1 /* 2 * arch/parisc/kernel/firmware.c - safe PDC access routines 3 * 4 * PDC == Processor Dependent Code 5 * 6 * See http://www.parisc-linux.org/documentation/index.html 7 * for documentation describing the entry points and calling 8 * conventions defined below. 9 * 10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 12 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License as published by 18 * the Free Software Foundation; either version 2 of the License, or 19 * (at your option) any later version. 20 * 21 */ 22 23 /* I think it would be in everyone's best interest to follow this 24 * guidelines when writing PDC wrappers: 25 * 26 * - the name of the pdc wrapper should match one of the macros 27 * used for the first two arguments 28 * - don't use caps for random parts of the name 29 * - use the static PDC result buffers and "copyout" to structs 30 * supplied by the caller to encapsulate alignment restrictions 31 * - hold pdc_lock while in PDC or using static result buffers 32 * - use __pa() to convert virtual (kernel) pointers to physical 33 * ones. 34 * - the name of the struct used for pdc return values should equal 35 * one of the macros used for the first two arguments to the 36 * corresponding PDC call 37 * - keep the order of arguments 38 * - don't be smart (setting trailing NUL bytes for strings, return 39 * something useful even if the call failed) unless you are sure 40 * it's not going to affect functionality or performance 41 * 42 * Example: 43 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 44 * { 45 * int retval; 46 * 47 * spin_lock_irq(&pdc_lock); 48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 49 * convert_to_wide(pdc_result); 50 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 51 * spin_unlock_irq(&pdc_lock); 52 * 53 * return retval; 54 * } 55 * prumpf 991016 56 */ 57 58 #include <stdarg.h> 59 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/module.h> 64 #include <linux/string.h> 65 #include <linux/spinlock.h> 66 67 #include <asm/page.h> 68 #include <asm/pdc.h> 69 #include <asm/pdcpat.h> 70 #include <asm/processor.h> /* for boot_cpu_data */ 71 72 static DEFINE_SPINLOCK(pdc_lock); 73 extern unsigned long pdc_result[NUM_PDC_RESULT]; 74 extern unsigned long pdc_result2[NUM_PDC_RESULT]; 75 76 #ifdef CONFIG_64BIT 77 #define WIDE_FIRMWARE 0x1 78 #define NARROW_FIRMWARE 0x2 79 80 /* Firmware needs to be initially set to narrow to determine the 81 * actual firmware width. */ 82 int parisc_narrow_firmware __read_mostly = 1; 83 #endif 84 85 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 86 * and MEM_PDC calls are always the same width as the OS. 87 * Some PAT boxes may have 64-bit IODC I/O. 88 * 89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 91 * This allowed wide kernels to run on Cxxx boxes. 92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 94 */ 95 96 #ifdef CONFIG_64BIT 97 long real64_call(unsigned long function, ...); 98 #endif 99 long real32_call(unsigned long function, ...); 100 101 #ifdef CONFIG_64BIT 102 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 103 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 104 #else 105 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 106 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 107 #endif 108 109 110 /** 111 * f_extend - Convert PDC addresses to kernel addresses. 112 * @address: Address returned from PDC. 113 * 114 * This function is used to convert PDC addresses into kernel addresses 115 * when the PDC address size and kernel address size are different. 116 */ 117 static unsigned long f_extend(unsigned long address) 118 { 119 #ifdef CONFIG_64BIT 120 if(unlikely(parisc_narrow_firmware)) { 121 if((address & 0xff000000) == 0xf0000000) 122 return 0xf0f0f0f000000000UL | (u32)address; 123 124 if((address & 0xf0000000) == 0xf0000000) 125 return 0xffffffff00000000UL | (u32)address; 126 } 127 #endif 128 return address; 129 } 130 131 /** 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 133 * @address: The return buffer from PDC. 134 * 135 * This function is used to convert the return buffer addresses retrieved from PDC 136 * into kernel addresses when the PDC address size and kernel address size are 137 * different. 138 */ 139 static void convert_to_wide(unsigned long *addr) 140 { 141 #ifdef CONFIG_64BIT 142 int i; 143 unsigned int *p = (unsigned int *)addr; 144 145 if(unlikely(parisc_narrow_firmware)) { 146 for(i = 31; i >= 0; --i) 147 addr[i] = p[i]; 148 } 149 #endif 150 } 151 152 #ifdef CONFIG_64BIT 153 void set_firmware_width_unlocked(void) 154 { 155 int ret; 156 157 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 158 __pa(pdc_result), 0); 159 convert_to_wide(pdc_result); 160 if (pdc_result[0] != NARROW_FIRMWARE) 161 parisc_narrow_firmware = 0; 162 } 163 164 /** 165 * set_firmware_width - Determine if the firmware is wide or narrow. 166 * 167 * This function must be called before any pdc_* function that uses the 168 * convert_to_wide function. 169 */ 170 void set_firmware_width(void) 171 { 172 unsigned long flags; 173 spin_lock_irqsave(&pdc_lock, flags); 174 set_firmware_width_unlocked(); 175 spin_unlock_irqrestore(&pdc_lock, flags); 176 } 177 #else 178 void set_firmware_width_unlocked(void) 179 { 180 return; 181 } 182 183 void set_firmware_width(void) 184 { 185 return; 186 } 187 #endif /*CONFIG_64BIT*/ 188 189 /** 190 * pdc_emergency_unlock - Unlock the linux pdc lock 191 * 192 * This call unlocks the linux pdc lock in case we need some PDC functions 193 * (like pdc_add_valid) during kernel stack dump. 194 */ 195 void pdc_emergency_unlock(void) 196 { 197 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 198 if (spin_is_locked(&pdc_lock)) 199 spin_unlock(&pdc_lock); 200 } 201 202 203 /** 204 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 205 * @address: Address to be verified. 