xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * arch/parisc/kernel/firmware.c  - safe PDC access routines
4  *
5  *	PDC == Processor Dependent Code
6  *
7  * See PDC documentation at
8  * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9  * for documentation describing the entry points and calling
10  * conventions defined below.
11  *
12  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17  */
18 
19 /*	I think it would be in everyone's best interest to follow this
20  *	guidelines when writing PDC wrappers:
21  *
22  *	 - the name of the pdc wrapper should match one of the macros
23  *	   used for the first two arguments
24  *	 - don't use caps for random parts of the name
25  *	 - use the static PDC result buffers and "copyout" to structs
26  *	   supplied by the caller to encapsulate alignment restrictions
27  *	 - hold pdc_lock while in PDC or using static result buffers
28  *	 - use __pa() to convert virtual (kernel) pointers to physical
29  *	   ones.
30  *	 - the name of the struct used for pdc return values should equal
31  *	   one of the macros used for the first two arguments to the
32  *	   corresponding PDC call
33  *	 - keep the order of arguments
34  *	 - don't be smart (setting trailing NUL bytes for strings, return
35  *	   something useful even if the call failed) unless you are sure
36  *	   it's not going to affect functionality or performance
37  *
38  *	Example:
39  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
40  *	{
41  *		int retval;
42  *
43  *		spin_lock_irq(&pdc_lock);
44  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45  *		convert_to_wide(pdc_result);
46  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
47  *		spin_unlock_irq(&pdc_lock);
48  *
49  *		return retval;
50  *	}
51  *					prumpf	991016
52  */
53 
54 #include <linux/stdarg.h>
55 
56 #include <linux/delay.h>
57 #include <linux/init.h>
58 #include <linux/kernel.h>
59 #include <linux/module.h>
60 #include <linux/string.h>
61 #include <linux/spinlock.h>
62 
63 #include <asm/page.h>
64 #include <asm/pdc.h>
65 #include <asm/pdcpat.h>
66 #include <asm/processor.h>	/* for boot_cpu_data */
67 
68 #if defined(BOOTLOADER)
69 # undef  spin_lock_irqsave
70 # define spin_lock_irqsave(a, b) { b = 1; }
71 # undef  spin_unlock_irqrestore
72 # define spin_unlock_irqrestore(a, b)
73 #else
74 static DEFINE_SPINLOCK(pdc_lock);
75 #endif
76 
77 unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
78 unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79 
80 #ifdef CONFIG_64BIT
81 #define WIDE_FIRMWARE 0x1
82 #define NARROW_FIRMWARE 0x2
83 
84 /* Firmware needs to be initially set to narrow to determine the
85  * actual firmware width. */
86 int parisc_narrow_firmware __ro_after_init = 2;
87 #endif
88 
89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90  * and MEM_PDC calls are always the same width as the OS.
91  * Some PAT boxes may have 64-bit IODC I/O.
92  *
93  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95  * This allowed wide kernels to run on Cxxx boxes.
96  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98  */
99 
100 #ifdef CONFIG_64BIT
101 long real64_call(unsigned long function, ...);
102 #endif
103 long real32_call(unsigned long function, ...);
104 
105 #ifdef CONFIG_64BIT
106 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108 #else
109 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
110 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111 #endif
112 
113 
114 /**
115  * f_extend - Convert PDC addresses to kernel addresses.
116  * @address: Address returned from PDC.
117  *
118  * This function is used to convert PDC addresses into kernel addresses
119  * when the PDC address size and kernel address size are different.
120  */
121 static unsigned long f_extend(unsigned long address)
122 {
123 #ifdef CONFIG_64BIT
124 	if(unlikely(parisc_narrow_firmware)) {
125 		if((address & 0xff000000) == 0xf0000000)
126 			return 0xf0f0f0f000000000UL | (u32)address;
127 
128 		if((address & 0xf0000000) == 0xf0000000)
129 			return 0xffffffff00000000UL | (u32)address;
130 	}
131 #endif
132 	return address;
133 }
134 
135 /**
136  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137  * @addr: The return buffer from PDC.
138  *
139  * This function is used to convert the return buffer addresses retrieved from PDC
140  * into kernel addresses when the PDC address size and kernel address size are
141  * different.
142  */
143 static void convert_to_wide(unsigned long *addr)
144 {
145 #ifdef CONFIG_64BIT
146 	int i;
147 	unsigned int *p = (unsigned int *)addr;
148 
149 	if (unlikely(parisc_narrow_firmware)) {
150 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 			addr[i] = p[i];
152 	}
153 #endif
154 }
155 
156 #ifdef CONFIG_64BIT
157 void set_firmware_width_unlocked(void)
158 {
159 	int ret;
160 
161 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 		__pa(pdc_result), 0);
163 	if (ret < 0)
164 		return;
165 	convert_to_wide(pdc_result);
166 	if (pdc_result[0] != NARROW_FIRMWARE)
167 		parisc_narrow_firmware = 0;
168 }
169 
170 /**
171  * set_firmware_width - Determine if the firmware is wide or narrow.
