1 /* 2 * arch/parisc/kernel/firmware.c - safe PDC access routines 3 * 4 * PDC == Processor Dependent Code 5 * 6 * See http://www.parisc-linux.org/documentation/index.html 7 * for documentation describing the entry points and calling 8 * conventions defined below. 9 * 10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 12 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License as published by 18 * the Free Software Foundation; either version 2 of the License, or 19 * (at your option) any later version. 20 * 21 */ 22 23 /* I think it would be in everyone's best interest to follow this 24 * guidelines when writing PDC wrappers: 25 * 26 * - the name of the pdc wrapper should match one of the macros 27 * used for the first two arguments 28 * - don't use caps for random parts of the name 29 * - use the static PDC result buffers and "copyout" to structs 30 * supplied by the caller to encapsulate alignment restrictions 31 * - hold pdc_lock while in PDC or using static result buffers 32 * - use __pa() to convert virtual (kernel) pointers to physical 33 * ones. 34 * - the name of the struct used for pdc return values should equal 35 * one of the macros used for the first two arguments to the 36 * corresponding PDC call 37 * - keep the order of arguments 38 * - don't be smart (setting trailing NUL bytes for strings, return 39 * something useful even if the call failed) unless you are sure 40 * it's not going to affect functionality or performance 41 * 42 * Example: 43 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 44 * { 45 * int retval; 46 * 47 * spin_lock_irq(&pdc_lock); 48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 49 * convert_to_wide(pdc_result); 50 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 51 * spin_unlock_irq(&pdc_lock); 52 * 53 * return retval; 54 * } 55 * prumpf 991016 56 */ 57 58 #include <stdarg.h> 59 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/module.h> 64 #include <linux/string.h> 65 #include <linux/spinlock.h> 66 67 #include <asm/page.h> 68 #include <asm/pdc.h> 69 #include <asm/pdcpat.h> 70 #include <asm/system.h> 71 #include <asm/processor.h> /* for boot_cpu_data */ 72 73 static DEFINE_SPINLOCK(pdc_lock); 74 extern unsigned long pdc_result[NUM_PDC_RESULT]; 75 extern unsigned long pdc_result2[NUM_PDC_RESULT]; 76 77 #ifdef CONFIG_64BIT 78 #define WIDE_FIRMWARE 0x1 79 #define NARROW_FIRMWARE 0x2 80 81 /* Firmware needs to be initially set to narrow to determine the 82 * actual firmware width. */ 83 int parisc_narrow_firmware __read_mostly = 1; 84 #endif 85 86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 87 * and MEM_PDC calls are always the same width as the OS. 88 * Some PAT boxes may have 64-bit IODC I/O. 89 * 90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 92 * This allowed wide kernels to run on Cxxx boxes. 93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 95 */ 96 97 #ifdef CONFIG_64BIT 98 long real64_call(unsigned long function, ...); 99 #endif 100 long real32_call(unsigned long function, ...); 101 102 #ifdef CONFIG_64BIT 103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 105 #else 106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 108 #endif 109 110 111 /** 112 * f_extend - Convert PDC addresses to kernel addresses. 113 * @address: Address returned from PDC. 114 * 115 * This function is used to convert PDC addresses into kernel addresses 116 * when the PDC address size and kernel address size are different. 117 */ 118 static unsigned long f_extend(unsigned long address) 119 { 120 #ifdef CONFIG_64BIT 121 if(unlikely(parisc_narrow_firmware)) { 122 if((address & 0xff000000) == 0xf0000000) 123 return 0xf0f0f0f000000000UL | (u32)address; 124 125 if((address & 0xf0000000) == 0xf0000000) 126 return 0xffffffff00000000UL | (u32)address; 127 } 128 #endif 129 return address; 130 } 131 132 /** 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 134 * @address: The return buffer from PDC. 135 * 136 * This function is used to convert the return buffer addresses retrieved from PDC 137 * into kernel addresses when the PDC address size and kernel address size are 138 * different. 139 */ 140 static void convert_to_wide(unsigned long *addr) 141 { 142 #ifdef CONFIG_64BIT 143 int i; 144 unsigned int *p = (unsigned int *)addr; 145 146 if(unlikely(parisc_narrow_firmware)) { 147 for(i = 31; i >= 0; --i) 148 addr[i] = p[i]; 149 } 150 #endif 151 } 152 153 #ifdef CONFIG_64BIT 154 void __cpuinit set_firmware_width_unlocked(void) 155 { 156 int ret; 157 158 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 159 __pa(pdc_result), 0); 160 convert_to_wide(pdc_result); 161 if (pdc_result[0] != NARROW_FIRMWARE) 162 parisc_narrow_firmware = 0; 163 } 164 165 /** 166 * set_firmware_width - Determine if the firmware is wide or narrow. 167 * 168 * This function must be called before any pdc_* function that uses the 169 * convert_to_wide function. 170 */ 171 void __cpuinit set_firmware_width(void) 172 { 173 unsigned long flags; 174 spin_lock_irqsave(&pdc_lock, flags); 175 set_firmware_width_unlocked(); 176 spin_unlock_irqrestore(&pdc_lock, flags); 177 } 178 #else 179 void __cpuinit set_firmware_width_unlocked(void) { 180 return; 181 } 182 183 void __cpuinit set_firmware_width(void) { 184 return; 185 } 186 #endif /*CONFIG_64BIT*/ 187 188 /** 189 * pdc_emergency_unlock - Unlock the linux pdc lock 190 * 191 * This call unlocks the linux pdc lock in case we need some PDC functions 192 * (like pdc_add_valid) during kernel stack dump. 193 */ 194 void pdc_emergency_unlock(void) 195 { 196 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 197 if (spin_is_locked(&pdc_lock)) 198 spin_unlock(&pdc_lock); 199 } 200 201 202 /** 203 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 204 * @address: Address to be verified. 