1 /* 2 * arch/parisc/kernel/firmware.c - safe PDC access routines 3 * 4 * PDC == Processor Dependent Code 5 * 6 * See http://www.parisc-linux.org/documentation/index.html 7 * for documentation describing the entry points and calling 8 * conventions defined below. 9 * 10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 12 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License as published by 18 * the Free Software Foundation; either version 2 of the License, or 19 * (at your option) any later version. 20 * 21 */ 22 23 /* I think it would be in everyone's best interest to follow this 24 * guidelines when writing PDC wrappers: 25 * 26 * - the name of the pdc wrapper should match one of the macros 27 * used for the first two arguments 28 * - don't use caps for random parts of the name 29 * - use the static PDC result buffers and "copyout" to structs 30 * supplied by the caller to encapsulate alignment restrictions 31 * - hold pdc_lock while in PDC or using static result buffers 32 * - use __pa() to convert virtual (kernel) pointers to physical 33 * ones. 34 * - the name of the struct used for pdc return values should equal 35 * one of the macros used for the first two arguments to the 36 * corresponding PDC call 37 * - keep the order of arguments 38 * - don't be smart (setting trailing NUL bytes for strings, return 39 * something useful even if the call failed) unless you are sure 40 * it's not going to affect functionality or performance 41 * 42 * Example: 43 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 44 * { 45 * int retval; 46 * 47 * spin_lock_irq(&pdc_lock); 48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 49 * convert_to_wide(pdc_result); 50 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 51 * spin_unlock_irq(&pdc_lock); 52 * 53 * return retval; 54 * } 55 * prumpf 991016 56 */ 57 58 #include <stdarg.h> 59 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/module.h> 64 #include <linux/string.h> 65 #include <linux/spinlock.h> 66 67 #include <asm/page.h> 68 #include <asm/pdc.h> 69 #include <asm/pdcpat.h> 70 #include <asm/processor.h> /* for boot_cpu_data */ 71 72 #if defined(BOOTLOADER) 73 # undef spin_lock_irqsave 74 # define spin_lock_irqsave(a, b) { b = 1; } 75 # undef spin_unlock_irqrestore 76 # define spin_unlock_irqrestore(a, b) 77 #else 78 static DEFINE_SPINLOCK(pdc_lock); 79 #endif 80 81 extern unsigned long pdc_result[NUM_PDC_RESULT]; 82 extern unsigned long pdc_result2[NUM_PDC_RESULT]; 83 84 #ifdef CONFIG_64BIT 85 #define WIDE_FIRMWARE 0x1 86 #define NARROW_FIRMWARE 0x2 87 88 /* Firmware needs to be initially set to narrow to determine the 89 * actual firmware width. */ 90 int parisc_narrow_firmware __ro_after_init = 1; 91 #endif 92 93 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 94 * and MEM_PDC calls are always the same width as the OS. 95 * Some PAT boxes may have 64-bit IODC I/O. 96 * 97 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 98 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 99 * This allowed wide kernels to run on Cxxx boxes. 100 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 101 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 102 */ 103 104 #ifdef CONFIG_64BIT 105 long real64_call(unsigned long function, ...); 106 #endif 107 long real32_call(unsigned long function, ...); 108 109 #ifdef CONFIG_64BIT 110 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 111 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 112 #else 113 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 114 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 115 #endif 116 117 118 /** 119 * f_extend - Convert PDC addresses to kernel addresses. 120 * @address: Address returned from PDC. 121 * 122 * This function is used to convert PDC addresses into kernel addresses 123 * when the PDC address size and kernel address size are different. 124 */ 125 static unsigned long f_extend(unsigned long address) 126 { 127 #ifdef CONFIG_64BIT 128 if(unlikely(parisc_narrow_firmware)) { 129 if((address & 0xff000000) == 0xf0000000) 130 return 0xf0f0f0f000000000UL | (u32)address; 131 132 if((address & 0xf0000000) == 0xf0000000) 133 return 0xffffffff00000000UL | (u32)address; 134 } 135 #endif 136 return address; 137 } 138 139 /** 140 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 141 * @address: The return buffer from PDC. 142 * 143 * This function is used to convert the return buffer addresses retrieved from PDC 144 * into kernel addresses when the PDC address size and kernel address size are 145 * different. 146 */ 147 static void convert_to_wide(unsigned long *addr) 148 { 149 #ifdef CONFIG_64BIT 150 int i; 151 unsigned int *p = (unsigned int *)addr; 152 153 if (unlikely(parisc_narrow_firmware)) { 154 for (i = (NUM_PDC_RESULT-1); i >= 0; --i) 155 addr[i] = p[i]; 156 } 157 #endif 158 } 159 160 #ifdef CONFIG_64BIT 161 void set_firmware_width_unlocked(void) 162 { 163 int ret; 164 165 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 166 __pa(pdc_result), 0); 167 convert_to_wide(pdc_result); 168 if (pdc_result[0] != NARROW_FIRMWARE) 169 parisc_narrow_firmware = 0; 170 } 171 172 /** 173 * set_firmware_width - Determine if the firmware is wide or narrow. 174 * 175 * This function must be called before any pdc_* function that uses the 176 * convert_to_wide function. 177 */ 178 void set_firmware_width(void) 179 { 180 unsigned long flags; 181 spin_lock_irqsave(&pdc_lock, flags); 182 set_firmware_width_unlocked(); 183 spin_unlock_irqrestore(&pdc_lock, flags); 184 } 185 #else 186 void set_firmware_width_unlocked(void) 187 { 188 return; 189 } 190 191 void set_firmware_width(void) 192 { 193 return; 194 } 195 #endif /*CONFIG_64BIT*/ 196 197 198 #if !defined(BOOTLOADER) 199 /** 200 * pdc_emergency_unlock - Unlock the linux pdc lock 201 * 202 * This call unlocks the linux pdc lock in case we need some PDC functions 203 * (like pdc_add_valid) during kernel stack dump. 204 */ 205 void pdc_emergency_unlock(void) 206 { 207 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 208 if (spin_is_locked(&pdc_lock)) 209 spin_unlock(&pdc_lock); 210 } 211 212 213 /** 214 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 215 * @address: Address to be verified. 216 * 217 * This PDC call attempts to read from the specified address and verifies 218 * if the address is valid. 219 * 220 * The return value is PDC_OK (0) in case accessing this address is valid. 