172  *
173  * This function must be called before any pdc_* function that uses the
174  * convert_to_wide function.
175  */
176 void set_firmware_width(void)
177 {
178 	unsigned long flags;
179 
180 	/* already initialized? */
181 	if (parisc_narrow_firmware != 2)
182 		return;
183 
184 	spin_lock_irqsave(&pdc_lock, flags);
185 	set_firmware_width_unlocked();
186 	spin_unlock_irqrestore(&pdc_lock, flags);
187 }
188 #else
189 void set_firmware_width_unlocked(void)
190 {
191 	return;
192 }
193 
194 void set_firmware_width(void)
195 {
196 	return;
197 }
198 #endif /*CONFIG_64BIT*/
199 
200 
201 #if !defined(BOOTLOADER)
202 /**
203  * pdc_emergency_unlock - Unlock the linux pdc lock
204  *
205  * This call unlocks the linux pdc lock in case we need some PDC functions
206  * (like pdc_add_valid) during kernel stack dump.
207  */
208 void pdc_emergency_unlock(void)
209 {
210  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
211         if (spin_is_locked(&pdc_lock))
212 		spin_unlock(&pdc_lock);
213 }
214 
215 
216 /**
217  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
218  * @address: Address to be verified.
219  *
220  * This PDC call attempts to read from the specified address and verifies
221  * if the address is valid.
222  *
223  * The return value is PDC_OK (0) in case accessing this address is valid.
224  */
225 int pdc_add_valid(unsigned long address)
226 {
227         int retval;
228 	unsigned long flags;
229 
230         spin_lock_irqsave(&pdc_lock, flags);
231         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
232         spin_unlock_irqrestore(&pdc_lock, flags);
233 
234         return retval;
235 }
236 EXPORT_SYMBOL(pdc_add_valid);
237 
238 /**
239  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
240  * @instr: Pointer to variable which will get instruction opcode.
241  *
242  * The return value is PDC_OK (0) in case call succeeded.
243  */
244 int __init pdc_instr(unsigned int *instr)
245 {
246 	int retval;
247 	unsigned long flags;
248 
249 	spin_lock_irqsave(&pdc_lock, flags);
250 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
251 	convert_to_wide(pdc_result);
252 	*instr = pdc_result[0];
253 	spin_unlock_irqrestore(&pdc_lock, flags);
254 
255 	return retval;
256 }
257 
258 /**
259  * pdc_chassis_info - Return chassis information.
260  * @chassis_info: The memory buffer address.
261  * @led_info: The size of the memory buffer address.
262  * @len: The size of the memory buffer address.
263  *
264  * An HVERSION dependent call for returning the chassis information.
265  */
266 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
267 {
268         int retval;
269 	unsigned long flags;
270 
271         spin_lock_irqsave(&pdc_lock, flags);
272         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
273         memcpy(&pdc_result2, led_info, len);
274         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
275                               __pa(pdc_result), __pa(pdc_result2), len);
276         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
277         memcpy(led_info, pdc_result2, len);
278         spin_unlock_irqrestore(&pdc_lock, flags);
279 
280         return retval;
281 }
282 
283 /**
284  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
285  * @state: state of the machine
286  * @data: value for that state
287  *
288  * Must be correctly formatted or expect system crash
289  */
290 #ifdef CONFIG_64BIT
291 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
292 {
293 	int retval = 0;
294 	unsigned long flags;
295 
296 	if (!is_pdc_pat())
297 		return -1;
298 
299 	spin_lock_irqsave(&pdc_lock, flags);
300 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
301 	spin_unlock_irqrestore(&pdc_lock, flags);
302 
303 	return retval;
304 }
305 #endif
306 
307 /**
308  * pdc_chassis_disp - Updates chassis code
309  * @disp: value to show on display
310  */
311 int pdc_chassis_disp(unsigned long disp)
312 {
313 	int retval = 0;
314 	unsigned long flags;
315 
316 	spin_lock_irqsave(&pdc_lock, flags);
317 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
318 	spin_unlock_irqrestore(&pdc_lock, flags);
319 
320 	return retval;
321 }
322 
323 /**
324  * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
325  */
326 int __pdc_cpu_rendezvous(void)
327 {
328 	if (is_pdc_pat())
329 		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
330 	else
331 		return mem_pdc_call(PDC_PROC, 1, 0);
332 }
333 
334 /**
335  * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
336  */
337 void pdc_cpu_rendezvous_lock(void)
338 {
339 	spin_lock(&pdc_lock);
340 }
341 
342 /**
343  * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
344  */
345 void pdc_cpu_rendezvous_unlock(void)
346 {
347 	spin_unlock(&pdc_lock);
348 }
349 
350 /**
351  * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
352  * @pdc_entry: pointer to where the PDC entry point should be stored
353  */
354 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
355 {
356 	int retval = 0;
357 	unsigned long flags;
358 
359 	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
360 		*pdc_entry = MEM_PDC;
361 		return 0;
362 	}
363 
364 	spin_lock_irqsave(&pdc_lock, flags);
365 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
366 			__pa(pdc_result));
367 	*pdc_entry = pdc_result[0];
368 	spin_unlock_irqrestore(&pdc_lock, flags);
369 
370 	return retval;
371 }
372 /**
373  * pdc_chassis_warn - Fetches chassis warnings
374  * @warn: The warning value to be shown
375  */
376 int pdc_chassis_warn(unsigned long *warn)
377 {
378 	int retval = 0;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&pdc_lock, flags);
382 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
383 	*warn = pdc_result[0];
384 	spin_unlock_irqrestore(&pdc_lock, flags);
385 
386 	return retval;
387 }
388 
389 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
390 {
391 	int ret;
392 
393 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
394 	convert_to_wide(pdc_result);
395 	pdc_coproc_info->ccr_functional = pdc_result[0];
396 	pdc_coproc_info->ccr_present = pdc_result[1];
397 	pdc_coproc_info->revision = pdc_result[17];
398 	pdc_coproc_info->model = pdc_result[18];
399 
400 	return ret;
401 }
402 
403 /**
404  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
405  * @pdc_coproc_info: Return buffer address.
