking) from the PDC console, returns -1 if
1233  * key is not present.
1234  */
1235 int pdc_iodc_getc(void)
1236 {
1237 	int ch;
1238 	int status;
1239 	unsigned long flags;
1240 
1241 	/* Bail if no console input device. */
1242 	if (!PAGE0->mem_kbd.iodc_io)
1243 		return 0;
1244 
1245 	/* wait for a keyboard (rs232)-input */
1246 	spin_lock_irqsave(&pdc_lock, flags);
1247 	real32_call(PAGE0->mem_kbd.iodc_io,
1248 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1249 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1250 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1251 
1252 	ch = *iodc_dbuf;
1253 	status = *iodc_retbuf;
1254 	spin_unlock_irqrestore(&pdc_lock, flags);
1255 
1256 	if (status == 0)
1257 	    return -1;
1258 
1259 	return ch;
1260 }
1261 
1262 int pdc_sti_call(unsigned long func, unsigned long flags,
1263                  unsigned long inptr, unsigned long outputr,
1264                  unsigned long glob_cfg)
1265 {
1266         int retval;
1267 	unsigned long irqflags;
1268 
1269         spin_lock_irqsave(&pdc_lock, irqflags);
1270         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1271         spin_unlock_irqrestore(&pdc_lock, irqflags);
1272 
1273         return retval;
1274 }
1275 EXPORT_SYMBOL(pdc_sti_call);
1276 
1277 #ifdef CONFIG_64BIT
1278 /**
1279  * pdc_pat_cell_get_number - Returns the cell number.
1280  * @cell_info: The return buffer.
1281  *
1282  * This PDC call returns the cell number of the cell from which the call
1283  * is made.
1284  */
1285 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1286 {
1287 	int retval;
1288 	unsigned long flags;
1289 
1290 	spin_lock_irqsave(&pdc_lock, flags);
1291 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1292 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1293 	spin_unlock_irqrestore(&pdc_lock, flags);
1294 
1295 	return retval;
1296 }
1297 
1298 /**
1299  * pdc_pat_cell_module - Retrieve the cell's module information.
1300  * @actcnt: The number of bytes written to mem_addr.
1301  * @ploc: The physical location.
1302  * @mod: The module index.
1303  * @view_type: The view of the address type.
1304  * @mem_addr: The return buffer.
1305  *
1306  * This PDC call returns information about each module attached to the cell
1307  * at the specified location.
1308  */
1309 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1310 			unsigned long view_type, void *mem_addr)
1311 {
1312 	int retval;
1313 	unsigned long flags;
1314 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1315 
1316 	spin_lock_irqsave(&pdc_lock, flags);
1317 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1318 			      ploc, mod, view_type, __pa(&result));
1319 	if(!retval) {
1320 		*actcnt = pdc_result[0];
1321 		memcpy(mem_addr, &result, *actcnt);
1322 	}
1323 	spin_unlock_irqrestore(&pdc_lock, flags);
1324 
1325 	return retval;
1326 }
1327 
1328 /**
1329  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1330  * @cpu_info: The return buffer.
1331  * @hpa: The Hard Physical Address of the CPU.
1332  *
1333  * Retrieve the cpu number for the cpu at the specified HPA.
1334  */
1335 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1336 {
1337 	int retval;
1338 	unsigned long flags;
1339 
1340 	spin_lock_irqsave(&pdc_lock, flags);
1341 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1342 			      __pa(&pdc_result), hpa);
1343 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1344 	spin_unlock_irqrestore(&pdc_lock, flags);
1345 
1346 	return retval;
1347 }
1348 
1349 /**
1350  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1351  * @num_entries: The return value.
1352  * @cell_num: The target cell.
1353  *
1354  * This PDC function returns the number of entries in the specified cell's
1355  * interrupt table.
1356  */
1357 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1358 {
1359 	int retval;
1360 	unsigned long flags;
1361 
1362 	spin_lock_irqsave(&pdc_lock, flags);
1363 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1364 			      __pa(pdc_result), cell_num);
1365 	*num_entries = pdc_result[0];
1366 	spin_unlock_irqrestore(&pdc_lock, flags);
1367 
1368 	return retval;
1369 }
1370 
1371 /**
1372  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1373  * @r_addr: The return buffer.
1374  * @cell_num: The target cell.
1375  *
1376  * This PDC function returns the actual interrupt table for the specified cell.
1377  */
1378 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1379 {
1380 	int retval;
1381 	unsigned long flags;
1382 
1383 	spin_lock_irqsave(&pdc_lock, flags);
1384 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1385 			      __pa(r_addr), cell_num);
1386 	spin_unlock_irqrestore(&pdc_lock, flags);
1387 
1388 	return retval;
1389 }
1390 
1391 /**
1392  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1393  * @actlen: The return buffer.
1394  * @mem_addr: Pointer to the memory buffer.
1395  * @count: The number of bytes to read from the buffer.
1396  * @offset: The offset with respect to the beginning of the buffer.