206 * 207 * This PDC call attempts to read from the specified address and verifies 208 * if the address is valid. 209 * 210 * The return value is PDC_OK (0) in case accessing this address is valid. 211 */ 212 int pdc_add_valid(unsigned long address) 213 { 214 int retval; 215 unsigned long flags; 216 217 spin_lock_irqsave(&pdc_lock, flags); 218 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 219 spin_unlock_irqrestore(&pdc_lock, flags); 220 221 return retval; 222 } 223 EXPORT_SYMBOL(pdc_add_valid); 224 225 /** 226 * pdc_chassis_info - Return chassis information. 227 * @result: The return buffer. 228 * @chassis_info: The memory buffer address. 229 * @len: The size of the memory buffer address. 230 * 231 * An HVERSION dependent call for returning the chassis information. 232 */ 233 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 234 { 235 int retval; 236 unsigned long flags; 237 238 spin_lock_irqsave(&pdc_lock, flags); 239 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 240 memcpy(&pdc_result2, led_info, len); 241 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 242 __pa(pdc_result), __pa(pdc_result2), len); 243 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 244 memcpy(led_info, pdc_result2, len); 245 spin_unlock_irqrestore(&pdc_lock, flags); 246 247 return retval; 248 } 249 250 /** 251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 252 * @retval: -1 on error, 0 on success. Other value are PDC errors 253 * 254 * Must be correctly formatted or expect system crash 255 */ 256 #ifdef CONFIG_64BIT 257 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 258 { 259 int retval = 0; 260 unsigned long flags; 261 262 if (!is_pdc_pat()) 263 return -1; 264 265 spin_lock_irqsave(&pdc_lock, flags); 266 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 267 spin_unlock_irqrestore(&pdc_lock, flags); 268 269 return retval; 270 } 271 #endif 272 273 /** 274 * pdc_chassis_disp - Updates chassis code 275 * @retval: -1 on error, 0 on success 276 */ 277 int pdc_chassis_disp(unsigned long disp) 278 { 279 int retval = 0; 280 unsigned long flags; 281 282 spin_lock_irqsave(&pdc_lock, flags); 283 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 284 spin_unlock_irqrestore(&pdc_lock, flags); 285 286 return retval; 287 } 288 289 /** 290 * pdc_chassis_warn - Fetches chassis warnings 291 * @retval: -1 on error, 0 on success 292 */ 293 int pdc_chassis_warn(unsigned long *warn) 294 { 295 int retval = 0; 296 unsigned long flags; 297 298 spin_lock_irqsave(&pdc_lock, flags); 299 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 300 *warn = pdc_result[0]; 301 spin_unlock_irqrestore(&pdc_lock, flags); 302 303 return retval; 304 } 305 306 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 307 { 308 int ret; 309 310 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 311 convert_to_wide(pdc_result); 312 pdc_coproc_info->ccr_functional = pdc_result[0]; 313 pdc_coproc_info->ccr_present = pdc_result[1]; 314 pdc_coproc_info->revision = pdc_result[17]; 315 pdc_coproc_info->model = pdc_result[18]; 316 317 return ret; 318 } 319 320 /** 321 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 322 * @pdc_coproc_info: Return buffer address. 323 * 324 * This PDC call returns the presence and status of all the coprocessors 325 * attached to the processor. 326 */ 327 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 328 { 329 int ret; 330 unsigned long flags; 331 332 spin_lock_irqsave(&pdc_lock, flags); 333 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 334 spin_unlock_irqrestore(&pdc_lock, flags); 335 336 return ret; 337 } 338 339 /** 340 * pdc_iodc_read - Read data from the modules IODC. 341 * @actcnt: The actual number of bytes. 342 * @hpa: The HPA of the module for the iodc read. 343 * @index: The iodc entry point. 344 * @iodc_data: A buffer memory for the iodc options. 345 * @iodc_data_size: Size of the memory buffer. 346 * 347 * This PDC call reads from the IODC of the module specified by the hpa 348 * argument. 349 */ 350 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 351 void *iodc_data, unsigned int iodc_data_size) 352 { 353 int retval; 354 unsigned long flags; 355 356 spin_lock_irqsave(&pdc_lock, flags); 357 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 358 index, __pa(pdc_result2), iodc_data_size); 359 convert_to_wide(pdc_result); 360 *actcnt = pdc_result[0]; 361 memcpy(iodc_data, pdc_result2, iodc_data_size); 362 spin_unlock_irqrestore(&pdc_lock, flags); 363 364 return retval; 365 } 366 EXPORT_SYMBOL(pdc_iodc_read); 367 368 /** 369 * pdc_system_map_find_mods - Locate unarchitected modules. 370 * @pdc_mod_info: Return buffer address. 371 * @mod_path: pointer to dev path structure. 372 * @mod_index: fixed address module index. 373 * 374 * To locate and identify modules which reside at fixed I/O addresses, which 375 * do not self-identify via architected bus walks. 