406  *
407  * This PDC call returns the presence and status of all the coprocessors
408  * attached to the processor.
409  */
410 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
411 {
412 	int ret;
413 	unsigned long flags;
414 
415 	spin_lock_irqsave(&pdc_lock, flags);
416 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
417 	spin_unlock_irqrestore(&pdc_lock, flags);
418 
419 	return ret;
420 }
421 
422 /**
423  * pdc_iodc_read - Read data from the modules IODC.
424  * @actcnt: The actual number of bytes.
425  * @hpa: The HPA of the module for the iodc read.
426  * @index: The iodc entry point.
427  * @iodc_data: A buffer memory for the iodc options.
428  * @iodc_data_size: Size of the memory buffer.
429  *
430  * This PDC call reads from the IODC of the module specified by the hpa
431  * argument.
432  */
433 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
434 		  void *iodc_data, unsigned int iodc_data_size)
435 {
436 	int retval;
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&pdc_lock, flags);
440 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
441 			      index, __pa(pdc_result2), iodc_data_size);
442 	convert_to_wide(pdc_result);
443 	*actcnt = pdc_result[0];
444 	memcpy(iodc_data, pdc_result2, iodc_data_size);
445 	spin_unlock_irqrestore(&pdc_lock, flags);
446 
447 	return retval;
448 }
449 EXPORT_SYMBOL(pdc_iodc_read);
450 
451 /**
452  * pdc_system_map_find_mods - Locate unarchitected modules.
453  * @pdc_mod_info: Return buffer address.
454  * @mod_path: pointer to dev path structure.
455  * @mod_index: fixed address module index.
456  *
457  * To locate and identify modules which reside at fixed I/O addresses, which
458  * do not self-identify via architected bus walks.
459  */
460 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
461 			     struct pdc_module_path *mod_path, long mod_index)
462 {
463 	int retval;
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&pdc_lock, flags);
467 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
468 			      __pa(pdc_result2), mod_index);
469 	convert_to_wide(pdc_result);
470 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
471 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
472 	spin_unlock_irqrestore(&pdc_lock, flags);
473 
474 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
475 	return retval;
476 }
477 
478 /**
479  * pdc_system_map_find_addrs - Retrieve additional address ranges.
480  * @pdc_addr_info: Return buffer address.
481  * @mod_index: Fixed address module index.
482  * @addr_index: Address range index.
483  *
484  * Retrieve additional information about subsequent address ranges for modules
485  * with multiple address ranges.
486  */
487 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
488 			      long mod_index, long addr_index)
489 {
490 	int retval;
491 	unsigned long flags;
492 
493 	spin_lock_irqsave(&pdc_lock, flags);
494 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
495 			      mod_index, addr_index);
496 	convert_to_wide(pdc_result);
497 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
498 	spin_unlock_irqrestore(&pdc_lock, flags);
499 
500 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
501 	return retval;
502 }
503 
504 /**
505  * pdc_model_info - Return model information about the processor.
506  * @model: The return buffer.
507  *
508  * Returns the version numbers, identifiers, and capabilities from the processor module.
509  */
510 int pdc_model_info(struct pdc_model *model)
511 {
512 	int retval;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&pdc_lock, flags);
516 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
517 	convert_to_wide(pdc_result);
518 	memcpy(model, pdc_result, sizeof(*model));
519 	spin_unlock_irqrestore(&pdc_lock, flags);
520 
521 	return retval;
522 }
523 
524 /**
525  * pdc_model_sysmodel - Get the system model name.