1397  *
1398  */
1399 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1400 			    unsigned long count, unsigned long offset)
1401 {
1402 	int retval;
1403 	unsigned long flags;
1404 
1405 	spin_lock_irqsave(&pdc_lock, flags);
1406 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1407 			      __pa(pdc_result2), count, offset);
1408 	*actual_len = pdc_result[0];
1409 	memcpy(mem_addr, pdc_result2, *actual_len);
1410 	spin_unlock_irqrestore(&pdc_lock, flags);
1411 
1412 	return retval;
1413 }
1414 
1415 /**
1416  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1417  * @pci_addr: PCI configuration space address for which the read request is being made.
1418  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1419  * @mem_addr: Pointer to return memory buffer.
1420  *
1421  */
1422 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1423 {
1424 	int retval;
1425 	unsigned long flags;
1426 
1427 	spin_lock_irqsave(&pdc_lock, flags);
1428 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1429 					__pa(pdc_result), pci_addr, pci_size);
1430 	switch(pci_size) {
1431 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1432 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1433 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1434 	}
1435 	spin_unlock_irqrestore(&pdc_lock, flags);
1436 
1437 	return retval;
1438 }
1439 
1440 /**
1441  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1442  * @pci_addr: PCI configuration space address for which the write  request is being made.
1443  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1444  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1445  *         written to PCI Config space.
1446  *
1447  */
1448 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1449 {
1450 	int retval;
1451 	unsigned long flags;
1452 
1453 	spin_lock_irqsave(&pdc_lock, flags);
1454 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1455 				pci_addr, pci_size, val);
1456 	spin_unlock_irqrestore(&pdc_lock, flags);
1457 
1458 	return retval;
1459 }
1460 
1461 /**
1462  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1463  * @rinfo: memory pdt information
1464  *
1465  */
1466 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1467 {
1468 	int retval;
1469 	unsigned long flags;
1470 
1471 	spin_lock_irqsave(&pdc_lock, flags);
1472 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1473 			__pa(&pdc_result));
1474 	if (retval == PDC_OK)
1475 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1476 	spin_unlock_irqrestore(&pdc_lock, flags);
1477 
1478 	return retval;
1479 }
1480 
1481 /**
1482  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1483  *				table of a cell
1484  * @rinfo: memory pdt information
1485  * @cell: cell number
1486  *
1487  */
1488 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1489 		unsigned long cell)
1490 {
1491 	int retval;
1492 	unsigned long flags;
1493 
1494 	spin_lock_irqsave(&pdc_lock, flags);
1495 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1496 			__pa(&pdc_result), cell);
1497 	if (retval == PDC_OK)
1498 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1499 	spin_unlock_irqrestore(&pdc_lock, flags);
1500 
1501 	return retval;
1502 }
1503 
1504 /**
1505  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1506  * @pret: array of PDT entries
1507  * @pdt_entries_ptr: ptr to hold number of PDT entries
1508  * @max_entries: maximum number of entries to be read
1509  *
1510  */
1511 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1512 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1513 {
1514 	int retval;
1515 	unsigned long flags, entries;
1516 
1517 	spin_lock_irqsave(&pdc_lock, flags);
1518 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1519 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1520 			__pa(&pdc_result), parisc_cell_num,
1521 			__pa(pdt_entries_ptr));
1522 
1523 	if (retval == PDC_OK) {
1524 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1525 		entries = min(pdc_result[0], max_entries);
1526 		pret->pdt_entries = entries;
1527 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1528 	}
1529 
1530 	spin_unlock_irqrestore(&pdc_lock, flags);
1531 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1532 
1533 	return retval;
1534 }
1535 /**
1536  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1537  * @pret: array of PDT entries
1538  * @pdt_entries_ptr: ptr to hold number of PDT entries
1539  * @count: number of bytes to read
1540  * @offset: offset to start (in bytes)
1541  *
1542  */
1543 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1544 		unsigned long *pdt_entries_ptr, unsigned long count,
1545 		unsigned long offset)
1546 {
1547 	int retval;
1548 	unsigned long flags, entries;
1549 
1550 	spin_lock_irqsave(&pdc_lock, flags);
1551 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1552 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1553 		count, offset);
1554 
1555 	if (retval == PDC_OK) {
1556 		entries = min(pdc_result[0], count);
1557 		pret->actual_count_bytes = entries;
1558 		pret->pdt_entries = entries / sizeof(unsigned long);
1559 	}
1560 
1561 	spin_unlock_irqrestore(&pdc_lock, flags);
1562 
1563 	return retval;
1564 }
1565 
1566 /**
1567  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1568  * @pret: ptr to hold returned information
1569  * @phys_addr: physical address to examine
1570  *
1571  */
1572 int pdc_pat_mem_get_dimm_phys_location(
1573 		struct pdc_pat_mem_phys_mem_location *pret,
1574 		unsigned long phys_addr)
1575 {
1576 	int retval;
1577 	unsigned long flags;
1578 
1579 	spin_lock_irqsave(&pdc_lock, flags);
1580 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1581 		__pa(&pdc_result), phys_addr);
1582 
1583 	if (retval == PDC_OK)
1584 		memcpy(pret, &pdc_result, sizeof(*pret));
1585 
1586 	spin_unlock_irqrestore(&pdc_lock, flags);
1587 
1588 	return retval;
1589 }
1590 #endif /* CONFIG_64BIT */
1591 #endif /* defined(BOOTLOADER) */
1592 
1593 
1594 /***************** 32-bit real-mode calls ***********/
1595 /* The struct below is used
1596  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1597  * real32_call_asm() then uses this stack in narrow real mode
1598  */
1599 
1600 struct narrow_stack {
1601 	/* use int, not long which is 64 bits */
1602 	unsigned int arg13;
1603 	unsigned int arg12;
1604 	unsigned int arg11;
1605 	unsigned int arg10;
1606 	unsigned int arg9;
1607 	unsigned int arg8;
1608 	unsigned int arg7;
1609 	unsigned int arg6;
1610 	unsigned int arg5;
1611 	unsigned int arg4;
1612 	unsigned int arg3;
1613 	unsigned int arg2;
1614 	unsigned int arg1;
1615 	unsigned int arg0;
1616 	unsigned int frame_marker[8];
1617 	unsigned int sp;
1618 	/* in reality, there's nearly 8k of stack after this */
1619 };
1620 
1621 long real32_call(unsigned long fn, ...)