205 * 206 * This PDC call attempts to read from the specified address and verifies 207 * if the address is valid. 208 * 209 * The return value is PDC_OK (0) in case accessing this address is valid. 210 */ 211 int pdc_add_valid(unsigned long address) 212 { 213 int retval; 214 unsigned long flags; 215 216 spin_lock_irqsave(&pdc_lock, flags); 217 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 218 spin_unlock_irqrestore(&pdc_lock, flags); 219 220 return retval; 221 } 222 EXPORT_SYMBOL(pdc_add_valid); 223 224 /** 225 * pdc_chassis_info - Return chassis information. 226 * @result: The return buffer. 227 * @chassis_info: The memory buffer address. 228 * @len: The size of the memory buffer address. 229 * 230 * An HVERSION dependent call for returning the chassis information. 231 */ 232 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 233 { 234 int retval; 235 unsigned long flags; 236 237 spin_lock_irqsave(&pdc_lock, flags); 238 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 239 memcpy(&pdc_result2, led_info, len); 240 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 241 __pa(pdc_result), __pa(pdc_result2), len); 242 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 243 memcpy(led_info, pdc_result2, len); 244 spin_unlock_irqrestore(&pdc_lock, flags); 245 246 return retval; 247 } 248 249 /** 250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 251 * @retval: -1 on error, 0 on success. Other value are PDC errors 252 * 253 * Must be correctly formatted or expect system crash 254 */ 255 #ifdef CONFIG_64BIT 256 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 257 { 258 int retval = 0; 259 unsigned long flags; 260 261 if (!is_pdc_pat()) 262 return -1; 263 264 spin_lock_irqsave(&pdc_lock, flags); 265 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 266 spin_unlock_irqrestore(&pdc_lock, flags); 267 268 return retval; 269 } 270 #endif 271 272 /** 273 * pdc_chassis_disp - Updates chassis code 274 * @retval: -1 on error, 0 on success 275 */ 276 int pdc_chassis_disp(unsigned long disp) 277 { 278 int retval = 0; 279 unsigned long flags; 280 281 spin_lock_irqsave(&pdc_lock, flags); 282 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 283 spin_unlock_irqrestore(&pdc_lock, flags); 284 285 return retval; 286 } 287 288 /** 289 * pdc_chassis_warn - Fetches chassis warnings 290 * @retval: -1 on error, 0 on success 291 */ 292 int pdc_chassis_warn(unsigned long *warn) 293 { 294 int retval = 0; 295 unsigned long flags; 296 297 spin_lock_irqsave(&pdc_lock, flags); 298 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 299 *warn = pdc_result[0]; 300 spin_unlock_irqrestore(&pdc_lock, flags); 301 302 return retval; 303 } 304 305 int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 306 { 307 int ret; 308 309 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 310 convert_to_wide(pdc_result); 311 pdc_coproc_info->ccr_functional = pdc_result[0]; 312 pdc_coproc_info->ccr_present = pdc_result[1]; 313 pdc_coproc_info->revision = pdc_result[17]; 314 pdc_coproc_info->model = pdc_result[18]; 315 316 return ret; 317 } 318 319 /** 320 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 321 * @pdc_coproc_info: Return buffer address. 322 * 323 * This PDC call returns the presence and status of all the coprocessors 324 * attached to the processor. 325 */ 326 int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 327 { 328 int ret; 329 unsigned long flags; 330 331 spin_lock_irqsave(&pdc_lock, flags); 332 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 333 spin_unlock_irqrestore(&pdc_lock, flags); 334 335 return ret; 336 } 337 338 /** 339 * pdc_iodc_read - Read data from the modules IODC. 340 * @actcnt: The actual number of bytes. 341 * @hpa: The HPA of the module for the iodc read. 342 * @index: The iodc entry point. 343 * @iodc_data: A buffer memory for the iodc options. 344 * @iodc_data_size: Size of the memory buffer. 345 * 346 * This PDC call reads from the IODC of the module specified by the hpa 347 * argument. 348 */ 349 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 350 void *iodc_data, unsigned int iodc_data_size) 351 { 352 int retval; 353 unsigned long flags; 354 355 spin_lock_irqsave(&pdc_lock, flags); 356 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 357 index, __pa(pdc_result2), iodc_data_size); 358 convert_to_wide(pdc_result); 359 *actcnt = pdc_result[0]; 360 memcpy(iodc_data, pdc_result2, iodc_data_size); 361 spin_unlock_irqrestore(&pdc_lock, flags); 362 363 return retval; 364 } 365 EXPORT_SYMBOL(pdc_iodc_read); 366 367 /** 368 * pdc_system_map_find_mods - Locate unarchitected modules. 369 * @pdc_mod_info: Return buffer address. 370 * @mod_path: pointer to dev path structure. 371 * @mod_index: fixed address module index. 372 * 373 * To locate and identify modules which reside at fixed I/O addresses, which 374 * do not self-identify via architected bus walks. 