526  * @os_id: The operating system ID asked for (an OS_ID_* value)
527  * @name: A char array of at least 81 characters.
528  *
529  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
530  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
531  * on HP/UX.
532  */
533 int pdc_model_sysmodel(unsigned int os_id, char *name)
534 {
535         int retval;
536 	unsigned long flags;
537 
538         spin_lock_irqsave(&pdc_lock, flags);
539         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
540                               os_id, __pa(name));
541         convert_to_wide(pdc_result);
542 
543         if (retval == PDC_OK) {
544                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
545         } else {
546                 name[0] = 0;
547         }
548         spin_unlock_irqrestore(&pdc_lock, flags);
549 
550         return retval;
551 }
552 
553 /**
554  * pdc_model_versions - Identify the version number of each processor.
555  * @versions: The return buffer.
556  * @id: The id of the processor to check.
557  *
558  * Returns the version number for each processor component.
559  *
560  * This comment was here before, but I do not know what it means :( -RB
561  * id: 0 = cpu revision, 1 = boot-rom-version
562  */
563 int pdc_model_versions(unsigned long *versions, int id)
564 {
565         int retval;
566 	unsigned long flags;
567 
568         spin_lock_irqsave(&pdc_lock, flags);
569         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
570         convert_to_wide(pdc_result);
571         *versions = pdc_result[0];
572         spin_unlock_irqrestore(&pdc_lock, flags);
573 
574         return retval;
575 }
576 
577 /**
578  * pdc_model_cpuid - Returns the CPU_ID.
579  * @cpu_id: The return buffer.
580  *
581  * Returns the CPU_ID value which uniquely identifies the cpu portion of
582  * the processor module.
583  */
584 int pdc_model_cpuid(unsigned long *cpu_id)
585 {
586         int retval;
587 	unsigned long flags;
588 
589         spin_lock_irqsave(&pdc_lock, flags);
590         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
591         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
592         convert_to_wide(pdc_result);
593         *cpu_id = pdc_result[0];
594         spin_unlock_irqrestore(&pdc_lock, flags);
595 
596         return retval;
597 }
598 
599 /**
600  * pdc_model_capabilities - Returns the platform capabilities.
601  * @capabilities: The return buffer.
602  *
603  * Returns information about platform support for 32- and/or 64-bit
604  * OSes, IO-PDIR coherency, and virtual aliasing.
605  */
606 int pdc_model_capabilities(unsigned long *capabilities)
607 {
608         int retval;
609 	unsigned long flags;
610 
611         spin_lock_irqsave(&pdc_lock, flags);
612         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
613         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
614         convert_to_wide(pdc_result);
615         if (retval == PDC_OK) {
616                 *capabilities = pdc_result[0];
617         } else {
618                 *capabilities = PDC_MODEL_OS32;
619         }
620         spin_unlock_irqrestore(&pdc_lock, flags);
621 
622         return retval;
623 }
624 
625 /**
626  * pdc_model_platform_info - Returns machine product and serial number.
627  * @orig_prod_num: Return buffer for original product number.
628  * @current_prod_num: Return buffer for current product number.
629  * @serial_no: Return buffer for serial number.
630  *
631  * Returns strings containing the original and current product numbers and the
632  * serial number of the system.
633  */
634 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
635 		char *serial_no)
636 {
637 	int retval;
638 	unsigned long flags;
639 
640 	spin_lock_irqsave(&pdc_lock, flags);
641 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
642 		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
643 	convert_to_wide(pdc_result);
644 	spin_unlock_irqrestore(&pdc_lock, flags);
645 
646 	return retval;
647 }
648 
649 /**
650  * pdc_cache_info - Return cache and TLB information.
651  * @cache_info: The return buffer.
652  *
653  * Returns information about the processor's cache and TLB.
654  */
655 int pdc_cache_info(struct pdc_cache_info *cache_info)
656 {
657         int retval;
658 	unsigned long flags;
659 
660         spin_lock_irqsave(&pdc_lock, flags);
661         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
662         convert_to_wide(pdc_result);
663         memcpy(cache_info, pdc_result, sizeof(*cache_info));
664         spin_unlock_irqrestore(&pdc_lock, flags);
665 
666         return retval;
667 }
668 
669 /**
670  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
671  * @space_bits: Should be 0, if not, bad mojo!
672  *
673  * Returns information about Space ID hashing.
674  */
675 int pdc_spaceid_bits(unsigned long *space_bits)
676 {
677 	int retval;
678 	unsigned long flags;
679 
680 	spin_lock_irqsave(&pdc_lock, flags);
681 	pdc_result[0] = 0;
682 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
683 	convert_to_wide(pdc_result);
684 	*space_bits = pdc_result[0];
685 	spin_unlock_irqrestore(&pdc_lock, flags);
686 
687 	return retval;
688 }
689 
690 #ifndef CONFIG_PA20
691 /**
692  * pdc_btlb_info - Return block TLB information.