221 */ 222 int pdc_add_valid(unsigned long address) 223 { 224 int retval; 225 unsigned long flags; 226 227 spin_lock_irqsave(&pdc_lock, flags); 228 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 229 spin_unlock_irqrestore(&pdc_lock, flags); 230 231 return retval; 232 } 233 EXPORT_SYMBOL(pdc_add_valid); 234 235 /** 236 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler. 237 * @instr: Pointer to variable which will get instruction opcode. 238 * 239 * The return value is PDC_OK (0) in case call succeeded. 240 */ 241 int __init pdc_instr(unsigned int *instr) 242 { 243 int retval; 244 unsigned long flags; 245 246 spin_lock_irqsave(&pdc_lock, flags); 247 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result)); 248 convert_to_wide(pdc_result); 249 *instr = pdc_result[0]; 250 spin_unlock_irqrestore(&pdc_lock, flags); 251 252 return retval; 253 } 254 255 /** 256 * pdc_chassis_info - Return chassis information. 257 * @result: The return buffer. 258 * @chassis_info: The memory buffer address. 259 * @len: The size of the memory buffer address. 260 * 261 * An HVERSION dependent call for returning the chassis information. 262 */ 263 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 264 { 265 int retval; 266 unsigned long flags; 267 268 spin_lock_irqsave(&pdc_lock, flags); 269 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 270 memcpy(&pdc_result2, led_info, len); 271 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 272 __pa(pdc_result), __pa(pdc_result2), len); 273 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 274 memcpy(led_info, pdc_result2, len); 275 spin_unlock_irqrestore(&pdc_lock, flags); 276 277 return retval; 278 } 279 280 /** 281 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 282 * @retval: -1 on error, 0 on success. Other value are PDC errors 283 * 284 * Must be correctly formatted or expect system crash 285 */ 286 #ifdef CONFIG_64BIT 287 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 288 { 289 int retval = 0; 290 unsigned long flags; 291 292 if (!is_pdc_pat()) 293 return -1; 294 295 spin_lock_irqsave(&pdc_lock, flags); 296 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 297 spin_unlock_irqrestore(&pdc_lock, flags); 298 299 return retval; 300 } 301 #endif 302 303 /** 304 * pdc_chassis_disp - Updates chassis code 305 * @retval: -1 on error, 0 on success 306 */ 307 int pdc_chassis_disp(unsigned long disp) 308 { 309 int retval = 0; 310 unsigned long flags; 311 312 spin_lock_irqsave(&pdc_lock, flags); 313 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 314 spin_unlock_irqrestore(&pdc_lock, flags); 315 316 return retval; 317 } 318 319 /** 320 * pdc_chassis_warn - Fetches chassis warnings 321 * @retval: -1 on error, 0 on success 322 */ 323 int pdc_chassis_warn(unsigned long *warn) 324 { 325 int retval = 0; 326 unsigned long flags; 327 328 spin_lock_irqsave(&pdc_lock, flags); 329 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 330 *warn = pdc_result[0]; 331 spin_unlock_irqrestore(&pdc_lock, flags); 332 333 return retval; 334 } 335 336 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 337 { 338 int ret; 339 340 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 341 convert_to_wide(pdc_result); 342 pdc_coproc_info->ccr_functional = pdc_result[0]; 343 pdc_coproc_info->ccr_present = pdc_result[1]; 344 pdc_coproc_info->revision = pdc_result[17]; 345 pdc_coproc_info->model = pdc_result[18]; 346 347 return ret; 348 } 349 350 /** 351 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 352 * @pdc_coproc_info: Return buffer address. 353 * 354 * This PDC call returns the presence and status of all the coprocessors 355 * attached to the processor. 356 */ 357 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 358 { 359 int ret; 360 unsigned long flags; 361 362 spin_lock_irqsave(&pdc_lock, flags); 363 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 364 spin_unlock_irqrestore(&pdc_lock, flags); 365 366 return ret; 367 } 368 369 /** 370 * pdc_iodc_read - Read data from the modules IODC. 371 * @actcnt: The actual number of bytes. 372 * @hpa: The HPA of the module for the iodc read. 373 * @index: The iodc entry point. 374 * @iodc_data: A buffer memory for the iodc options. 375 * @iodc_data_size: Size of the memory buffer. 376 * 377 * This PDC call reads from the IODC of the module specified by the hpa 378 * argument. 379 */ 380 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 381 void *iodc_data, unsigned int iodc_data_size) 382 { 383 int retval; 384 unsigned long flags; 385 386 spin_lock_irqsave(&pdc_lock, flags); 387 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 388 index, __pa(pdc_result2), iodc_data_size); 389 convert_to_wide(pdc_result); 390 *actcnt = pdc_result[0]; 391 memcpy(iodc_data, pdc_result2, iodc_data_size); 392 spin_unlock_irqrestore(&pdc_lock, flags); 393 394 return retval; 395 } 396 EXPORT_SYMBOL(pdc_iodc_read); 397 398 /** 399 * pdc_system_map_find_mods - Locate unarchitected modules. 400 * @pdc_mod_info: Return buffer address. 401 * @mod_path: pointer to dev path structure. 402 * @mod_index: fixed address module index. 403 * 404 * To locate and identify modules which reside at fixed I/O addresses, which 405 * do not self-identify via architected bus walks. 406 */ 407 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 408 struct pdc_module_path *mod_path, long mod_index) 409 { 410 int retval; 411 unsigned long flags; 412 413 spin_lock_irqsave(&pdc_lock, flags); 414 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 415 __pa(pdc_result2), mod_index); 416 convert_to_wide(pdc_result); 417 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 418 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 419 spin_unlock_irqrestore(&pdc_lock, flags); 420 421 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 422 return retval; 423 } 424 425 /** 426 * pdc_system_map_find_addrs - Retrieve additional address ranges. 427 * @pdc_addr_info: Return buffer address. 428 * @mod_index: Fixed address module index. 429 * @addr_index: Address range index. 430 * 431 * Retrieve additional information about subsequent address ranges for modules 432 * with multiple address ranges. 433 */ 434 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 435 long mod_index, long addr_index) 436 { 437 int retval; 438 unsigned long flags; 439 440 spin_lock_irqsave(&pdc_lock, flags); 441 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 442 mod_index, addr_index); 443 convert_to_wide(pdc_result); 444 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 445 spin_unlock_irqrestore(&pdc_lock, flags); 446 447 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 448 return retval; 449 } 450 451 /** 452 * pdc_model_info - Return model information about the processor. 