375 */ 376 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 377 struct pdc_module_path *mod_path, long mod_index) 378 { 379 int retval; 380 unsigned long flags; 381 382 spin_lock_irqsave(&pdc_lock, flags); 383 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 384 __pa(pdc_result2), mod_index); 385 convert_to_wide(pdc_result); 386 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 387 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 388 spin_unlock_irqrestore(&pdc_lock, flags); 389 390 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 391 return retval; 392 } 393 394 /** 395 * pdc_system_map_find_addrs - Retrieve additional address ranges. 396 * @pdc_addr_info: Return buffer address. 397 * @mod_index: Fixed address module index. 398 * @addr_index: Address range index. 399 * 400 * Retrieve additional information about subsequent address ranges for modules 401 * with multiple address ranges. 402 */ 403 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 404 long mod_index, long addr_index) 405 { 406 int retval; 407 unsigned long flags; 408 409 spin_lock_irqsave(&pdc_lock, flags); 410 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 411 mod_index, addr_index); 412 convert_to_wide(pdc_result); 413 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 414 spin_unlock_irqrestore(&pdc_lock, flags); 415 416 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 417 return retval; 418 } 419 420 /** 421 * pdc_model_info - Return model information about the processor. 422 * @model: The return buffer. 423 * 424 * Returns the version numbers, identifiers, and capabilities from the processor module. 425 */ 426 int pdc_model_info(struct pdc_model *model) 427 { 428 int retval; 429 unsigned long flags; 430 431 spin_lock_irqsave(&pdc_lock, flags); 432 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 433 convert_to_wide(pdc_result); 434 memcpy(model, pdc_result, sizeof(*model)); 435 spin_unlock_irqrestore(&pdc_lock, flags); 436 437 return retval; 438 } 439 440 /** 441 * pdc_model_sysmodel - Get the system model name. 442 * @name: A char array of at least 81 characters. 443 * 444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 446 * on HP/UX. 447 */ 448 int pdc_model_sysmodel(char *name) 449 { 450 int retval; 451 unsigned long flags; 452 453 spin_lock_irqsave(&pdc_lock, flags); 454 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 455 OS_ID_HPUX, __pa(name)); 456 convert_to_wide(pdc_result); 457 458 if (retval == PDC_OK) { 459 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 460 } else { 461 name[0] = 0; 462 } 463 spin_unlock_irqrestore(&pdc_lock, flags); 464 465 return retval; 466 } 467 468 /** 469 * pdc_model_versions - Identify the version number of each processor. 470 * @cpu_id: The return buffer. 471 * @id: The id of the processor to check. 472 * 473 * Returns the version number for each processor component. 474 * 475 * This comment was here before, but I do not know what it means :( -RB 476 * id: 0 = cpu revision, 1 = boot-rom-version 477 */ 478 int pdc_model_versions(unsigned long *versions, int id) 479 { 480 int retval; 481 unsigned long flags; 482 483 spin_lock_irqsave(&pdc_lock, flags); 484 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 485 convert_to_wide(pdc_result); 486 *versions = pdc_result[0]; 487 spin_unlock_irqrestore(&pdc_lock, flags); 488 489 return retval; 490 } 491 492 /** 493 * pdc_model_cpuid - Returns the CPU_ID. 494 * @cpu_id: The return buffer. 495 * 496 * Returns the CPU_ID value which uniquely identifies the cpu portion of 497 * the processor module. 498 */ 499 int pdc_model_cpuid(unsigned long *cpu_id) 500 { 501 int retval; 502 unsigned long flags; 503 504 spin_lock_irqsave(&pdc_lock, flags); 505 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 506 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 507 convert_to_wide(pdc_result); 508 *cpu_id = pdc_result[0]; 509 spin_unlock_irqrestore(&pdc_lock, flags); 510 511 return retval; 512 } 513 514 /** 515 * pdc_model_capabilities - Returns the platform capabilities. 516 * @capabilities: The return buffer. 517 * 518 * Returns information about platform support for 32- and/or 64-bit 519 * OSes, IO-PDIR coherency, and virtual aliasing. 520 */ 521 int pdc_model_capabilities(unsigned long *capabilities) 522 { 523 int retval; 524 unsigned long flags; 525 526 spin_lock_irqsave(&pdc_lock, flags); 527 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 528 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 529 convert_to_wide(pdc_result); 530 if (retval == PDC_OK) { 531 *capabilities = pdc_result[0]; 532 } else { 533 *capabilities = PDC_MODEL_OS32; 534 } 535 spin_unlock_irqrestore(&pdc_lock, flags); 536 537 return retval; 538 } 539 540 /** 541 * pdc_cache_info - Return cache and TLB information. 542 * @cache_info: The return buffer. 543 * 544 * Returns information about the processor's cache and TLB. 545 */ 546 int pdc_cache_info(struct pdc_cache_info *cache_info) 547 { 548 int retval; 549 unsigned long flags; 550 551 spin_lock_irqsave(&pdc_lock, flags); 552 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 553 convert_to_wide(pdc_result); 554 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 555 spin_unlock_irqrestore(&pdc_lock, flags); 556 557 return retval; 558 } 559 560 /** 561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 562 * @space_bits: Should be 0, if not, bad mojo! 563 * 564 * Returns information about Space ID hashing. 565 */ 566 int pdc_spaceid_bits(unsigned long *space_bits) 567 { 568 int retval; 569 unsigned long flags; 570 571 spin_lock_irqsave(&pdc_lock, flags); 572 pdc_result[0] = 0; 573 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 574 convert_to_wide(pdc_result); 575 *space_bits = pdc_result[0]; 576 spin_unlock_irqrestore(&pdc_lock, flags); 577 578 return retval; 579 } 580 581 #ifndef CONFIG_PA20 582 /** 583 * pdc_btlb_info - Return block TLB information. 