376 */ 377 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 378 struct pdc_module_path *mod_path, long mod_index) 379 { 380 int retval; 381 unsigned long flags; 382 383 spin_lock_irqsave(&pdc_lock, flags); 384 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 385 __pa(pdc_result2), mod_index); 386 convert_to_wide(pdc_result); 387 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 388 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 389 spin_unlock_irqrestore(&pdc_lock, flags); 390 391 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 392 return retval; 393 } 394 395 /** 396 * pdc_system_map_find_addrs - Retrieve additional address ranges. 397 * @pdc_addr_info: Return buffer address. 398 * @mod_index: Fixed address module index. 399 * @addr_index: Address range index. 400 * 401 * Retrieve additional information about subsequent address ranges for modules 402 * with multiple address ranges. 403 */ 404 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 405 long mod_index, long addr_index) 406 { 407 int retval; 408 unsigned long flags; 409 410 spin_lock_irqsave(&pdc_lock, flags); 411 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 412 mod_index, addr_index); 413 convert_to_wide(pdc_result); 414 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 415 spin_unlock_irqrestore(&pdc_lock, flags); 416 417 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 418 return retval; 419 } 420 421 /** 422 * pdc_model_info - Return model information about the processor. 423 * @model: The return buffer. 424 * 425 * Returns the version numbers, identifiers, and capabilities from the processor module. 426 */ 427 int pdc_model_info(struct pdc_model *model) 428 { 429 int retval; 430 unsigned long flags; 431 432 spin_lock_irqsave(&pdc_lock, flags); 433 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 434 convert_to_wide(pdc_result); 435 memcpy(model, pdc_result, sizeof(*model)); 436 spin_unlock_irqrestore(&pdc_lock, flags); 437 438 return retval; 439 } 440 441 /** 442 * pdc_model_sysmodel - Get the system model name. 443 * @name: A char array of at least 81 characters. 444 * 445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 447 * on HP/UX. 448 */ 449 int pdc_model_sysmodel(char *name) 450 { 451 int retval; 452 unsigned long flags; 453 454 spin_lock_irqsave(&pdc_lock, flags); 455 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 456 OS_ID_HPUX, __pa(name)); 457 convert_to_wide(pdc_result); 458 459 if (retval == PDC_OK) { 460 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 461 } else { 462 name[0] = 0; 463 } 464 spin_unlock_irqrestore(&pdc_lock, flags); 465 466 return retval; 467 } 468 469 /** 470 * pdc_model_versions - Identify the version number of each processor. 471 * @cpu_id: The return buffer. 472 * @id: The id of the processor to check. 473 * 474 * Returns the version number for each processor component. 475 * 476 * This comment was here before, but I do not know what it means :( -RB 477 * id: 0 = cpu revision, 1 = boot-rom-version 478 */ 479 int pdc_model_versions(unsigned long *versions, int id) 480 { 481 int retval; 482 unsigned long flags; 483 484 spin_lock_irqsave(&pdc_lock, flags); 485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 486 convert_to_wide(pdc_result); 487 *versions = pdc_result[0]; 488 spin_unlock_irqrestore(&pdc_lock, flags); 489 490 return retval; 491 } 492 493 /** 494 * pdc_model_cpuid - Returns the CPU_ID. 495 * @cpu_id: The return buffer. 496 * 497 * Returns the CPU_ID value which uniquely identifies the cpu portion of 498 * the processor module. 499 */ 500 int pdc_model_cpuid(unsigned long *cpu_id) 501 { 502 int retval; 503 unsigned long flags; 504 505 spin_lock_irqsave(&pdc_lock, flags); 506 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 507 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 508 convert_to_wide(pdc_result); 509 *cpu_id = pdc_result[0]; 510 spin_unlock_irqrestore(&pdc_lock, flags); 511 512 return retval; 513 } 514 515 /** 516 * pdc_model_capabilities - Returns the platform capabilities. 517 * @capabilities: The return buffer. 518 * 519 * Returns information about platform support for 32- and/or 64-bit 520 * OSes, IO-PDIR coherency, and virtual aliasing. 521 */ 522 int pdc_model_capabilities(unsigned long *capabilities) 523 { 524 int retval; 525 unsigned long flags; 526 527 spin_lock_irqsave(&pdc_lock, flags); 528 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 529 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 530 convert_to_wide(pdc_result); 531 if (retval == PDC_OK) { 532 *capabilities = pdc_result[0]; 533 } else { 534 *capabilities = PDC_MODEL_OS32; 535 } 536 spin_unlock_irqrestore(&pdc_lock, flags); 537 538 return retval; 539 } 540 541 /** 542 * pdc_cache_info - Return cache and TLB information. 543 * @cache_info: The return buffer. 544 * 545 * Returns information about the processor's cache and TLB. 546 */ 547 int pdc_cache_info(struct pdc_cache_info *cache_info) 548 { 549 int retval; 550 unsigned long flags; 551 552 spin_lock_irqsave(&pdc_lock, flags); 553 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 554 convert_to_wide(pdc_result); 555 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 556 spin_unlock_irqrestore(&pdc_lock, flags); 557 558 return retval; 559 } 560 561 /** 562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 563 * @space_bits: Should be 0, if not, bad mojo! 564 * 565 * Returns information about Space ID hashing. 