453 * @model: The return buffer. 454 * 455 * Returns the version numbers, identifiers, and capabilities from the processor module. 456 */ 457 int pdc_model_info(struct pdc_model *model) 458 { 459 int retval; 460 unsigned long flags; 461 462 spin_lock_irqsave(&pdc_lock, flags); 463 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 464 convert_to_wide(pdc_result); 465 memcpy(model, pdc_result, sizeof(*model)); 466 spin_unlock_irqrestore(&pdc_lock, flags); 467 468 return retval; 469 } 470 471 /** 472 * pdc_model_sysmodel - Get the system model name. 473 * @name: A char array of at least 81 characters. 474 * 475 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 476 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 477 * on HP/UX. 478 */ 479 int pdc_model_sysmodel(char *name) 480 { 481 int retval; 482 unsigned long flags; 483 484 spin_lock_irqsave(&pdc_lock, flags); 485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 486 OS_ID_HPUX, __pa(name)); 487 convert_to_wide(pdc_result); 488 489 if (retval == PDC_OK) { 490 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 491 } else { 492 name[0] = 0; 493 } 494 spin_unlock_irqrestore(&pdc_lock, flags); 495 496 return retval; 497 } 498 499 /** 500 * pdc_model_versions - Identify the version number of each processor. 501 * @cpu_id: The return buffer. 502 * @id: The id of the processor to check. 503 * 504 * Returns the version number for each processor component. 505 * 506 * This comment was here before, but I do not know what it means :( -RB 507 * id: 0 = cpu revision, 1 = boot-rom-version 508 */ 509 int pdc_model_versions(unsigned long *versions, int id) 510 { 511 int retval; 512 unsigned long flags; 513 514 spin_lock_irqsave(&pdc_lock, flags); 515 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 516 convert_to_wide(pdc_result); 517 *versions = pdc_result[0]; 518 spin_unlock_irqrestore(&pdc_lock, flags); 519 520 return retval; 521 } 522 523 /** 524 * pdc_model_cpuid - Returns the CPU_ID. 525 * @cpu_id: The return buffer. 526 * 527 * Returns the CPU_ID value which uniquely identifies the cpu portion of 528 * the processor module. 529 */ 530 int pdc_model_cpuid(unsigned long *cpu_id) 531 { 532 int retval; 533 unsigned long flags; 534 535 spin_lock_irqsave(&pdc_lock, flags); 536 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 537 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 538 convert_to_wide(pdc_result); 539 *cpu_id = pdc_result[0]; 540 spin_unlock_irqrestore(&pdc_lock, flags); 541 542 return retval; 543 } 544 545 /** 546 * pdc_model_capabilities - Returns the platform capabilities. 547 * @capabilities: The return buffer. 548 * 549 * Returns information about platform support for 32- and/or 64-bit 550 * OSes, IO-PDIR coherency, and virtual aliasing. 551 */ 552 int pdc_model_capabilities(unsigned long *capabilities) 553 { 554 int retval; 555 unsigned long flags; 556 557 spin_lock_irqsave(&pdc_lock, flags); 558 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 559 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 560 convert_to_wide(pdc_result); 561 if (retval == PDC_OK) { 562 *capabilities = pdc_result[0]; 563 } else { 564 *capabilities = PDC_MODEL_OS32; 565 } 566 spin_unlock_irqrestore(&pdc_lock, flags); 567 568 return retval; 569 } 570 571 /** 572 * pdc_model_platform_info - Returns machine product and serial number. 573 * @orig_prod_num: Return buffer for original product number. 574 * @current_prod_num: Return buffer for current product number. 575 * @serial_no: Return buffer for serial number. 576 * 577 * Returns strings containing the original and current product numbers and the 578 * serial number of the system. 579 */ 580 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num, 581 char *serial_no) 582 { 583 int retval; 584 unsigned long flags; 585 586 spin_lock_irqsave(&pdc_lock, flags); 587 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO, 588 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no)); 589 convert_to_wide(pdc_result); 590 spin_unlock_irqrestore(&pdc_lock, flags); 591 592 return retval; 593 } 594 595 /** 596 * pdc_cache_info - Return cache and TLB information. 597 * @cache_info: The return buffer. 598 * 599 * Returns information about the processor's cache and TLB. 600 */ 601 int pdc_cache_info(struct pdc_cache_info *cache_info) 602 { 603 int retval; 604 unsigned long flags; 605 606 spin_lock_irqsave(&pdc_lock, flags); 607 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 608 convert_to_wide(pdc_result); 609 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 610 spin_unlock_irqrestore(&pdc_lock, flags); 611 612 return retval; 613 } 614 615 /** 616 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 617 * @space_bits: Should be 0, if not, bad mojo! 618 * 619 * Returns information about Space ID hashing. 620 */ 621 int pdc_spaceid_bits(unsigned long *space_bits) 622 { 623 int retval; 624 unsigned long flags; 625 626 spin_lock_irqsave(&pdc_lock, flags); 627 pdc_result[0] = 0; 628 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 629 convert_to_wide(pdc_result); 630 *space_bits = pdc_result[0]; 631 spin_unlock_irqrestore(&pdc_lock, flags); 632 633 return retval; 634 } 635 636 #ifndef CONFIG_PA20 637 /** 638 * pdc_btlb_info - Return block TLB information. 639 * @btlb: The return buffer. 640 * 641 * Returns information about the hardware Block TLB. 642 */ 643 int pdc_btlb_info(struct pdc_btlb_info *btlb) 644 { 645 int retval; 646 unsigned long flags; 647 648 spin_lock_irqsave(&pdc_lock, flags); 649 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 650 memcpy(btlb, pdc_result, sizeof(*btlb)); 651 spin_unlock_irqrestore(&pdc_lock, flags); 652 653 if(retval < 0) { 654 btlb->max_size = 0; 655 } 656 return retval; 657 } 658 659 /** 660 * pdc_mem_map_hpa - Find fixed module information. 661 * @address: The return buffer 662 * @mod_path: pointer to dev path structure. 663 * 664 * This call was developed for S700 workstations to allow the kernel to find 665 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 666 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 667 * call. 668 * 669 * This call is supported by all existing S700 workstations (up to Gecko). 670 */ 671 int pdc_mem_map_hpa(struct pdc_memory_map *address, 672 struct pdc_module_path *mod_path) 673 { 674 int retval; 675 unsigned long flags; 676 677 spin_lock_irqsave(&pdc_lock, flags); 678 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 679 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 680 __pa(pdc_result2)); 681 memcpy(address, pdc_result, sizeof(*address)); 682 spin_unlock_irqrestore(&pdc_lock, flags); 683 684 return retval; 685 } 686 #endif /* !CONFIG_PA20 */ 687 688 /** 689 * pdc_lan_station_id - Get the LAN address. 