584 * @btlb: The return buffer. 585 * 586 * Returns information about the hardware Block TLB. 587 */ 588 int pdc_btlb_info(struct pdc_btlb_info *btlb) 589 { 590 int retval; 591 unsigned long flags; 592 593 spin_lock_irqsave(&pdc_lock, flags); 594 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 595 memcpy(btlb, pdc_result, sizeof(*btlb)); 596 spin_unlock_irqrestore(&pdc_lock, flags); 597 598 if(retval < 0) { 599 btlb->max_size = 0; 600 } 601 return retval; 602 } 603 604 /** 605 * pdc_mem_map_hpa - Find fixed module information. 606 * @address: The return buffer 607 * @mod_path: pointer to dev path structure. 608 * 609 * This call was developed for S700 workstations to allow the kernel to find 610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 612 * call. 613 * 614 * This call is supported by all existing S700 workstations (up to Gecko). 615 */ 616 int pdc_mem_map_hpa(struct pdc_memory_map *address, 617 struct pdc_module_path *mod_path) 618 { 619 int retval; 620 unsigned long flags; 621 622 spin_lock_irqsave(&pdc_lock, flags); 623 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 624 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 625 __pa(pdc_result2)); 626 memcpy(address, pdc_result, sizeof(*address)); 627 spin_unlock_irqrestore(&pdc_lock, flags); 628 629 return retval; 630 } 631 #endif /* !CONFIG_PA20 */ 632 633 /** 634 * pdc_lan_station_id - Get the LAN address. 635 * @lan_addr: The return buffer. 636 * @hpa: The network device HPA. 637 * 638 * Get the LAN station address when it is not directly available from the LAN hardware. 639 */ 640 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 641 { 642 int retval; 643 unsigned long flags; 644 645 spin_lock_irqsave(&pdc_lock, flags); 646 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 647 __pa(pdc_result), hpa); 648 if (retval < 0) { 649 /* FIXME: else read MAC from NVRAM */ 650 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 651 } else { 652 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 653 } 654 spin_unlock_irqrestore(&pdc_lock, flags); 655 656 return retval; 657 } 658 EXPORT_SYMBOL(pdc_lan_station_id); 659 660 /** 661 * pdc_stable_read - Read data from Stable Storage. 662 * @staddr: Stable Storage address to access. 663 * @memaddr: The memory address where Stable Storage data shall be copied. 664 * @count: number of bytes to transfer. count is multiple of 4. 665 * 666 * This PDC call reads from the Stable Storage address supplied in staddr 667 * and copies count bytes to the memory address memaddr. 668 * The call will fail if staddr+count > PDC_STABLE size. 669 */ 670 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 671 { 672 int retval; 673 unsigned long flags; 674 675 spin_lock_irqsave(&pdc_lock, flags); 676 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 677 __pa(pdc_result), count); 678 convert_to_wide(pdc_result); 679 memcpy(memaddr, pdc_result, count); 680 spin_unlock_irqrestore(&pdc_lock, flags); 681 682 return retval; 683 } 684 EXPORT_SYMBOL(pdc_stable_read); 685 686 /** 687 * pdc_stable_write - Write data to Stable Storage. 688 * @staddr: Stable Storage address to access. 689 * @memaddr: The memory address where Stable Storage data shall be read from. 690 * @count: number of bytes to transfer. count is multiple of 4. 691 * 692 * This PDC call reads count bytes from the supplied memaddr address, 693 * and copies count bytes to the Stable Storage address staddr. 694 * The call will fail if staddr+count > PDC_STABLE size. 695 */ 696 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 697 { 698 int retval; 699 unsigned long flags; 700 701 spin_lock_irqsave(&pdc_lock, flags); 702 memcpy(pdc_result, memaddr, count); 703 convert_to_wide(pdc_result); 704 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 705 __pa(pdc_result), count); 706 spin_unlock_irqrestore(&pdc_lock, flags); 707 708 return retval; 709 } 710 EXPORT_SYMBOL(pdc_stable_write); 711 712 /** 713 * pdc_stable_get_size - Get Stable Storage size in bytes. 714 * @size: pointer where the size will be stored. 715 * 716 * This PDC call returns the number of bytes in the processor's Stable 717 * Storage, which is the number of contiguous bytes implemented in Stable 718 * Storage starting from staddr=0. size in an unsigned 64-bit integer 719 * which is a multiple of four. 720 */ 721 int pdc_stable_get_size(unsigned long *size) 722 { 723 int retval; 724 unsigned long flags; 725 726 spin_lock_irqsave(&pdc_lock, flags); 727 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 728 *size = pdc_result[0]; 729 spin_unlock_irqrestore(&pdc_lock, flags); 730 731 return retval; 732 } 733 EXPORT_SYMBOL(pdc_stable_get_size); 734 735 /** 736 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 737 * 738 * This PDC call is meant to be used to check the integrity of the current 739 * contents of Stable Storage. 740 */ 741 int pdc_stable_verify_contents(void) 742 { 743 int retval; 744 unsigned long flags; 745 746 spin_lock_irqsave(&pdc_lock, flags); 747 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 748 spin_unlock_irqrestore(&pdc_lock, flags); 749 750 return retval; 751 } 752 EXPORT_SYMBOL(pdc_stable_verify_contents); 753 754 /** 755 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 756 * the validity indicator. 