693  * @btlb: The return buffer.
694  *
695  * Returns information about the hardware Block TLB.
696  */
697 int pdc_btlb_info(struct pdc_btlb_info *btlb)
698 {
699         int retval;
700 	unsigned long flags;
701 
702         spin_lock_irqsave(&pdc_lock, flags);
703         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
704         memcpy(btlb, pdc_result, sizeof(*btlb));
705         spin_unlock_irqrestore(&pdc_lock, flags);
706 
707         if(retval < 0) {
708                 btlb->max_size = 0;
709         }
710         return retval;
711 }
712 
713 /**
714  * pdc_mem_map_hpa - Find fixed module information.
715  * @address: The return buffer
716  * @mod_path: pointer to dev path structure.
717  *
718  * This call was developed for S700 workstations to allow the kernel to find
719  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
720  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
721  * call.
722  *
723  * This call is supported by all existing S700 workstations (up to  Gecko).
724  */
725 int pdc_mem_map_hpa(struct pdc_memory_map *address,
726 		struct pdc_module_path *mod_path)
727 {
728         int retval;
729 	unsigned long flags;
730 
731         spin_lock_irqsave(&pdc_lock, flags);
732         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
733         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
734 				__pa(pdc_result2));
735         memcpy(address, pdc_result, sizeof(*address));
736         spin_unlock_irqrestore(&pdc_lock, flags);
737 
738         return retval;
739 }
740 #endif	/* !CONFIG_PA20 */
741 
742 /**
743  * pdc_lan_station_id - Get the LAN address.
744  * @lan_addr: The return buffer.
745  * @hpa: The network device HPA.
746  *
747  * Get the LAN station address when it is not directly available from the LAN hardware.
748  */
749 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
750 {
751 	int retval;
752 	unsigned long flags;
753 
754 	spin_lock_irqsave(&pdc_lock, flags);
755 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
756 			__pa(pdc_result), hpa);
757 	if (retval < 0) {
758 		/* FIXME: else read MAC from NVRAM */
759 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
760 	} else {
761 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
762 	}
763 	spin_unlock_irqrestore(&pdc_lock, flags);
764 
765 	return retval;
766 }
767 EXPORT_SYMBOL(pdc_lan_station_id);
768 
769 /**
770  * pdc_stable_read - Read data from Stable Storage.
771  * @staddr: Stable Storage address to access.
772  * @memaddr: The memory address where Stable Storage data shall be copied.
773  * @count: number of bytes to transfer. count is multiple of 4.
774  *
775  * This PDC call reads from the Stable Storage address supplied in staddr
776  * and copies count bytes to the memory address memaddr.
777  * The call will fail if staddr+count > PDC_STABLE size.
778  */
779 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
780 {
781        int retval;
782 	unsigned long flags;
783 
784        spin_lock_irqsave(&pdc_lock, flags);
785        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
786                __pa(pdc_result), count);
787        convert_to_wide(pdc_result);
788        memcpy(memaddr, pdc_result, count);
789        spin_unlock_irqrestore(&pdc_lock, flags);
790 
791        return retval;
792 }
793 EXPORT_SYMBOL(pdc_stable_read);
794 
795 /**
796  * pdc_stable_write - Write data to Stable Storage.
797  * @staddr: Stable Storage address to access.
798  * @memaddr: The memory address where Stable Storage data shall be read from.
799  * @count: number of bytes to transfer. count is multiple of 4.
800  *
801  * This PDC call reads count bytes from the supplied memaddr address,
802  * and copies count bytes to the Stable Storage address staddr.
803  * The call will fail if staddr+count > PDC_STABLE size.
804  */
805 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
806 {
807        int retval;
808 	unsigned long flags;
809 
810        spin_lock_irqsave(&pdc_lock, flags);
811        memcpy(pdc_result, memaddr, count);
812        convert_to_wide(pdc_result);
813        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
814                __pa(pdc_result), count);
815        spin_unlock_irqrestore(&pdc_lock, flags);
816 
817        return retval;
818 }
819 EXPORT_SYMBOL(pdc_stable_write);
820 
821 /**
822  * pdc_stable_get_size - Get Stable Storage size in bytes.
823  * @size: pointer where the size will be stored.
824  *
825  * This PDC call returns the number of bytes in the processor's Stable
826  * Storage, which is the number of contiguous bytes implemented in Stable
827  * Storage starting from staddr=0. size in an unsigned 64-bit integer
828  * which is a multiple of four.
829  */
830 int pdc_stable_get_size(unsigned long *size)
831 {
832        int retval;
833 	unsigned long flags;
834 
835        spin_lock_irqsave(&pdc_lock, flags);
836        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
837        *size = pdc_result[0];
838        spin_unlock_irqrestore(&pdc_lock, flags);
839 
840        return retval;
841 }
842 EXPORT_SYMBOL(pdc_stable_get_size);
843 
844 /**
845  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
846  *
847  * This PDC call is meant to be used to check the integrity of the current
848  * contents of Stable Storage.