690 * @lan_addr: The return buffer. 691 * @hpa: The network device HPA. 692 * 693 * Get the LAN station address when it is not directly available from the LAN hardware. 694 */ 695 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 696 { 697 int retval; 698 unsigned long flags; 699 700 spin_lock_irqsave(&pdc_lock, flags); 701 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 702 __pa(pdc_result), hpa); 703 if (retval < 0) { 704 /* FIXME: else read MAC from NVRAM */ 705 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 706 } else { 707 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 708 } 709 spin_unlock_irqrestore(&pdc_lock, flags); 710 711 return retval; 712 } 713 EXPORT_SYMBOL(pdc_lan_station_id); 714 715 /** 716 * pdc_stable_read - Read data from Stable Storage. 717 * @staddr: Stable Storage address to access. 718 * @memaddr: The memory address where Stable Storage data shall be copied. 719 * @count: number of bytes to transfer. count is multiple of 4. 720 * 721 * This PDC call reads from the Stable Storage address supplied in staddr 722 * and copies count bytes to the memory address memaddr. 723 * The call will fail if staddr+count > PDC_STABLE size. 724 */ 725 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 726 { 727 int retval; 728 unsigned long flags; 729 730 spin_lock_irqsave(&pdc_lock, flags); 731 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 732 __pa(pdc_result), count); 733 convert_to_wide(pdc_result); 734 memcpy(memaddr, pdc_result, count); 735 spin_unlock_irqrestore(&pdc_lock, flags); 736 737 return retval; 738 } 739 EXPORT_SYMBOL(pdc_stable_read); 740 741 /** 742 * pdc_stable_write - Write data to Stable Storage. 743 * @staddr: Stable Storage address to access. 744 * @memaddr: The memory address where Stable Storage data shall be read from. 745 * @count: number of bytes to transfer. count is multiple of 4. 746 * 747 * This PDC call reads count bytes from the supplied memaddr address, 748 * and copies count bytes to the Stable Storage address staddr. 749 * The call will fail if staddr+count > PDC_STABLE size. 750 */ 751 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 752 { 753 int retval; 754 unsigned long flags; 755 756 spin_lock_irqsave(&pdc_lock, flags); 757 memcpy(pdc_result, memaddr, count); 758 convert_to_wide(pdc_result); 759 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 760 __pa(pdc_result), count); 761 spin_unlock_irqrestore(&pdc_lock, flags); 762 763 return retval; 764 } 765 EXPORT_SYMBOL(pdc_stable_write); 766 767 /** 768 * pdc_stable_get_size - Get Stable Storage size in bytes. 769 * @size: pointer where the size will be stored. 770 * 771 * This PDC call returns the number of bytes in the processor's Stable 772 * Storage, which is the number of contiguous bytes implemented in Stable 773 * Storage starting from staddr=0. size in an unsigned 64-bit integer 774 * which is a multiple of four. 775 */ 776 int pdc_stable_get_size(unsigned long *size) 777 { 778 int retval; 779 unsigned long flags; 780 781 spin_lock_irqsave(&pdc_lock, flags); 782 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 783 *size = pdc_result[0]; 784 spin_unlock_irqrestore(&pdc_lock, flags); 785 786 return retval; 787 } 788 EXPORT_SYMBOL(pdc_stable_get_size); 789 790 /** 791 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 792 * 793 * This PDC call is meant to be used to check the integrity of the current 794 * contents of Stable Storage. 795 */ 796 int pdc_stable_verify_contents(void) 797 { 798 int retval; 799 unsigned long flags; 800 801 spin_lock_irqsave(&pdc_lock, flags); 802 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 803 spin_unlock_irqrestore(&pdc_lock, flags); 804 805 return retval; 806 } 807 EXPORT_SYMBOL(pdc_stable_verify_contents); 808 809 /** 810 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 811 * the validity indicator. 812 * 813 * This PDC call will erase all contents of Stable Storage. Use with care! 814 */ 815 int pdc_stable_initialize(void) 816 { 817 int retval; 818 unsigned long flags; 819 820 spin_lock_irqsave(&pdc_lock, flags); 821 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 822 spin_unlock_irqrestore(&pdc_lock, flags); 823 824 return retval; 825 } 826 EXPORT_SYMBOL(pdc_stable_initialize); 827 828 /** 829 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 830 * @hwpath: fully bc.mod style path to the device. 831 * @initiator: the array to return the result into 832 * 833 * Get the SCSI operational parameters from PDC. 834 * Needed since HPUX never used BIOS or symbios card NVRAM. 835 * Most ncr/sym cards won't have an entry and just use whatever 836 * capabilities of the card are (eg Ultra, LVD). But there are 837 * several cases where it's useful: 838 * o set SCSI id for Multi-initiator clusters, 839 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 840 * o bus width exported is less than what the interface chip supports. 841 */ 842 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 843 { 844 int retval; 845 unsigned long flags; 846 847 spin_lock_irqsave(&pdc_lock, flags); 848 849 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 850 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 851 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 852 853 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 854 __pa(pdc_result), __pa(hwpath)); 855 if (retval < PDC_OK) 856 goto out; 857 858 if (pdc_result[0] < 16) { 859 initiator->host_id = pdc_result[0]; 860 } else { 861 initiator->host_id = -1; 862 } 863 864 /* 865 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 866 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 867 */ 868 switch (pdc_result[1]) { 869 case 1: initiator->factor = 50; break; 870 case 2: initiator->factor = 25; break; 871 case 5: initiator->factor = 12; break; 872 case 25: initiator->factor = 10; break; 873 case 20: initiator->factor = 12; break; 874 case 40: initiator->factor = 10; break; 875 default: initiator->factor = -1; break; 876 } 877 878 if (IS_SPROCKETS()) { 879 initiator->width = pdc_result[4]; 880 initiator->mode = pdc_result[5]; 881 } else { 882 initiator->width = -1; 883 initiator->mode = -1; 884 } 885 886 out: 887 spin_unlock_irqrestore(&pdc_lock, flags); 888 889 return (retval >= PDC_OK); 890 } 891 EXPORT_SYMBOL(pdc_get_initiator); 892 893 894 /** 895 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 896 * @num_entries: The return value. 