566 */ 567 int pdc_spaceid_bits(unsigned long *space_bits) 568 { 569 int retval; 570 unsigned long flags; 571 572 spin_lock_irqsave(&pdc_lock, flags); 573 pdc_result[0] = 0; 574 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 575 convert_to_wide(pdc_result); 576 *space_bits = pdc_result[0]; 577 spin_unlock_irqrestore(&pdc_lock, flags); 578 579 return retval; 580 } 581 582 #ifndef CONFIG_PA20 583 /** 584 * pdc_btlb_info - Return block TLB information. 585 * @btlb: The return buffer. 586 * 587 * Returns information about the hardware Block TLB. 588 */ 589 int pdc_btlb_info(struct pdc_btlb_info *btlb) 590 { 591 int retval; 592 unsigned long flags; 593 594 spin_lock_irqsave(&pdc_lock, flags); 595 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 596 memcpy(btlb, pdc_result, sizeof(*btlb)); 597 spin_unlock_irqrestore(&pdc_lock, flags); 598 599 if(retval < 0) { 600 btlb->max_size = 0; 601 } 602 return retval; 603 } 604 605 /** 606 * pdc_mem_map_hpa - Find fixed module information. 607 * @address: The return buffer 608 * @mod_path: pointer to dev path structure. 609 * 610 * This call was developed for S700 workstations to allow the kernel to find 611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 613 * call. 614 * 615 * This call is supported by all existing S700 workstations (up to Gecko). 616 */ 617 int pdc_mem_map_hpa(struct pdc_memory_map *address, 618 struct pdc_module_path *mod_path) 619 { 620 int retval; 621 unsigned long flags; 622 623 spin_lock_irqsave(&pdc_lock, flags); 624 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 625 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 626 __pa(pdc_result2)); 627 memcpy(address, pdc_result, sizeof(*address)); 628 spin_unlock_irqrestore(&pdc_lock, flags); 629 630 return retval; 631 } 632 #endif /* !CONFIG_PA20 */ 633 634 /** 635 * pdc_lan_station_id - Get the LAN address. 636 * @lan_addr: The return buffer. 637 * @hpa: The network device HPA. 638 * 639 * Get the LAN station address when it is not directly available from the LAN hardware. 640 */ 641 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 642 { 643 int retval; 644 unsigned long flags; 645 646 spin_lock_irqsave(&pdc_lock, flags); 647 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 648 __pa(pdc_result), hpa); 649 if (retval < 0) { 650 /* FIXME: else read MAC from NVRAM */ 651 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 652 } else { 653 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 654 } 655 spin_unlock_irqrestore(&pdc_lock, flags); 656 657 return retval; 658 } 659 EXPORT_SYMBOL(pdc_lan_station_id); 660 661 /** 662 * pdc_stable_read - Read data from Stable Storage. 663 * @staddr: Stable Storage address to access. 664 * @memaddr: The memory address where Stable Storage data shall be copied. 665 * @count: number of bytes to transfer. count is multiple of 4. 666 * 667 * This PDC call reads from the Stable Storage address supplied in staddr 668 * and copies count bytes to the memory address memaddr. 669 * The call will fail if staddr+count > PDC_STABLE size. 670 */ 671 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 672 { 673 int retval; 674 unsigned long flags; 675 676 spin_lock_irqsave(&pdc_lock, flags); 677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 678 __pa(pdc_result), count); 679 convert_to_wide(pdc_result); 680 memcpy(memaddr, pdc_result, count); 681 spin_unlock_irqrestore(&pdc_lock, flags); 682 683 return retval; 684 } 685 EXPORT_SYMBOL(pdc_stable_read); 686 687 /** 688 * pdc_stable_write - Write data to Stable Storage. 689 * @staddr: Stable Storage address to access. 690 * @memaddr: The memory address where Stable Storage data shall be read from. 691 * @count: number of bytes to transfer. count is multiple of 4. 692 * 693 * This PDC call reads count bytes from the supplied memaddr address, 694 * and copies count bytes to the Stable Storage address staddr. 695 * The call will fail if staddr+count > PDC_STABLE size. 696 */ 697 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 698 { 699 int retval; 700 unsigned long flags; 701 702 spin_lock_irqsave(&pdc_lock, flags); 703 memcpy(pdc_result, memaddr, count); 704 convert_to_wide(pdc_result); 705 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 706 __pa(pdc_result), count); 707 spin_unlock_irqrestore(&pdc_lock, flags); 708 709 return retval; 710 } 711 EXPORT_SYMBOL(pdc_stable_write); 712 713 /** 714 * pdc_stable_get_size - Get Stable Storage size in bytes. 715 * @size: pointer where the size will be stored. 716 * 717 * This PDC call returns the number of bytes in the processor's Stable 718 * Storage, which is the number of contiguous bytes implemented in Stable 719 * Storage starting from staddr=0. size in an unsigned 64-bit integer 720 * which is a multiple of four. 721 */ 722 int pdc_stable_get_size(unsigned long *size) 723 { 724 int retval; 725 unsigned long flags; 726 727 spin_lock_irqsave(&pdc_lock, flags); 728 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 729 *size = pdc_result[0]; 730 spin_unlock_irqrestore(&pdc_lock, flags); 731 732 return retval; 733 } 734 EXPORT_SYMBOL(pdc_stable_get_size); 735 736 /** 737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 738 * 739 * This PDC call is meant to be used to check the integrity of the current 740 * contents of Stable Storage. 741 */ 742 int pdc_stable_verify_contents(void) 743 { 744 int retval; 745 unsigned long flags; 746 747 spin_lock_irqsave(&pdc_lock, flags); 748 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 749 spin_unlock_irqrestore(&pdc_lock, flags); 750 751 return retval; 752 } 753 EXPORT_SYMBOL(pdc_stable_verify_contents); 754 755 /** 756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 757 * the validity indicator. 