757 * 758 * This PDC call will erase all contents of Stable Storage. Use with care! 759 */ 760 int pdc_stable_initialize(void) 761 { 762 int retval; 763 unsigned long flags; 764 765 spin_lock_irqsave(&pdc_lock, flags); 766 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 767 spin_unlock_irqrestore(&pdc_lock, flags); 768 769 return retval; 770 } 771 EXPORT_SYMBOL(pdc_stable_initialize); 772 773 /** 774 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 775 * @hwpath: fully bc.mod style path to the device. 776 * @initiator: the array to return the result into 777 * 778 * Get the SCSI operational parameters from PDC. 779 * Needed since HPUX never used BIOS or symbios card NVRAM. 780 * Most ncr/sym cards won't have an entry and just use whatever 781 * capabilities of the card are (eg Ultra, LVD). But there are 782 * several cases where it's useful: 783 * o set SCSI id for Multi-initiator clusters, 784 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 785 * o bus width exported is less than what the interface chip supports. 786 */ 787 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 788 { 789 int retval; 790 unsigned long flags; 791 792 spin_lock_irqsave(&pdc_lock, flags); 793 794 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 795 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 796 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 797 798 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 799 __pa(pdc_result), __pa(hwpath)); 800 if (retval < PDC_OK) 801 goto out; 802 803 if (pdc_result[0] < 16) { 804 initiator->host_id = pdc_result[0]; 805 } else { 806 initiator->host_id = -1; 807 } 808 809 /* 810 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 811 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 812 */ 813 switch (pdc_result[1]) { 814 case 1: initiator->factor = 50; break; 815 case 2: initiator->factor = 25; break; 816 case 5: initiator->factor = 12; break; 817 case 25: initiator->factor = 10; break; 818 case 20: initiator->factor = 12; break; 819 case 40: initiator->factor = 10; break; 820 default: initiator->factor = -1; break; 821 } 822 823 if (IS_SPROCKETS()) { 824 initiator->width = pdc_result[4]; 825 initiator->mode = pdc_result[5]; 826 } else { 827 initiator->width = -1; 828 initiator->mode = -1; 829 } 830 831 out: 832 spin_unlock_irqrestore(&pdc_lock, flags); 833 834 return (retval >= PDC_OK); 835 } 836 EXPORT_SYMBOL(pdc_get_initiator); 837 838 839 /** 840 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 841 * @num_entries: The return value. 842 * @hpa: The HPA for the device. 843 * 844 * This PDC function returns the number of entries in the specified cell's 845 * interrupt table. 846 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 847 */ 848 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 849 { 850 int retval; 851 unsigned long flags; 852 853 spin_lock_irqsave(&pdc_lock, flags); 854 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 855 __pa(pdc_result), hpa); 856 convert_to_wide(pdc_result); 857 *num_entries = pdc_result[0]; 858 spin_unlock_irqrestore(&pdc_lock, flags); 859 860 return retval; 861 } 862 863 /** 864 * pdc_pci_irt - Get the PCI interrupt routing table. 865 * @num_entries: The number of entries in the table. 866 * @hpa: The Hard Physical Address of the device. 867 * @tbl: 868 * 869 * Get the PCI interrupt routing table for the device at the given HPA. 870 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 871 */ 872 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 873 { 874 int retval; 875 unsigned long flags; 876 877 BUG_ON((unsigned long)tbl & 0x7); 878 879 spin_lock_irqsave(&pdc_lock, flags); 880 pdc_result[0] = num_entries; 881 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 882 __pa(pdc_result), hpa, __pa(tbl)); 883 spin_unlock_irqrestore(&pdc_lock, flags); 884 885 return retval; 886 } 887 888 889 #if 0 /* UNTEST CODE - left here in case someone needs it */ 890 891 /** 892 * pdc_pci_config_read - read PCI config space. 893 * @hpa token from PDC to indicate which PCI device 894 * @pci_addr configuration space address to read from 895 * 896 * Read PCI Configuration space *before* linux PCI subsystem is running. 897 */ 898 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 899 { 900 int retval; 901 unsigned long flags; 902 903 spin_lock_irqsave(&pdc_lock, flags); 904 pdc_result[0] = 0; 905 pdc_result[1] = 0; 906 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 907 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 908 spin_unlock_irqrestore(&pdc_lock, flags); 909 910 return retval ? ~0 : (unsigned int) pdc_result[0]; 911 } 912 913 914 /** 915 * pdc_pci_config_write - read PCI config space. 916 * @hpa token from PDC to indicate which PCI device 917 * @pci_addr configuration space address to write 918 * @val value we want in the 32-bit register 919 * 920 * Write PCI Configuration space *before* linux PCI subsystem is running. 921 */ 922 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 923 { 924 int retval; 925 unsigned long flags; 926 927 spin_lock_irqsave(&pdc_lock, flags); 928 pdc_result[0] = 0; 929 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 930 __pa(pdc_result), hpa, 931 cfg_addr&~3UL, 4UL, (unsigned long) val); 932 spin_unlock_irqrestore(&pdc_lock, flags); 933 934 return retval; 935 } 936 #endif /* UNTESTED CODE */ 937 938 /** 939 * pdc_tod_read - Read the Time-Of-Day clock. 