897 * @hpa: The HPA for the device. 898 * 899 * This PDC function returns the number of entries in the specified cell's 900 * interrupt table. 901 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 902 */ 903 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 904 { 905 int retval; 906 unsigned long flags; 907 908 spin_lock_irqsave(&pdc_lock, flags); 909 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 910 __pa(pdc_result), hpa); 911 convert_to_wide(pdc_result); 912 *num_entries = pdc_result[0]; 913 spin_unlock_irqrestore(&pdc_lock, flags); 914 915 return retval; 916 } 917 918 /** 919 * pdc_pci_irt - Get the PCI interrupt routing table. 920 * @num_entries: The number of entries in the table. 921 * @hpa: The Hard Physical Address of the device. 922 * @tbl: 923 * 924 * Get the PCI interrupt routing table for the device at the given HPA. 925 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 926 */ 927 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 928 { 929 int retval; 930 unsigned long flags; 931 932 BUG_ON((unsigned long)tbl & 0x7); 933 934 spin_lock_irqsave(&pdc_lock, flags); 935 pdc_result[0] = num_entries; 936 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 937 __pa(pdc_result), hpa, __pa(tbl)); 938 spin_unlock_irqrestore(&pdc_lock, flags); 939 940 return retval; 941 } 942 943 944 #if 0 /* UNTEST CODE - left here in case someone needs it */ 945 946 /** 947 * pdc_pci_config_read - read PCI config space. 948 * @hpa token from PDC to indicate which PCI device 949 * @pci_addr configuration space address to read from 950 * 951 * Read PCI Configuration space *before* linux PCI subsystem is running. 952 */ 953 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 954 { 955 int retval; 956 unsigned long flags; 957 958 spin_lock_irqsave(&pdc_lock, flags); 959 pdc_result[0] = 0; 960 pdc_result[1] = 0; 961 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 962 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 963 spin_unlock_irqrestore(&pdc_lock, flags); 964 965 return retval ? ~0 : (unsigned int) pdc_result[0]; 966 } 967 968 969 /** 970 * pdc_pci_config_write - read PCI config space. 971 * @hpa token from PDC to indicate which PCI device 972 * @pci_addr configuration space address to write 973 * @val value we want in the 32-bit register 974 * 975 * Write PCI Configuration space *before* linux PCI subsystem is running. 976 */ 977 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 978 { 979 int retval; 980 unsigned long flags; 981 982 spin_lock_irqsave(&pdc_lock, flags); 983 pdc_result[0] = 0; 984 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 985 __pa(pdc_result), hpa, 986 cfg_addr&~3UL, 4UL, (unsigned long) val); 987 spin_unlock_irqrestore(&pdc_lock, flags); 988 989 return retval; 990 } 991 #endif /* UNTESTED CODE */ 992 993 /** 994 * pdc_tod_read - Read the Time-Of-Day clock. 995 * @tod: The return buffer: 996 * 997 * Read the Time-Of-Day clock 998 */ 999 int pdc_tod_read(struct pdc_tod *tod) 1000 { 1001 int retval; 1002 unsigned long flags; 1003 1004 spin_lock_irqsave(&pdc_lock, flags); 1005 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 1006 convert_to_wide(pdc_result); 1007 memcpy(tod, pdc_result, sizeof(*tod)); 1008 spin_unlock_irqrestore(&pdc_lock, flags); 1009 1010 return retval; 1011 } 1012 EXPORT_SYMBOL(pdc_tod_read); 1013 1014 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo) 1015 { 1016 int retval; 1017 unsigned long flags; 1018 1019 spin_lock_irqsave(&pdc_lock, flags); 1020 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0); 1021 convert_to_wide(pdc_result); 1022 memcpy(rinfo, pdc_result, sizeof(*rinfo)); 1023 spin_unlock_irqrestore(&pdc_lock, flags); 1024 1025 return retval; 1026 } 1027 1028 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret, 1029 unsigned long *pdt_entries_ptr) 1030 { 1031 int retval; 1032 unsigned long flags; 1033 1034 spin_lock_irqsave(&pdc_lock, flags); 1035 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result), 1036 __pa(pdt_entries_ptr)); 1037 if (retval == PDC_OK) { 1038 convert_to_wide(pdc_result); 1039 memcpy(pret, pdc_result, sizeof(*pret)); 1040 } 1041 spin_unlock_irqrestore(&pdc_lock, flags); 1042 1043 #ifdef CONFIG_64BIT 1044 /* 1045 * 64-bit kernels should not call this PDT function in narrow mode. 1046 * The pdt_entries_ptr array above will now contain 32-bit values 1047 */ 1048 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware)) 1049 return PDC_ERROR; 1050 #endif 1051 1052 return retval; 1053 } 1054 1055 /** 1056 * pdc_tod_set - Set the Time-Of-Day clock. 1057 * @sec: The number of seconds since epoch. 1058 * @usec: The number of micro seconds. 1059 * 1060 * Set the Time-Of-Day clock. 1061 */ 1062 int pdc_tod_set(unsigned long sec, unsigned long usec) 1063 { 1064 int retval; 1065 unsigned long flags; 1066 1067 spin_lock_irqsave(&pdc_lock, flags); 1068 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 1069 spin_unlock_irqrestore(&pdc_lock, flags); 1070 1071 return retval; 1072 } 1073 EXPORT_SYMBOL(pdc_tod_set); 1074 1075 #ifdef CONFIG_64BIT 1076 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 1077 struct pdc_memory_table *tbl, unsigned long entries) 1078 { 1079 int retval; 1080 unsigned long flags; 1081 1082 spin_lock_irqsave(&pdc_lock, flags); 1083 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 1084 convert_to_wide(pdc_result); 1085 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 1086 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 1087 spin_unlock_irqrestore(&pdc_lock, flags); 1088 1089 return retval; 1090 } 1091 #endif /* CONFIG_64BIT */ 1092 1093 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 1094 * so I guessed at unsigned long. Someone who knows what this does, can fix 1095 * it later. :) 1096 */ 1097 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1098 { 1099 int retval; 1100 unsigned long flags; 1101 1102 spin_lock_irqsave(&pdc_lock, flags); 1103 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1104 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1105 spin_unlock_irqrestore(&pdc_lock, flags); 1106 1107 return retval; 1108 } 1109 1110 /* 1111 * pdc_do_reset - Reset the system. 1112 * 1113 * Reset the system. 1114 */ 1115 int pdc_do_reset(void) 1116 { 1117 int retval; 1118 unsigned long flags; 1119 1120 spin_lock_irqsave(&pdc_lock, flags); 1121 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1122 spin_unlock_irqrestore(&pdc_lock, flags); 1123 1124 return retval; 1125 } 1126 1127 /* 1128 * pdc_soft_power_info - Enable soft power switch. 