758 * 759 * This PDC call will erase all contents of Stable Storage. Use with care! 760 */ 761 int pdc_stable_initialize(void) 762 { 763 int retval; 764 unsigned long flags; 765 766 spin_lock_irqsave(&pdc_lock, flags); 767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 768 spin_unlock_irqrestore(&pdc_lock, flags); 769 770 return retval; 771 } 772 EXPORT_SYMBOL(pdc_stable_initialize); 773 774 /** 775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 776 * @hwpath: fully bc.mod style path to the device. 777 * @initiator: the array to return the result into 778 * 779 * Get the SCSI operational parameters from PDC. 780 * Needed since HPUX never used BIOS or symbios card NVRAM. 781 * Most ncr/sym cards won't have an entry and just use whatever 782 * capabilities of the card are (eg Ultra, LVD). But there are 783 * several cases where it's useful: 784 * o set SCSI id for Multi-initiator clusters, 785 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 786 * o bus width exported is less than what the interface chip supports. 787 */ 788 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 789 { 790 int retval; 791 unsigned long flags; 792 793 spin_lock_irqsave(&pdc_lock, flags); 794 795 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 796 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 797 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 798 799 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 800 __pa(pdc_result), __pa(hwpath)); 801 if (retval < PDC_OK) 802 goto out; 803 804 if (pdc_result[0] < 16) { 805 initiator->host_id = pdc_result[0]; 806 } else { 807 initiator->host_id = -1; 808 } 809 810 /* 811 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 812 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 813 */ 814 switch (pdc_result[1]) { 815 case 1: initiator->factor = 50; break; 816 case 2: initiator->factor = 25; break; 817 case 5: initiator->factor = 12; break; 818 case 25: initiator->factor = 10; break; 819 case 20: initiator->factor = 12; break; 820 case 40: initiator->factor = 10; break; 821 default: initiator->factor = -1; break; 822 } 823 824 if (IS_SPROCKETS()) { 825 initiator->width = pdc_result[4]; 826 initiator->mode = pdc_result[5]; 827 } else { 828 initiator->width = -1; 829 initiator->mode = -1; 830 } 831 832 out: 833 spin_unlock_irqrestore(&pdc_lock, flags); 834 835 return (retval >= PDC_OK); 836 } 837 EXPORT_SYMBOL(pdc_get_initiator); 838 839 840 /** 841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 842 * @num_entries: The return value. 843 * @hpa: The HPA for the device. 844 * 845 * This PDC function returns the number of entries in the specified cell's 846 * interrupt table. 847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 848 */ 849 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 850 { 851 int retval; 852 unsigned long flags; 853 854 spin_lock_irqsave(&pdc_lock, flags); 855 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 856 __pa(pdc_result), hpa); 857 convert_to_wide(pdc_result); 858 *num_entries = pdc_result[0]; 859 spin_unlock_irqrestore(&pdc_lock, flags); 860 861 return retval; 862 } 863 864 /** 865 * pdc_pci_irt - Get the PCI interrupt routing table. 866 * @num_entries: The number of entries in the table. 867 * @hpa: The Hard Physical Address of the device. 868 * @tbl: 869 * 870 * Get the PCI interrupt routing table for the device at the given HPA. 871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 872 */ 873 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 874 { 875 int retval; 876 unsigned long flags; 877 878 BUG_ON((unsigned long)tbl & 0x7); 879 880 spin_lock_irqsave(&pdc_lock, flags); 881 pdc_result[0] = num_entries; 882 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 883 __pa(pdc_result), hpa, __pa(tbl)); 884 spin_unlock_irqrestore(&pdc_lock, flags); 885 886 return retval; 887 } 888 889 890 #if 0 /* UNTEST CODE - left here in case someone needs it */ 891 892 /** 893 * pdc_pci_config_read - read PCI config space. 894 * @hpa token from PDC to indicate which PCI device 895 * @pci_addr configuration space address to read from 896 * 897 * Read PCI Configuration space *before* linux PCI subsystem is running. 898 */ 899 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 900 { 901 int retval; 902 unsigned long flags; 903 904 spin_lock_irqsave(&pdc_lock, flags); 905 pdc_result[0] = 0; 906 pdc_result[1] = 0; 907 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 908 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 909 spin_unlock_irqrestore(&pdc_lock, flags); 910 911 return retval ? ~0 : (unsigned int) pdc_result[0]; 912 } 913 914 915 /** 916 * pdc_pci_config_write - read PCI config space. 917 * @hpa token from PDC to indicate which PCI device 918 * @pci_addr configuration space address to write 919 * @val value we want in the 32-bit register 920 * 921 * Write PCI Configuration space *before* linux PCI subsystem is running. 922 */ 923 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 924 { 925 int retval; 926 unsigned long flags; 927 928 spin_lock_irqsave(&pdc_lock, flags); 929 pdc_result[0] = 0; 930 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 931 __pa(pdc_result), hpa, 932 cfg_addr&~3UL, 4UL, (unsigned long) val); 933 spin_unlock_irqrestore(&pdc_lock, flags); 934 935 return retval; 936 } 937 #endif /* UNTESTED CODE */ 938 939 /** 940 * pdc_tod_read - Read the Time-Of-Day clock. 