849  */
850 int pdc_stable_verify_contents(void)
851 {
852        int retval;
853 	unsigned long flags;
854 
855        spin_lock_irqsave(&pdc_lock, flags);
856        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
857        spin_unlock_irqrestore(&pdc_lock, flags);
858 
859        return retval;
860 }
861 EXPORT_SYMBOL(pdc_stable_verify_contents);
862 
863 /**
864  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
865  * the validity indicator.
866  *
867  * This PDC call will erase all contents of Stable Storage. Use with care!
868  */
869 int pdc_stable_initialize(void)
870 {
871        int retval;
872 	unsigned long flags;
873 
874        spin_lock_irqsave(&pdc_lock, flags);
875        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
876        spin_unlock_irqrestore(&pdc_lock, flags);
877 
878        return retval;
879 }
880 EXPORT_SYMBOL(pdc_stable_initialize);
881 
882 /**
883  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
884  * @hwpath: fully bc.mod style path to the device.
885  * @initiator: the array to return the result into
886  *
887  * Get the SCSI operational parameters from PDC.
888  * Needed since HPUX never used BIOS or symbios card NVRAM.
889  * Most ncr/sym cards won't have an entry and just use whatever
890  * capabilities of the card are (eg Ultra, LVD). But there are
891  * several cases where it's useful:
892  *    o set SCSI id for Multi-initiator clusters,
893  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
894  *    o bus width exported is less than what the interface chip supports.
895  */
896 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
897 {
898 	int retval;
899 	unsigned long flags;
900 
901 	spin_lock_irqsave(&pdc_lock, flags);
902 
903 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
904 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
905 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
906 
907 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
908 			      __pa(pdc_result), __pa(hwpath));
909 	if (retval < PDC_OK)
910 		goto out;
911 
912 	if (pdc_result[0] < 16) {
913 		initiator->host_id = pdc_result[0];
914 	} else {
915 		initiator->host_id = -1;
916 	}
917 
918 	/*
919 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
920 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
921 	 */
922 	switch (pdc_result[1]) {
923 		case  1: initiator->factor = 50; break;
924 		case  2: initiator->factor = 25; break;
925 		case  5: initiator->factor = 12; break;
926 		case 25: initiator->factor = 10; break;
927 		case 20: initiator->factor = 12; break;
928 		case 40: initiator->factor = 10; break;
929 		default: initiator->factor = -1; break;
930 	}
931 
932 	if (IS_SPROCKETS()) {
933 		initiator->width = pdc_result[4];
934 		initiator->mode = pdc_result[5];
935 	} else {
936 		initiator->width = -1;
937 		initiator->mode = -1;
938 	}
939 
940  out:
941 	spin_unlock_irqrestore(&pdc_lock, flags);
942 
943 	return (retval >= PDC_OK);
944 }
945 EXPORT_SYMBOL(pdc_get_initiator);
946 
947 
948 /**
949  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
950  * @num_entries: The return value.
951  * @hpa: The HPA for the device.
952  *
953  * This PDC function returns the number of entries in the specified cell's
954  * interrupt table.
955  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
956  */
957 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
958 {
959 	int retval;
960 	unsigned long flags;
961 
962 	spin_lock_irqsave(&pdc_lock, flags);
963 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
964 			      __pa(pdc_result), hpa);
965 	convert_to_wide(pdc_result);
966 	*num_entries = pdc_result[0];
967 	spin_unlock_irqrestore(&pdc_lock, flags);
968 
969 	return retval;
970 }
971 
972 /**
973  * pdc_pci_irt - Get the PCI interrupt routing table.
974  * @num_entries: The number of entries in the table.
975  * @hpa: The Hard Physical Address of the device.
976  * @tbl:
977  *
978  * Get the PCI interrupt routing table for the device at the given HPA.
979  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
980  */
981 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
982 {
983 	int retval;
984 	unsigned long flags;
985 
986 	BUG_ON((unsigned long)tbl & 0x7);
987 
988 	spin_lock_irqsave(&pdc_lock, flags);
989 	pdc_result[0] = num_entries;
990 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
991 			      __pa(pdc_result), hpa, __pa(tbl));
992 	spin_unlock_irqrestore(&pdc_lock, flags);
993 
994 	return retval;
995 }
996 
997 
998 #if 0	/* UNTEST CODE - left here in case someone needs it */
999 
1000 /**
1001  * pdc_pci_config_read - read PCI config space.
1002  * @hpa: Token from PDC to indicate which PCI device
1003  * @cfg_addr: Configuration space address to read from
1004  *
1005  * Read PCI Configuration space *before* linux PCI subsystem is running.