1129 * @power_reg: address of soft power register 1130 * 1131 * Return the absolute address of the soft power switch register 1132 */ 1133 int __init pdc_soft_power_info(unsigned long *power_reg) 1134 { 1135 int retval; 1136 unsigned long flags; 1137 1138 *power_reg = (unsigned long) (-1); 1139 1140 spin_lock_irqsave(&pdc_lock, flags); 1141 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1142 if (retval == PDC_OK) { 1143 convert_to_wide(pdc_result); 1144 *power_reg = f_extend(pdc_result[0]); 1145 } 1146 spin_unlock_irqrestore(&pdc_lock, flags); 1147 1148 return retval; 1149 } 1150 1151 /* 1152 * pdc_soft_power_button - Control the soft power button behaviour 1153 * @sw_control: 0 for hardware control, 1 for software control 1154 * 1155 * 1156 * This PDC function places the soft power button under software or 1157 * hardware control. 1158 * Under software control the OS may control to when to allow to shut 1159 * down the system. Under hardware control pressing the power button 1160 * powers off the system immediately. 1161 */ 1162 int pdc_soft_power_button(int sw_control) 1163 { 1164 int retval; 1165 unsigned long flags; 1166 1167 spin_lock_irqsave(&pdc_lock, flags); 1168 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1169 spin_unlock_irqrestore(&pdc_lock, flags); 1170 1171 return retval; 1172 } 1173 1174 /* 1175 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1176 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1177 * who knows what other platform firmware might do with this OS "hook". 1178 */ 1179 void pdc_io_reset(void) 1180 { 1181 unsigned long flags; 1182 1183 spin_lock_irqsave(&pdc_lock, flags); 1184 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1185 spin_unlock_irqrestore(&pdc_lock, flags); 1186 } 1187 1188 /* 1189 * pdc_io_reset_devices - Hack to Stop USB controller 1190 * 1191 * If PDC used the usb controller, the usb controller 1192 * is still running and will crash the machines during iommu 1193 * setup, because of still running DMA. This PDC call 1194 * stops the USB controller. 1195 * Normally called after calling pdc_io_reset(). 1196 */ 1197 void pdc_io_reset_devices(void) 1198 { 1199 unsigned long flags; 1200 1201 spin_lock_irqsave(&pdc_lock, flags); 1202 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1203 spin_unlock_irqrestore(&pdc_lock, flags); 1204 } 1205 1206 #endif /* defined(BOOTLOADER) */ 1207 1208 /* locked by pdc_console_lock */ 1209 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1210 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1211 1212 /** 1213 * pdc_iodc_print - Console print using IODC. 1214 * @str: the string to output. 1215 * @count: length of str 1216 * 1217 * Note that only these special chars are architected for console IODC io: 1218 * BEL, BS, CR, and LF. Others are passed through. 1219 * Since the HP console requires CR+LF to perform a 'newline', we translate 1220 * "\n" to "\r\n". 1221 */ 1222 int pdc_iodc_print(const unsigned char *str, unsigned count) 1223 { 1224 unsigned int i; 1225 unsigned long flags; 1226 1227 for (i = 0; i < count;) { 1228 switch(str[i]) { 1229 case '\n': 1230 iodc_dbuf[i+0] = '\r'; 1231 iodc_dbuf[i+1] = '\n'; 1232 i += 2; 1233 goto print; 1234 default: 1235 iodc_dbuf[i] = str[i]; 1236 i++; 1237 break; 1238 } 1239 } 1240 1241 print: 1242 spin_lock_irqsave(&pdc_lock, flags); 1243 real32_call(PAGE0->mem_cons.iodc_io, 1244 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1245 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1246 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0); 1247 spin_unlock_irqrestore(&pdc_lock, flags); 1248 1249 return i; 1250 } 1251 1252 #if !defined(BOOTLOADER) 1253 /** 1254 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1255 * 1256 * Read a character (non-blocking) from the PDC console, returns -1 if 1257 * key is not present. 1258 */ 1259 int pdc_iodc_getc(void) 1260 { 1261 int ch; 1262 int status; 1263 unsigned long flags; 1264 1265 /* Bail if no console input device. */ 1266 if (!PAGE0->mem_kbd.iodc_io) 1267 return 0; 1268 1269 /* wait for a keyboard (rs232)-input */ 1270 spin_lock_irqsave(&pdc_lock, flags); 1271 real32_call(PAGE0->mem_kbd.iodc_io, 1272 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1273 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1274 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1275 1276 ch = *iodc_dbuf; 1277 status = *iodc_retbuf; 1278 spin_unlock_irqrestore(&pdc_lock, flags); 1279 1280 if (status == 0) 1281 return -1; 1282 1283 return ch; 1284 } 1285 1286 int pdc_sti_call(unsigned long func, unsigned long flags, 1287 unsigned long inptr, unsigned long outputr, 1288 unsigned long glob_cfg) 1289 { 1290 int retval; 1291 unsigned long irqflags; 1292 1293 spin_lock_irqsave(&pdc_lock, irqflags); 1294 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1295 spin_unlock_irqrestore(&pdc_lock, irqflags); 1296 1297 return retval; 1298 } 1299 EXPORT_SYMBOL(pdc_sti_call); 1300 1301 #ifdef CONFIG_64BIT 1302 /** 1303 * pdc_pat_cell_get_number - Returns the cell number. 1304 * @cell_info: The return buffer. 1305 * 1306 * This PDC call returns the cell number of the cell from which the call 1307 * is made. 1308 */ 1309 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1310 { 1311 int retval; 1312 unsigned long flags; 1313 1314 spin_lock_irqsave(&pdc_lock, flags); 1315 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1316 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1317 spin_unlock_irqrestore(&pdc_lock, flags); 1318 1319 return retval; 1320 } 1321 1322 /** 1323 * pdc_pat_cell_module - Retrieve the cell's module information. 1324 * @actcnt: The number of bytes written to mem_addr. 1325 * @ploc: The physical location. 1326 * @mod: The module index. 1327 * @view_type: The view of the address type. 1328 * @mem_addr: The return buffer. 1329 * 1330 * This PDC call returns information about each module attached to the cell 1331 * at the specified location. 1332 */ 1333 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1334 unsigned long view_type, void *mem_addr) 1335 { 1336 int retval; 1337 unsigned long flags; 1338 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1339 1340 spin_lock_irqsave(&pdc_lock, flags); 1341 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1342 ploc, mod, view_type, __pa(&result)); 1343 if(!retval) { 1344 *actcnt = pdc_result[0]; 1345 memcpy(mem_addr, &result, *actcnt); 1346 } 1347 spin_unlock_irqrestore(&pdc_lock, flags); 1348 1349 return retval; 1350 } 1351 1352 /** 1353 * pdc_pat_cell_info - Retrieve the cell's information. 1354 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block. 