1622 {
1623 	va_list args;
1624 	extern struct narrow_stack real_stack;
1625 	extern unsigned long real32_call_asm(unsigned int *,
1626 					     unsigned int *,
1627 					     unsigned int);
1628 
1629 	va_start(args, fn);
1630 	real_stack.arg0 = va_arg(args, unsigned int);
1631 	real_stack.arg1 = va_arg(args, unsigned int);
1632 	real_stack.arg2 = va_arg(args, unsigned int);
1633 	real_stack.arg3 = va_arg(args, unsigned int);
1634 	real_stack.arg4 = va_arg(args, unsigned int);
1635 	real_stack.arg5 = va_arg(args, unsigned int);
1636 	real_stack.arg6 = va_arg(args, unsigned int);
1637 	real_stack.arg7 = va_arg(args, unsigned int);
1638 	real_stack.arg8 = va_arg(args, unsigned int);
1639 	real_stack.arg9 = va_arg(args, unsigned int);
1640 	real_stack.arg10 = va_arg(args, unsigned int);
1641 	real_stack.arg11 = va_arg(args, unsigned int);
1642 	real_stack.arg12 = va_arg(args, unsigned int);
1643 	real_stack.arg13 = va_arg(args, unsigned int);
1644 	va_end(args);
1645 
1646 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1647 }
1648 
1649 #ifdef CONFIG_64BIT
1650 /***************** 64-bit real-mode calls ***********/
1651 
1652 struct wide_stack {
1653 	unsigned long arg0;
1654 	unsigned long arg1;
1655 	unsigned long arg2;
1656 	unsigned long arg3;
1657 	unsigned long arg4;
1658 	unsigned long arg5;
1659 	unsigned long arg6;
1660 	unsigned long arg7;
1661 	unsigned long arg8;
1662 	unsigned long arg9;
1663 	unsigned long arg10;
1664 	unsigned long arg11;
1665 	unsigned long arg12;
1666 	unsigned long arg13;
1667 	unsigned long frame_marker[2];	/* rp, previous sp */
1668 	unsigned long sp;
1669 	/* in reality, there's nearly 8k of stack after this */
1670 };
1671 
1672 long real64_call(unsigned long fn, ...)
1673 {
1674 	va_list args;
1675 	extern struct wide_stack real64_stack;
1676 	extern unsigned long real64_call_asm(unsigned long *,
1677 					     unsigned long *,
1678 					     unsigned long);
1679 
1680 	va_start(args, fn);
1681 	real64_stack.arg0 = va_arg(args, unsigned long);
1682 	real64_stack.arg1 = va_arg(args, unsigned long);
1683 	real64_stack.arg2 = va_arg(args, unsigned long);
1684 	real64_stack.arg3 = va_arg(args, unsigned long);
1685 	real64_stack.arg4 = va_arg(args, unsigned long);
1686 	real64_stack.arg5 = va_arg(args, unsigned long);
1687 	real64_stack.arg6 = va_arg(args, unsigned long);
1688 	real64_stack.arg7 = va_arg(args, unsigned long);
1689 	real64_stack.arg8 = va_arg(args, unsigned long);
1690 	real64_stack.arg9 = va_arg(args, unsigned long);
1691 	real64_stack.arg10 = va_arg(args, unsigned long);
1692 	real64_stack.arg11 = va_arg(args, unsigned long);
1693 	real64_stack.arg12 = va_arg(args, unsigned long);
1694 	real64_stack.arg13 = va_arg(args, unsigned long);
1695 	va_end(args);
1696 
1697 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1698 }
1699 
1700 #endif /* CONFIG_64BIT */
1701