941 * @tod: The return buffer: 942 * 943 * Read the Time-Of-Day clock 944 */ 945 int pdc_tod_read(struct pdc_tod *tod) 946 { 947 int retval; 948 unsigned long flags; 949 950 spin_lock_irqsave(&pdc_lock, flags); 951 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 952 convert_to_wide(pdc_result); 953 memcpy(tod, pdc_result, sizeof(*tod)); 954 spin_unlock_irqrestore(&pdc_lock, flags); 955 956 return retval; 957 } 958 EXPORT_SYMBOL(pdc_tod_read); 959 960 /** 961 * pdc_tod_set - Set the Time-Of-Day clock. 962 * @sec: The number of seconds since epoch. 963 * @usec: The number of micro seconds. 964 * 965 * Set the Time-Of-Day clock. 966 */ 967 int pdc_tod_set(unsigned long sec, unsigned long usec) 968 { 969 int retval; 970 unsigned long flags; 971 972 spin_lock_irqsave(&pdc_lock, flags); 973 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 974 spin_unlock_irqrestore(&pdc_lock, flags); 975 976 return retval; 977 } 978 EXPORT_SYMBOL(pdc_tod_set); 979 980 #ifdef CONFIG_64BIT 981 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 982 struct pdc_memory_table *tbl, unsigned long entries) 983 { 984 int retval; 985 unsigned long flags; 986 987 spin_lock_irqsave(&pdc_lock, flags); 988 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 989 convert_to_wide(pdc_result); 990 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 991 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 992 spin_unlock_irqrestore(&pdc_lock, flags); 993 994 return retval; 995 } 996 #endif /* CONFIG_64BIT */ 997 998 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 999 * so I guessed at unsigned long. Someone who knows what this does, can fix 1000 * it later. :) 1001 */ 1002 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1003 { 1004 int retval; 1005 unsigned long flags; 1006 1007 spin_lock_irqsave(&pdc_lock, flags); 1008 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1009 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1010 spin_unlock_irqrestore(&pdc_lock, flags); 1011 1012 return retval; 1013 } 1014 1015 /* 1016 * pdc_do_reset - Reset the system. 1017 * 1018 * Reset the system. 1019 */ 1020 int pdc_do_reset(void) 1021 { 1022 int retval; 1023 unsigned long flags; 1024 1025 spin_lock_irqsave(&pdc_lock, flags); 1026 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1027 spin_unlock_irqrestore(&pdc_lock, flags); 1028 1029 return retval; 1030 } 1031 1032 /* 1033 * pdc_soft_power_info - Enable soft power switch. 1034 * @power_reg: address of soft power register 1035 * 1036 * Return the absolute address of the soft power switch register 1037 */ 1038 int __init pdc_soft_power_info(unsigned long *power_reg) 1039 { 1040 int retval; 1041 unsigned long flags; 1042 1043 *power_reg = (unsigned long) (-1); 1044 1045 spin_lock_irqsave(&pdc_lock, flags); 1046 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1047 if (retval == PDC_OK) { 1048 convert_to_wide(pdc_result); 1049 *power_reg = f_extend(pdc_result[0]); 1050 } 1051 spin_unlock_irqrestore(&pdc_lock, flags); 1052 1053 return retval; 1054 } 1055 1056 /* 1057 * pdc_soft_power_button - Control the soft power button behaviour 1058 * @sw_control: 0 for hardware control, 1 for software control 1059 * 1060 * 1061 * This PDC function places the soft power button under software or 1062 * hardware control. 1063 * Under software control the OS may control to when to allow to shut 1064 * down the system. Under hardware control pressing the power button 1065 * powers off the system immediately. 1066 */ 1067 int pdc_soft_power_button(int sw_control) 1068 { 1069 int retval; 1070 unsigned long flags; 1071 1072 spin_lock_irqsave(&pdc_lock, flags); 1073 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1074 spin_unlock_irqrestore(&pdc_lock, flags); 1075 1076 return retval; 1077 } 1078 1079 /* 1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1082 * who knows what other platform firmware might do with this OS "hook". 1083 */ 1084 void pdc_io_reset(void) 1085 { 1086 unsigned long flags; 1087 1088 spin_lock_irqsave(&pdc_lock, flags); 1089 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1090 spin_unlock_irqrestore(&pdc_lock, flags); 1091 } 1092 1093 /* 1094 * pdc_io_reset_devices - Hack to Stop USB controller 1095 * 1096 * If PDC used the usb controller, the usb controller 1097 * is still running and will crash the machines during iommu 1098 * setup, because of still running DMA. This PDC call 1099 * stops the USB controller. 1100 * Normally called after calling pdc_io_reset(). 1101 */ 1102 void pdc_io_reset_devices(void) 1103 { 1104 unsigned long flags; 1105 1106 spin_lock_irqsave(&pdc_lock, flags); 1107 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1108 spin_unlock_irqrestore(&pdc_lock, flags); 1109 } 1110 1111 /* locked by pdc_console_lock */ 1112 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1113 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1114 1115 /** 1116 * pdc_iodc_print - Console print using IODC. 1117 * @str: the string to output. 1118 * @count: length of str 1119 * 1120 * Note that only these special chars are architected for console IODC io: 1121 * BEL, BS, CR, and LF. Others are passed through. 1122 * Since the HP console requires CR+LF to perform a 'newline', we translate 1123 * "\n" to "\r\n". 