1355 * @actcnt: The number of bytes which should be written to info. 1356 * @offset: offset of the structure. 1357 * @cell_number: The cell number which should be asked, or -1 for current cell. 1358 * 1359 * This PDC call returns information about the given cell (or all cells). 1360 */ 1361 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info, 1362 unsigned long *actcnt, unsigned long offset, 1363 unsigned long cell_number) 1364 { 1365 int retval; 1366 unsigned long flags; 1367 struct pdc_pat_cell_info_rtn_block result; 1368 1369 spin_lock_irqsave(&pdc_lock, flags); 1370 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO, 1371 __pa(pdc_result), __pa(&result), *actcnt, 1372 offset, cell_number); 1373 if (!retval) { 1374 *actcnt = pdc_result[0]; 1375 memcpy(info, &result, *actcnt); 1376 } 1377 spin_unlock_irqrestore(&pdc_lock, flags); 1378 1379 return retval; 1380 } 1381 1382 /** 1383 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1384 * @cpu_info: The return buffer. 1385 * @hpa: The Hard Physical Address of the CPU. 1386 * 1387 * Retrieve the cpu number for the cpu at the specified HPA. 1388 */ 1389 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa) 1390 { 1391 int retval; 1392 unsigned long flags; 1393 1394 spin_lock_irqsave(&pdc_lock, flags); 1395 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1396 __pa(&pdc_result), hpa); 1397 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1398 spin_unlock_irqrestore(&pdc_lock, flags); 1399 1400 return retval; 1401 } 1402 1403 /** 1404 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1405 * @num_entries: The return value. 1406 * @cell_num: The target cell. 1407 * 1408 * This PDC function returns the number of entries in the specified cell's 1409 * interrupt table. 1410 */ 1411 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1412 { 1413 int retval; 1414 unsigned long flags; 1415 1416 spin_lock_irqsave(&pdc_lock, flags); 1417 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1418 __pa(pdc_result), cell_num); 1419 *num_entries = pdc_result[0]; 1420 spin_unlock_irqrestore(&pdc_lock, flags); 1421 1422 return retval; 1423 } 1424 1425 /** 1426 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1427 * @r_addr: The return buffer. 1428 * @cell_num: The target cell. 1429 * 1430 * This PDC function returns the actual interrupt table for the specified cell. 1431 */ 1432 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1433 { 1434 int retval; 1435 unsigned long flags; 1436 1437 spin_lock_irqsave(&pdc_lock, flags); 1438 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1439 __pa(r_addr), cell_num); 1440 spin_unlock_irqrestore(&pdc_lock, flags); 1441 1442 return retval; 1443 } 1444 1445 /** 1446 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1447 * @actlen: The return buffer. 1448 * @mem_addr: Pointer to the memory buffer. 1449 * @count: The number of bytes to read from the buffer. 1450 * @offset: The offset with respect to the beginning of the buffer. 1451 * 1452 */ 1453 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1454 unsigned long count, unsigned long offset) 1455 { 1456 int retval; 1457 unsigned long flags; 1458 1459 spin_lock_irqsave(&pdc_lock, flags); 1460 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1461 __pa(pdc_result2), count, offset); 1462 *actual_len = pdc_result[0]; 1463 memcpy(mem_addr, pdc_result2, *actual_len); 1464 spin_unlock_irqrestore(&pdc_lock, flags); 1465 1466 return retval; 1467 } 1468 1469 /** 1470 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions. 1471 * @legacy_rev: The legacy revision. 1472 * @pat_rev: The PAT revision. 1473 * @pdc_cap: The PDC capabilities. 1474 * 1475 */ 1476 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev, 1477 unsigned long *pat_rev, unsigned long *pdc_cap) 1478 { 1479 int retval; 1480 unsigned long flags; 1481 1482 spin_lock_irqsave(&pdc_lock, flags); 1483 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV, 1484 __pa(pdc_result)); 1485 if (retval == PDC_OK) { 1486 *legacy_rev = pdc_result[0]; 1487 *pat_rev = pdc_result[1]; 1488 *pdc_cap = pdc_result[2]; 1489 } 1490 spin_unlock_irqrestore(&pdc_lock, flags); 1491 1492 return retval; 1493 } 1494 1495 1496 /** 1497 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1498 * @pci_addr: PCI configuration space address for which the read request is being made. 1499 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1500 * @mem_addr: Pointer to return memory buffer. 1501 * 1502 */ 1503 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1504 { 1505 int retval; 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&pdc_lock, flags); 1509 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1510 __pa(pdc_result), pci_addr, pci_size); 1511 switch(pci_size) { 1512 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break; 1513 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break; 1514 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break; 1515 } 1516 spin_unlock_irqrestore(&pdc_lock, flags); 1517 1518 return retval; 1519 } 1520 1521 /** 1522 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1523 * @pci_addr: PCI configuration space address for which the write request is being made. 1524 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1525 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1526 * written to PCI Config space. 1527 * 1528 */ 1529 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1530 { 1531 int retval; 1532 unsigned long flags; 1533 1534 spin_lock_irqsave(&pdc_lock, flags); 1535 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1536 pci_addr, pci_size, val); 1537 spin_unlock_irqrestore(&pdc_lock, flags); 1538 1539 return retval; 1540 } 1541 1542 /** 1543 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table 1544 * @rinfo: memory pdt information 1545 * 1546 */ 1547 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo) 1548 { 1549 int retval; 1550 unsigned long flags; 1551 1552 spin_lock_irqsave(&pdc_lock, flags); 1553 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO, 1554 __pa(&pdc_result)); 1555 if (retval == PDC_OK) 1556 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1557 spin_unlock_irqrestore(&pdc_lock, flags); 1558 1559 return retval; 1560 } 1561 1562 /** 1563 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation 1564 * table of a cell 1565 * @rinfo: memory pdt information 1566 * @cell: cell number 1567 * 1568 */ 1569 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo, 1570 unsigned long cell) 1571 { 1572 int retval; 1573 unsigned long flags; 1574 1575 