940 * @tod: The return buffer: 941 * 942 * Read the Time-Of-Day clock 943 */ 944 int pdc_tod_read(struct pdc_tod *tod) 945 { 946 int retval; 947 unsigned long flags; 948 949 spin_lock_irqsave(&pdc_lock, flags); 950 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 951 convert_to_wide(pdc_result); 952 memcpy(tod, pdc_result, sizeof(*tod)); 953 spin_unlock_irqrestore(&pdc_lock, flags); 954 955 return retval; 956 } 957 EXPORT_SYMBOL(pdc_tod_read); 958 959 /** 960 * pdc_tod_set - Set the Time-Of-Day clock. 961 * @sec: The number of seconds since epoch. 962 * @usec: The number of micro seconds. 963 * 964 * Set the Time-Of-Day clock. 965 */ 966 int pdc_tod_set(unsigned long sec, unsigned long usec) 967 { 968 int retval; 969 unsigned long flags; 970 971 spin_lock_irqsave(&pdc_lock, flags); 972 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 973 spin_unlock_irqrestore(&pdc_lock, flags); 974 975 return retval; 976 } 977 EXPORT_SYMBOL(pdc_tod_set); 978 979 #ifdef CONFIG_64BIT 980 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 981 struct pdc_memory_table *tbl, unsigned long entries) 982 { 983 int retval; 984 unsigned long flags; 985 986 spin_lock_irqsave(&pdc_lock, flags); 987 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 988 convert_to_wide(pdc_result); 989 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 990 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 991 spin_unlock_irqrestore(&pdc_lock, flags); 992 993 return retval; 994 } 995 #endif /* CONFIG_64BIT */ 996 997 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 998 * so I guessed at unsigned long. Someone who knows what this does, can fix 999 * it later. :) 1000 */ 1001 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1002 { 1003 int retval; 1004 unsigned long flags; 1005 1006 spin_lock_irqsave(&pdc_lock, flags); 1007 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1008 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1009 spin_unlock_irqrestore(&pdc_lock, flags); 1010 1011 return retval; 1012 } 1013 1014 /* 1015 * pdc_do_reset - Reset the system. 1016 * 1017 * Reset the system. 1018 */ 1019 int pdc_do_reset(void) 1020 { 1021 int retval; 1022 unsigned long flags; 1023 1024 spin_lock_irqsave(&pdc_lock, flags); 1025 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1026 spin_unlock_irqrestore(&pdc_lock, flags); 1027 1028 return retval; 1029 } 1030 1031 /* 1032 * pdc_soft_power_info - Enable soft power switch. 1033 * @power_reg: address of soft power register 1034 * 1035 * Return the absolute address of the soft power switch register 1036 */ 1037 int __init pdc_soft_power_info(unsigned long *power_reg) 1038 { 1039 int retval; 1040 unsigned long flags; 1041 1042 *power_reg = (unsigned long) (-1); 1043 1044 spin_lock_irqsave(&pdc_lock, flags); 1045 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1046 if (retval == PDC_OK) { 1047 convert_to_wide(pdc_result); 1048 *power_reg = f_extend(pdc_result[0]); 1049 } 1050 spin_unlock_irqrestore(&pdc_lock, flags); 1051 1052 return retval; 1053 } 1054 1055 /* 1056 * pdc_soft_power_button - Control the soft power button behaviour 1057 * @sw_control: 0 for hardware control, 1 for software control 1058 * 1059 * 1060 * This PDC function places the soft power button under software or 1061 * hardware control. 1062 * Under software control the OS may control to when to allow to shut 1063 * down the system. Under hardware control pressing the power button 1064 * powers off the system immediately. 1065 */ 1066 int pdc_soft_power_button(int sw_control) 1067 { 1068 int retval; 1069 unsigned long flags; 1070 1071 spin_lock_irqsave(&pdc_lock, flags); 1072 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1073 spin_unlock_irqrestore(&pdc_lock, flags); 1074 1075 return retval; 1076 } 1077 1078 /* 1079 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1080 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1081 * who knows what other platform firmware might do with this OS "hook". 1082 */ 1083 void pdc_io_reset(void) 1084 { 1085 unsigned long flags; 1086 1087 spin_lock_irqsave(&pdc_lock, flags); 1088 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1089 spin_unlock_irqrestore(&pdc_lock, flags); 1090 } 1091 1092 /* 1093 * pdc_io_reset_devices - Hack to Stop USB controller 1094 * 1095 * If PDC used the usb controller, the usb controller 1096 * is still running and will crash the machines during iommu 1097 * setup, because of still running DMA. This PDC call 1098 * stops the USB controller. 1099 * Normally called after calling pdc_io_reset(). 1100 */ 1101 void pdc_io_reset_devices(void) 1102 { 1103 unsigned long flags; 1104 1105 spin_lock_irqsave(&pdc_lock, flags); 1106 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1107 spin_unlock_irqrestore(&pdc_lock, flags); 1108 } 1109 1110 /* locked by pdc_console_lock */ 1111 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1112 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1113 1114 /** 1115 * pdc_iodc_print - Console print using IODC. 1116 * @str: the string to output. 1117 * @count: length of str 1118 * 1119 * Note that only these special chars are architected for console IODC io: 1120 * BEL, BS, CR, and LF. Others are passed through. 1121 * Since the HP console requires CR+LF to perform a 'newline', we translate 1122 * "\n" to "\r\n". 