1006  */
1007 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1008 {
1009 	int retval;
1010 	unsigned long flags;
1011 
1012 	spin_lock_irqsave(&pdc_lock, flags);
1013 	pdc_result[0] = 0;
1014 	pdc_result[1] = 0;
1015 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1016 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1017 	spin_unlock_irqrestore(&pdc_lock, flags);
1018 
1019 	return retval ? ~0 : (unsigned int) pdc_result[0];
1020 }
1021 
1022 
1023 /**
1024  * pdc_pci_config_write - read PCI config space.
1025  * @hpa: Token from PDC to indicate which PCI device
1026  * @cfg_addr: Configuration space address to write
1027  * @val: Value we want in the 32-bit register
1028  *
1029  * Write PCI Configuration space *before* linux PCI subsystem is running.
1030  */
1031 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1032 {
1033 	int retval;
1034 	unsigned long flags;
1035 
1036 	spin_lock_irqsave(&pdc_lock, flags);
1037 	pdc_result[0] = 0;
1038 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1039 			      __pa(pdc_result), hpa,
1040 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1041 	spin_unlock_irqrestore(&pdc_lock, flags);
1042 
1043 	return retval;
1044 }
1045 #endif /* UNTESTED CODE */
1046 
1047 /**
1048  * pdc_tod_read - Read the Time-Of-Day clock.
1049  * @tod: The return buffer:
1050  *
1051  * Read the Time-Of-Day clock
1052  */
1053 int pdc_tod_read(struct pdc_tod *tod)
1054 {
1055         int retval;
1056 	unsigned long flags;
1057 
1058         spin_lock_irqsave(&pdc_lock, flags);
1059         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1060         convert_to_wide(pdc_result);
1061         memcpy(tod, pdc_result, sizeof(*tod));
1062         spin_unlock_irqrestore(&pdc_lock, flags);
1063 
1064         return retval;
1065 }
1066 EXPORT_SYMBOL(pdc_tod_read);
1067 
1068 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1069 {
1070 	int retval;
1071 	unsigned long flags;
1072 
1073 	spin_lock_irqsave(&pdc_lock, flags);
1074 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1075 	convert_to_wide(pdc_result);
1076 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1077 	spin_unlock_irqrestore(&pdc_lock, flags);
1078 
1079 	return retval;
1080 }
1081 
1082 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1083 		unsigned long *pdt_entries_ptr)
1084 {
1085 	int retval;
1086 	unsigned long flags;
1087 
1088 	spin_lock_irqsave(&pdc_lock, flags);
1089 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1090 			__pa(pdt_entries_ptr));
1091 	if (retval == PDC_OK) {
1092 		convert_to_wide(pdc_result);
1093 		memcpy(pret, pdc_result, sizeof(*pret));
1094 	}
1095 	spin_unlock_irqrestore(&pdc_lock, flags);
1096 
1097 #ifdef CONFIG_64BIT
1098 	/*
1099 	 * 64-bit kernels should not call this PDT function in narrow mode.
1100 	 * The pdt_entries_ptr array above will now contain 32-bit values
1101 	 */
1102 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1103 		return PDC_ERROR;
1104 #endif
1105 
1106 	return retval;
1107 }
1108 
1109 /**
1110  * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1111  * @ret: pointer to return buffer
1112  */
1113 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1114 {
1115 	int retval;
1116 	unsigned long flags;
1117 
1118 	spin_lock_irqsave(&pdc_lock, flags);
1119 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1120 			      __pa(ret), sizeof(*ret));
1121 	spin_unlock_irqrestore(&pdc_lock, flags);
1122 	return retval;
1123 }
1124 
1125 /**
1126  * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1127  * @ret: pointer to return buffer
1128  */
1129 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1130 {
1131 	int retval;
1132 	unsigned long flags;
1133 
1134 	spin_lock_irqsave(&pdc_lock, flags);
1135 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1136 			      __pa(ret), sizeof(*ret));
1137 	spin_unlock_irqrestore(&pdc_lock, flags);
1138 	return retval;
1139 }
1140 
1141 /**
1142  * pdc_tod_set - Set the Time-Of-Day clock.
1143  * @sec: The number of seconds since epoch.
1144  * @usec: The number of micro seconds.
1145  *
1146  * Set the Time-Of-Day clock.