spin_lock_irqsave(&pdc_lock, flags); 1576 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO, 1577 __pa(&pdc_result), cell); 1578 if (retval == PDC_OK) 1579 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1580 spin_unlock_irqrestore(&pdc_lock, flags); 1581 1582 return retval; 1583 } 1584 1585 /** 1586 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware 1587 * @pret: array of PDT entries 1588 * @pdt_entries_ptr: ptr to hold number of PDT entries 1589 * @max_entries: maximum number of entries to be read 1590 * 1591 */ 1592 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1593 unsigned long *pdt_entries_ptr, unsigned long max_entries) 1594 { 1595 int retval; 1596 unsigned long flags, entries; 1597 1598 spin_lock_irqsave(&pdc_lock, flags); 1599 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */ 1600 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ, 1601 __pa(&pdc_result), parisc_cell_num, 1602 __pa(pdt_entries_ptr)); 1603 1604 if (retval == PDC_OK) { 1605 /* build up return value as for PDC_PAT_MEM_PD_READ */ 1606 entries = min(pdc_result[0], max_entries); 1607 pret->pdt_entries = entries; 1608 pret->actual_count_bytes = entries * sizeof(unsigned long); 1609 } 1610 1611 spin_unlock_irqrestore(&pdc_lock, flags); 1612 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries); 1613 1614 return retval; 1615 } 1616 /** 1617 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware 1618 * @pret: array of PDT entries 1619 * @pdt_entries_ptr: ptr to hold number of PDT entries 1620 * @count: number of bytes to read 1621 * @offset: offset to start (in bytes) 1622 * 1623 */ 1624 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1625 unsigned long *pdt_entries_ptr, unsigned long count, 1626 unsigned long offset) 1627 { 1628 int retval; 1629 unsigned long flags, entries; 1630 1631 spin_lock_irqsave(&pdc_lock, flags); 1632 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ, 1633 __pa(&pdc_result), __pa(pdt_entries_ptr), 1634 count, offset); 1635 1636 if (retval == PDC_OK) { 1637 entries = min(pdc_result[0], count); 1638 pret->actual_count_bytes = entries; 1639 pret->pdt_entries = entries / sizeof(unsigned long); 1640 } 1641 1642 spin_unlock_irqrestore(&pdc_lock, flags); 1643 1644 return retval; 1645 } 1646 1647 /** 1648 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware 1649 * @pret: ptr to hold returned information 1650 * @phys_addr: physical address to examine 1651 * 1652 */ 1653 int pdc_pat_mem_get_dimm_phys_location( 1654 struct pdc_pat_mem_phys_mem_location *pret, 1655 unsigned long phys_addr) 1656 { 1657 int retval; 1658 unsigned long flags; 1659 1660 spin_lock_irqsave(&pdc_lock, flags); 1661 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS, 1662 __pa(&pdc_result), phys_addr); 1663 1664 if (retval == PDC_OK) 1665 memcpy(pret, &pdc_result, sizeof(*pret)); 1666 1667 spin_unlock_irqrestore(&pdc_lock, flags); 1668 1669 return retval; 1670 } 1671 #endif /* CONFIG_64BIT */ 1672 #endif /* defined(BOOTLOADER) */ 1673 1674 1675 /***************** 32-bit real-mode calls ***********/ 1676 /* The struct below is used 1677 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1678 * real32_call_asm() then uses this stack in narrow real mode 1679 */ 1680 1681 struct narrow_stack { 1682 /* use int, not long which is 64 bits */ 1683 unsigned int arg13; 1684 unsigned int arg12; 1685 unsigned int arg11; 1686 unsigned int arg10; 1687 unsigned int arg9; 1688 unsigned int arg8; 1689 unsigned int arg7; 1690 unsigned int arg6; 1691 unsigned int arg5; 1692 unsigned int arg4; 1693 unsigned int arg3; 1694 unsigned int arg2; 1695 unsigned int arg1; 1696 unsigned int arg0; 1697 unsigned int frame_marker[8]; 1698 unsigned int sp; 1699 /* in reality, there's nearly 8k of stack after this */ 1700 }; 1701 1702 long real32_call(unsigned long fn, ...) 1703 { 1704 va_list args; 1705 extern struct narrow_stack real_stack; 1706 extern unsigned long real32_call_asm(unsigned int *, 1707 unsigned int *, 1708 unsigned int); 1709 1710 va_start(args, fn); 1711 real_stack.arg0 = va_arg(args, unsigned int); 1712 real_stack.arg1 = va_arg(args, unsigned int); 1713 real_stack.arg2 = va_arg(args, unsigned int); 1714 real_stack.arg3 = va_arg(args, unsigned int); 1715 real_stack.arg4 = va_arg(args, unsigned int); 1716 real_stack.arg5 = va_arg(args, unsigned int); 1717 real_stack.arg6 = va_arg(args, unsigned int); 1718 real_stack.arg7 = va_arg(args, unsigned int); 1719 real_stack.arg8 = va_arg(args, unsigned int); 1720 real_stack.arg9 = va_arg(args, unsigned int); 1721 real_stack.arg10 = va_arg(args, unsigned int); 1722 real_stack.arg11 = va_arg(args, unsigned int); 1723 real_stack.arg12 = va_arg(args, unsigned int); 1724 real_stack.arg13 = va_arg(args, unsigned int); 1725 va_end(args); 1726 1727 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1728 } 1729 1730 #ifdef CONFIG_64BIT 1731 /***************** 64-bit real-mode calls ***********/ 1732 1733 struct wide_stack { 1734 unsigned long arg0; 1735 unsigned long arg1; 1736 unsigned long arg2; 1737 unsigned long arg3; 1738 unsigned long arg4; 1739 unsigned long arg5; 1740 unsigned long arg6; 1741 unsigned long arg7; 1742 unsigned long arg8; 1743 unsigned long arg9; 1744 unsigned long arg10; 1745 unsigned long arg11; 1746 unsigned long arg12; 1747 unsigned long arg13; 1748 unsigned long frame_marker[2]; /* rp, previous sp */ 1749 unsigned long sp; 1750 /* in reality, there's nearly 8k of stack after this */ 1751 }; 1752 1753 long real64_call(unsigned long fn, ...) 1754 { 1755 va_list args; 1756 extern struct wide_stack real64_stack; 1757 extern unsigned long real64_call_asm(unsigned long *, 1758 unsigned long *, 1759 unsigned long); 1760 1761 va_start(args, fn); 1762 real64_stack.arg0 = va_arg(args, unsigned long); 1763 real64_stack.arg1 = va_arg(args, unsigned long); 1764 real64_stack.arg2 = va_arg(args, unsigned long); 1765 real64_stack.arg3 = va_arg(args, unsigned long); 1766 real64_stack.arg4 = va_arg(args, unsigned long); 1767 real64_stack.arg5 = va_arg(args, unsigned long); 1768 real64_stack.arg6 = va_arg(args, unsigned long); 1769 real64_stack.arg7 = va_arg(args, unsigned long); 1770 real64_stack.arg8 = va_arg(args, unsigned long); 1771 real64_stack.arg9 = va_arg(args, unsigned long); 1772 real64_stack.arg10 = va_arg(args, unsigned long); 1773 real64_stack.arg11 = va_arg(args, unsigned long); 1774 real64_stack.arg12 = va_arg(args, unsigned long); 1775 real64_stack.arg13 = va_arg(args, unsigned long); 1776 va_end(args); 1777 1778 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1779 } 1780 1781 #endif /* CONFIG_64BIT */ 1782