1123 */ 1124 int pdc_iodc_print(const unsigned char *str, unsigned count) 1125 { 1126 unsigned int i; 1127 unsigned long flags; 1128 1129 for (i = 0; i < count;) { 1130 switch(str[i]) { 1131 case '\n': 1132 iodc_dbuf[i+0] = '\r'; 1133 iodc_dbuf[i+1] = '\n'; 1134 i += 2; 1135 goto print; 1136 default: 1137 iodc_dbuf[i] = str[i]; 1138 i++; 1139 break; 1140 } 1141 } 1142 1143 print: 1144 spin_lock_irqsave(&pdc_lock, flags); 1145 real32_call(PAGE0->mem_cons.iodc_io, 1146 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1147 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1148 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0); 1149 spin_unlock_irqrestore(&pdc_lock, flags); 1150 1151 return i; 1152 } 1153 1154 /** 1155 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1156 * 1157 * Read a character (non-blocking) from the PDC console, returns -1 if 1158 * key is not present. 1159 */ 1160 int pdc_iodc_getc(void) 1161 { 1162 int ch; 1163 int status; 1164 unsigned long flags; 1165 1166 /* Bail if no console input device. */ 1167 if (!PAGE0->mem_kbd.iodc_io) 1168 return 0; 1169 1170 /* wait for a keyboard (rs232)-input */ 1171 spin_lock_irqsave(&pdc_lock, flags); 1172 real32_call(PAGE0->mem_kbd.iodc_io, 1173 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1174 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1175 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1176 1177 ch = *iodc_dbuf; 1178 status = *iodc_retbuf; 1179 spin_unlock_irqrestore(&pdc_lock, flags); 1180 1181 if (status == 0) 1182 return -1; 1183 1184 return ch; 1185 } 1186 1187 int pdc_sti_call(unsigned long func, unsigned long flags, 1188 unsigned long inptr, unsigned long outputr, 1189 unsigned long glob_cfg) 1190 { 1191 int retval; 1192 unsigned long irqflags; 1193 1194 spin_lock_irqsave(&pdc_lock, irqflags); 1195 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1196 spin_unlock_irqrestore(&pdc_lock, irqflags); 1197 1198 return retval; 1199 } 1200 EXPORT_SYMBOL(pdc_sti_call); 1201 1202 #ifdef CONFIG_64BIT 1203 /** 1204 * pdc_pat_cell_get_number - Returns the cell number. 1205 * @cell_info: The return buffer. 1206 * 1207 * This PDC call returns the cell number of the cell from which the call 1208 * is made. 1209 */ 1210 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1211 { 1212 int retval; 1213 unsigned long flags; 1214 1215 spin_lock_irqsave(&pdc_lock, flags); 1216 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1217 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1218 spin_unlock_irqrestore(&pdc_lock, flags); 1219 1220 return retval; 1221 } 1222 1223 /** 1224 * pdc_pat_cell_module - Retrieve the cell's module information. 1225 * @actcnt: The number of bytes written to mem_addr. 1226 * @ploc: The physical location. 1227 * @mod: The module index. 1228 * @view_type: The view of the address type. 1229 * @mem_addr: The return buffer. 1230 * 1231 * This PDC call returns information about each module attached to the cell 1232 * at the specified location. 1233 */ 1234 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1235 unsigned long view_type, void *mem_addr) 1236 { 1237 int retval; 1238 unsigned long flags; 1239 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1240 1241 spin_lock_irqsave(&pdc_lock, flags); 1242 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1243 ploc, mod, view_type, __pa(&result)); 1244 if(!retval) { 1245 *actcnt = pdc_result[0]; 1246 memcpy(mem_addr, &result, *actcnt); 1247 } 1248 spin_unlock_irqrestore(&pdc_lock, flags); 1249 1250 return retval; 1251 } 1252 1253 /** 1254 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1255 * @cpu_info: The return buffer. 1256 * @hpa: The Hard Physical Address of the CPU. 1257 * 1258 * Retrieve the cpu number for the cpu at the specified HPA. 1259 */ 1260 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa) 1261 { 1262 int retval; 1263 unsigned long flags; 1264 1265 spin_lock_irqsave(&pdc_lock, flags); 1266 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1267 __pa(&pdc_result), hpa); 1268 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1269 spin_unlock_irqrestore(&pdc_lock, flags); 1270 1271 return retval; 1272 } 1273 1274 /** 1275 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1276 * @num_entries: The return value. 1277 * @cell_num: The target cell. 1278 * 1279 * This PDC function returns the number of entries in the specified cell's 1280 * interrupt table. 1281 */ 1282 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1283 { 1284 int retval; 1285 unsigned long flags; 1286 1287 spin_lock_irqsave(&pdc_lock, flags); 1288 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1289 __pa(pdc_result), cell_num); 1290 *num_entries = pdc_result[0]; 1291 spin_unlock_irqrestore(&pdc_lock, flags); 1292 1293 return retval; 1294 } 1295 1296 /** 1297 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1298 * @r_addr: The return buffer. 1299 * @cell_num: The target cell. 1300 * 1301 * This PDC function returns the actual interrupt table for the specified cell. 1302 */ 1303 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1304 { 1305 int retval; 1306 unsigned long flags; 1307 1308 spin_lock_irqsave(&pdc_lock, flags); 1309 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1310 __pa(r_addr), cell_num); 1311 spin_unlock_irqrestore(&pdc_lock, flags); 1312 1313 return retval; 1314 } 1315 1316 /** 1317 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1318 * @actlen: The return buffer. 1319 * @mem_addr: Pointer to the memory buffer. 1320 * @count: The number of bytes to read from the buffer. 1321 * @offset: The offset with respect to the beginning of the buffer. 