1124 */ 1125 int pdc_iodc_print(const unsigned char *str, unsigned count) 1126 { 1127 unsigned int i; 1128 unsigned long flags; 1129 1130 for (i = 0; i < count;) { 1131 switch(str[i]) { 1132 case '\n': 1133 iodc_dbuf[i+0] = '\r'; 1134 iodc_dbuf[i+1] = '\n'; 1135 i += 2; 1136 goto print; 1137 default: 1138 iodc_dbuf[i] = str[i]; 1139 i++; 1140 break; 1141 } 1142 } 1143 1144 print: 1145 spin_lock_irqsave(&pdc_lock, flags); 1146 real32_call(PAGE0->mem_cons.iodc_io, 1147 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1148 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1149 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0); 1150 spin_unlock_irqrestore(&pdc_lock, flags); 1151 1152 return i; 1153 } 1154 1155 /** 1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1157 * 1158 * Read a character (non-blocking) from the PDC console, returns -1 if 1159 * key is not present. 1160 */ 1161 int pdc_iodc_getc(void) 1162 { 1163 int ch; 1164 int status; 1165 unsigned long flags; 1166 1167 /* Bail if no console input device. */ 1168 if (!PAGE0->mem_kbd.iodc_io) 1169 return 0; 1170 1171 /* wait for a keyboard (rs232)-input */ 1172 spin_lock_irqsave(&pdc_lock, flags); 1173 real32_call(PAGE0->mem_kbd.iodc_io, 1174 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1175 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1176 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1177 1178 ch = *iodc_dbuf; 1179 status = *iodc_retbuf; 1180 spin_unlock_irqrestore(&pdc_lock, flags); 1181 1182 if (status == 0) 1183 return -1; 1184 1185 return ch; 1186 } 1187 1188 int pdc_sti_call(unsigned long func, unsigned long flags, 1189 unsigned long inptr, unsigned long outputr, 1190 unsigned long glob_cfg) 1191 { 1192 int retval; 1193 unsigned long irqflags; 1194 1195 spin_lock_irqsave(&pdc_lock, irqflags); 1196 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1197 spin_unlock_irqrestore(&pdc_lock, irqflags); 1198 1199 return retval; 1200 } 1201 EXPORT_SYMBOL(pdc_sti_call); 1202 1203 #ifdef CONFIG_64BIT 1204 /** 1205 * pdc_pat_cell_get_number - Returns the cell number. 1206 * @cell_info: The return buffer. 1207 * 1208 * This PDC call returns the cell number of the cell from which the call 1209 * is made. 1210 */ 1211 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1212 { 1213 int retval; 1214 unsigned long flags; 1215 1216 spin_lock_irqsave(&pdc_lock, flags); 1217 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1218 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1219 spin_unlock_irqrestore(&pdc_lock, flags); 1220 1221 return retval; 1222 } 1223 1224 /** 1225 * pdc_pat_cell_module - Retrieve the cell's module information. 1226 * @actcnt: The number of bytes written to mem_addr. 1227 * @ploc: The physical location. 1228 * @mod: The module index. 1229 * @view_type: The view of the address type. 1230 * @mem_addr: The return buffer. 1231 * 1232 * This PDC call returns information about each module attached to the cell 1233 * at the specified location. 1234 */ 1235 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1236 unsigned long view_type, void *mem_addr) 1237 { 1238 int retval; 1239 unsigned long flags; 1240 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1241 1242 spin_lock_irqsave(&pdc_lock, flags); 1243 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1244 ploc, mod, view_type, __pa(&result)); 1245 if(!retval) { 1246 *actcnt = pdc_result[0]; 1247 memcpy(mem_addr, &result, *actcnt); 1248 } 1249 spin_unlock_irqrestore(&pdc_lock, flags); 1250 1251 return retval; 1252 } 1253 1254 /** 1255 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1256 * @cpu_info: The return buffer. 1257 * @hpa: The Hard Physical Address of the CPU. 1258 * 1259 * Retrieve the cpu number for the cpu at the specified HPA. 1260 */ 1261 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa) 1262 { 1263 int retval; 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&pdc_lock, flags); 1267 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1268 __pa(&pdc_result), hpa); 1269 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1270 spin_unlock_irqrestore(&pdc_lock, flags); 1271 1272 return retval; 1273 } 1274 1275 /** 1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1277 * @num_entries: The return value. 1278 * @cell_num: The target cell. 1279 * 1280 * This PDC function returns the number of entries in the specified cell's 1281 * interrupt table. 1282 */ 1283 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1284 { 1285 int retval; 1286 unsigned long flags; 1287 1288 spin_lock_irqsave(&pdc_lock, flags); 1289 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1290 __pa(pdc_result), cell_num); 1291 *num_entries = pdc_result[0]; 1292 spin_unlock_irqrestore(&pdc_lock, flags); 1293 1294 return retval; 1295 } 1296 1297 /** 1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1299 * @r_addr: The return buffer. 1300 * @cell_num: The target cell. 1301 * 1302 * This PDC function returns the actual interrupt table for the specified cell. 1303 */ 1304 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1305 { 1306 int retval; 1307 unsigned long flags; 1308 1309 spin_lock_irqsave(&pdc_lock, flags); 1310 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1311 __pa(r_addr), cell_num); 1312 spin_unlock_irqrestore(&pdc_lock, flags); 1313 1314 return retval; 1315 } 1316 1317 /** 1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1319 * @actlen: The return buffer. 1320 * @mem_addr: Pointer to the memory buffer. 1321 * @count: The number of bytes to read from the buffer. 1322 * @offset: The offset with respect to the beginning of the buffer. 