1322 * 1323 */ 1324 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1325 unsigned long count, unsigned long offset) 1326 { 1327 int retval; 1328 unsigned long flags; 1329 1330 spin_lock_irqsave(&pdc_lock, flags); 1331 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1332 __pa(pdc_result2), count, offset); 1333 *actual_len = pdc_result[0]; 1334 memcpy(mem_addr, pdc_result2, *actual_len); 1335 spin_unlock_irqrestore(&pdc_lock, flags); 1336 1337 return retval; 1338 } 1339 1340 /** 1341 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1342 * @pci_addr: PCI configuration space address for which the read request is being made. 1343 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1344 * @mem_addr: Pointer to return memory buffer. 1345 * 1346 */ 1347 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1348 { 1349 int retval; 1350 unsigned long flags; 1351 1352 spin_lock_irqsave(&pdc_lock, flags); 1353 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1354 __pa(pdc_result), pci_addr, pci_size); 1355 switch(pci_size) { 1356 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; 1357 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; 1358 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; 1359 } 1360 spin_unlock_irqrestore(&pdc_lock, flags); 1361 1362 return retval; 1363 } 1364 1365 /** 1366 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1367 * @pci_addr: PCI configuration space address for which the write request is being made. 1368 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1369 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1370 * written to PCI Config space. 1371 * 1372 */ 1373 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1374 { 1375 int retval; 1376 unsigned long flags; 1377 1378 spin_lock_irqsave(&pdc_lock, flags); 1379 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1380 pci_addr, pci_size, val); 1381 spin_unlock_irqrestore(&pdc_lock, flags); 1382 1383 return retval; 1384 } 1385 #endif /* CONFIG_64BIT */ 1386 1387 1388 /***************** 32-bit real-mode calls ***********/ 1389 /* The struct below is used 1390 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1391 * real32_call_asm() then uses this stack in narrow real mode 1392 */ 1393 1394 struct narrow_stack { 1395 /* use int, not long which is 64 bits */ 1396 unsigned int arg13; 1397 unsigned int arg12; 1398 unsigned int arg11; 1399 unsigned int arg10; 1400 unsigned int arg9; 1401 unsigned int arg8; 1402 unsigned int arg7; 1403 unsigned int arg6; 1404 unsigned int arg5; 1405 unsigned int arg4; 1406 unsigned int arg3; 1407 unsigned int arg2; 1408 unsigned int arg1; 1409 unsigned int arg0; 1410 unsigned int frame_marker[8]; 1411 unsigned int sp; 1412 /* in reality, there's nearly 8k of stack after this */ 1413 }; 1414 1415 long real32_call(unsigned long fn, ...) 1416 { 1417 va_list args; 1418 extern struct narrow_stack real_stack; 1419 extern unsigned long real32_call_asm(unsigned int *, 1420 unsigned int *, 1421 unsigned int); 1422 1423 va_start(args, fn); 1424 real_stack.arg0 = va_arg(args, unsigned int); 1425 real_stack.arg1 = va_arg(args, unsigned int); 1426 real_stack.arg2 = va_arg(args, unsigned int); 1427 real_stack.arg3 = va_arg(args, unsigned int); 1428 real_stack.arg4 = va_arg(args, unsigned int); 1429 real_stack.arg5 = va_arg(args, unsigned int); 1430 real_stack.arg6 = va_arg(args, unsigned int); 1431 real_stack.arg7 = va_arg(args, unsigned int); 1432 real_stack.arg8 = va_arg(args, unsigned int); 1433 real_stack.arg9 = va_arg(args, unsigned int); 1434 real_stack.arg10 = va_arg(args, unsigned int); 1435 real_stack.arg11 = va_arg(args, unsigned int); 1436 real_stack.arg12 = va_arg(args, unsigned int); 1437 real_stack.arg13 = va_arg(args, unsigned int); 1438 va_end(args); 1439 1440 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1441 } 1442 1443 #ifdef CONFIG_64BIT 1444 /***************** 64-bit real-mode calls ***********/ 1445 1446 struct wide_stack { 1447 unsigned long arg0; 1448 unsigned long arg1; 1449 unsigned long arg2; 1450 unsigned long arg3; 1451 unsigned long arg4; 1452 unsigned long arg5; 1453 unsigned long arg6; 1454 unsigned long arg7; 1455 unsigned long arg8; 1456 unsigned long arg9; 1457 unsigned long arg10; 1458 unsigned long arg11; 1459 unsigned long arg12; 1460 unsigned long arg13; 1461 unsigned long frame_marker[2]; /* rp, previous sp */ 1462 unsigned long sp; 1463 /* in reality, there's nearly 8k of stack after this */ 1464 }; 1465 1466 long real64_call(unsigned long fn, ...) 1467 { 1468 va_list args; 1469 extern struct wide_stack real64_stack; 1470 extern unsigned long real64_call_asm(unsigned long *, 1471 unsigned long *, 1472 unsigned long); 1473 1474 va_start(args, fn); 1475 real64_stack.arg0 = va_arg(args, unsigned long); 1476 real64_stack.arg1 = va_arg(args, unsigned long); 1477 real64_stack.arg2 = va_arg(args, unsigned long); 1478 real64_stack.arg3 = va_arg(args, unsigned long); 1479 real64_stack.arg4 = va_arg(args, unsigned long); 1480 real64_stack.arg5 = va_arg(args, unsigned long); 1481 real64_stack.arg6 = va_arg(args, unsigned long); 1482 real64_stack.arg7 = va_arg(args, unsigned long); 1483 real64_stack.arg8 = va_arg(args, unsigned long); 1484 real64_stack.arg9 = va_arg(args, unsigned long); 1485 real64_stack.arg10 = va_arg(args, unsigned long); 1486 real64_stack.arg11 = va_arg(args, unsigned long); 1487 real64_stack.arg12 = va_arg(args, unsigned long); 1488 real64_stack.arg13 = va_arg(args, unsigned long); 1489 va_end(args); 1490 1491 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1492 } 1493 1494 #endif /* CONFIG_64BIT */ 1495 1496