1323 * 1324 */ 1325 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1326 unsigned long count, unsigned long offset) 1327 { 1328 int retval; 1329 unsigned long flags; 1330 1331 spin_lock_irqsave(&pdc_lock, flags); 1332 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1333 __pa(pdc_result2), count, offset); 1334 *actual_len = pdc_result[0]; 1335 memcpy(mem_addr, pdc_result2, *actual_len); 1336 spin_unlock_irqrestore(&pdc_lock, flags); 1337 1338 return retval; 1339 } 1340 1341 /** 1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1343 * @pci_addr: PCI configuration space address for which the read request is being made. 1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1345 * @mem_addr: Pointer to return memory buffer. 1346 * 1347 */ 1348 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1349 { 1350 int retval; 1351 unsigned long flags; 1352 1353 spin_lock_irqsave(&pdc_lock, flags); 1354 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1355 __pa(pdc_result), pci_addr, pci_size); 1356 switch(pci_size) { 1357 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; 1358 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; 1359 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; 1360 } 1361 spin_unlock_irqrestore(&pdc_lock, flags); 1362 1363 return retval; 1364 } 1365 1366 /** 1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1368 * @pci_addr: PCI configuration space address for which the write request is being made. 1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1371 * written to PCI Config space. 1372 * 1373 */ 1374 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1375 { 1376 int retval; 1377 unsigned long flags; 1378 1379 spin_lock_irqsave(&pdc_lock, flags); 1380 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1381 pci_addr, pci_size, val); 1382 spin_unlock_irqrestore(&pdc_lock, flags); 1383 1384 return retval; 1385 } 1386 #endif /* CONFIG_64BIT */ 1387 1388 1389 /***************** 32-bit real-mode calls ***********/ 1390 /* The struct below is used 1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1392 * real32_call_asm() then uses this stack in narrow real mode 1393 */ 1394 1395 struct narrow_stack { 1396 /* use int, not long which is 64 bits */ 1397 unsigned int arg13; 1398 unsigned int arg12; 1399 unsigned int arg11; 1400 unsigned int arg10; 1401 unsigned int arg9; 1402 unsigned int arg8; 1403 unsigned int arg7; 1404 unsigned int arg6; 1405 unsigned int arg5; 1406 unsigned int arg4; 1407 unsigned int arg3; 1408 unsigned int arg2; 1409 unsigned int arg1; 1410 unsigned int arg0; 1411 unsigned int frame_marker[8]; 1412 unsigned int sp; 1413 /* in reality, there's nearly 8k of stack after this */ 1414 }; 1415 1416 long real32_call(unsigned long fn, ...) 1417 { 1418 va_list args; 1419 extern struct narrow_stack real_stack; 1420 extern unsigned long real32_call_asm(unsigned int *, 1421 unsigned int *, 1422 unsigned int); 1423 1424 va_start(args, fn); 1425 real_stack.arg0 = va_arg(args, unsigned int); 1426 real_stack.arg1 = va_arg(args, unsigned int); 1427 real_stack.arg2 = va_arg(args, unsigned int); 1428 real_stack.arg3 = va_arg(args, unsigned int); 1429 real_stack.arg4 = va_arg(args, unsigned int); 1430 real_stack.arg5 = va_arg(args, unsigned int); 1431 real_stack.arg6 = va_arg(args, unsigned int); 1432 real_stack.arg7 = va_arg(args, unsigned int); 1433 real_stack.arg8 = va_arg(args, unsigned int); 1434 real_stack.arg9 = va_arg(args, unsigned int); 1435 real_stack.arg10 = va_arg(args, unsigned int); 1436 real_stack.arg11 = va_arg(args, unsigned int); 1437 real_stack.arg12 = va_arg(args, unsigned int); 1438 real_stack.arg13 = va_arg(args, unsigned int); 1439 va_end(args); 1440 1441 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1442 } 1443 1444 #ifdef CONFIG_64BIT 1445 /***************** 64-bit real-mode calls ***********/ 1446 1447 struct wide_stack { 1448 unsigned long arg0; 1449 unsigned long arg1; 1450 unsigned long arg2; 1451 unsigned long arg3; 1452 unsigned long arg4; 1453 unsigned long arg5; 1454 unsigned long arg6; 1455 unsigned long arg7; 1456 unsigned long arg8; 1457 unsigned long arg9; 1458 unsigned long arg10; 1459 unsigned long arg11; 1460 unsigned long arg12; 1461 unsigned long arg13; 1462 unsigned long frame_marker[2]; /* rp, previous sp */ 1463 unsigned long sp; 1464 /* in reality, there's nearly 8k of stack after this */ 1465 }; 1466 1467 long real64_call(unsigned long fn, ...) 1468 { 1469 va_list args; 1470 extern struct wide_stack real64_stack; 1471 extern unsigned long real64_call_asm(unsigned long *, 1472 unsigned long *, 1473 unsigned long); 1474 1475 va_start(args, fn); 1476 real64_stack.arg0 = va_arg(args, unsigned long); 1477 real64_stack.arg1 = va_arg(args, unsigned long); 1478 real64_stack.arg2 = va_arg(args, unsigned long); 1479 real64_stack.arg3 = va_arg(args, unsigned long); 1480 real64_stack.arg4 = va_arg(args, unsigned long); 1481 real64_stack.arg5 = va_arg(args, unsigned long); 1482 real64_stack.arg6 = va_arg(args, unsigned long); 1483 real64_stack.arg7 = va_arg(args, unsigned long); 1484 real64_stack.arg8 = va_arg(args, unsigned long); 1485 real64_stack.arg9 = va_arg(args, unsigned long); 1486 real64_stack.arg10 = va_arg(args, unsigned long); 1487 real64_stack.arg11 = va_arg(args, unsigned long); 1488 real64_stack.arg12 = va_arg(args, unsigned long); 1489 real64_stack.arg13 = va_arg(args, unsigned long); 1490 va_end(args); 1491 1492 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1493 } 1494 1495 #endif /* CONFIG_64BIT */ 1496 1497