1147  */
1148 int pdc_tod_set(unsigned long sec, unsigned long usec)
1149 {
1150         int retval;
1151 	unsigned long flags;
1152 
1153         spin_lock_irqsave(&pdc_lock, flags);
1154         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1155         spin_unlock_irqrestore(&pdc_lock, flags);
1156 
1157         return retval;
1158 }
1159 EXPORT_SYMBOL(pdc_tod_set);
1160 
1161 #ifdef CONFIG_64BIT
1162 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1163 		struct pdc_memory_table *tbl, unsigned long entries)
1164 {
1165 	int retval;
1166 	unsigned long flags;
1167 
1168 	spin_lock_irqsave(&pdc_lock, flags);
1169 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1170 	convert_to_wide(pdc_result);
1171 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1172 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1173 	spin_unlock_irqrestore(&pdc_lock, flags);
1174 
1175 	return retval;
1176 }
1177 #endif /* CONFIG_64BIT */
1178 
1179 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1180  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1181  * it later. :)
1182  */
1183 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1184 {
1185         int retval;
1186 	unsigned long flags;
1187 
1188         spin_lock_irqsave(&pdc_lock, flags);
1189         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1190                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1191         spin_unlock_irqrestore(&pdc_lock, flags);
1192 
1193         return retval;
1194 }
1195 
1196 /*
1197  * pdc_do_reset - Reset the system.
1198  *
1199  * Reset the system.
1200  */
1201 int pdc_do_reset(void)
1202 {
1203         int retval;
1204 	unsigned long flags;
1205 
1206         spin_lock_irqsave(&pdc_lock, flags);
1207         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1208         spin_unlock_irqrestore(&pdc_lock, flags);
1209 
1210         return retval;
1211 }
1212 
1213 /*
1214  * pdc_soft_power_info - Enable soft power switch.
1215  * @power_reg: address of soft power register
1216  *
1217  * Return the absolute address of the soft power switch register
1218  */
1219 int __init pdc_soft_power_info(unsigned long *power_reg)
1220 {
1221 	int retval;
1222 	unsigned long flags;
1223 
1224 	*power_reg = (unsigned long) (-1);
1225 
1226 	spin_lock_irqsave(&pdc_lock, flags);
1227 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1228 	if (retval == PDC_OK) {
1229                 convert_to_wide(pdc_result);
1230                 *power_reg = f_extend(pdc_result[0]);
1231 	}
1232 	spin_unlock_irqrestore(&pdc_lock, flags);
1233 
1234 	return retval;
1235 }
1236 
1237 /*
1238  * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1239  * @sw_control: 0 for hardware control, 1 for software control
1240  *
1241  *
1242  * This PDC function places the soft power button under software or
1243  * hardware control.
1244  * Under software control the OS may control to when to allow to shut
1245  * down the system. Under hardware control pressing the power button
1246  * powers off the system immediately.
1247  *
1248  * The _panic version relies on spin_trylock to prevent deadlock
1249  * on panic path.
1250  */
1251 int pdc_soft_power_button(int sw_control)
1252 {
1253 	int retval;
1254 	unsigned long flags;
1255 
1256 	spin_lock_irqsave(&pdc_lock, flags);
1257 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1258 	spin_unlock_irqrestore(&pdc_lock, flags);
1259 
1260 	return retval;
1261 }
1262 
1263 int pdc_soft_power_button_panic(int sw_control)
1264 {
1265 	int retval;
1266 	unsigned long flags;
1267 
1268 	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1269 		pr_emerg("Couldn't enable soft power button\n");
1270 		return -EBUSY; /* ignored by the panic notifier */
1271 	}
1272 
1273 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1274 	spin_unlock_irqrestore(&pdc_lock, flags);
1275 
1276 	return retval;
1277 }
1278 
1279 /*
1280  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1281  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1282  * who knows what other platform firmware might do with this OS "hook".
1283  */
1284 void pdc_io_reset(void)
1285 {
1286 	unsigned long flags;
1287 
1288 	spin_lock_irqsave(&pdc_lock, flags);
1289 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1290 	spin_unlock_irqrestore(&pdc_lock, flags);
1291 }
1292 
1293 /*
1294  * pdc_io_reset_devices - Hack to Stop USB controller
1295  *
1296  * If PDC used the usb controller, the usb controller
1297  * is still running and will crash the machines during iommu
1298  * setup, because of still running DMA. This PDC call
1299  * stops the USB controller.
1300  * Normally called after calling pdc_io_reset().
1301  */
1302 void pdc_io_reset_devices(void)
1303 {
1304 	unsigned long flags;
1305 
1306 	spin_lock_irqsave(&pdc_lock, flags);
1307 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1308 	spin_unlock_irqrestore(&pdc_lock, flags);
1309 }
1310 
1311 #endif /* defined(BOOTLOADER) */
1312 
1313 /* locked by pdc_lock */
1314 static char iodc_dbuf[4096] __page_aligned_bss;
1315 
1316 /**
1317  * pdc_iodc_print - Console print using IODC.
1318  * @str: the string to output.
1319  * @count: length of str
1320  *
1321  * Note that only these special chars are architected for console IODC io:
1322  * BEL, BS, CR, and LF. Others are passed through.
1323  * Since the HP console requires CR+LF to perform a 'newline', we translate
1324  * "\n" to "\r\n".
1325  */
1326 int pdc_iodc_print(const unsigned char *str, unsigned count)
1327 {
1328 	unsigned int i, found = 0;
1329 	unsigned long flags;
1330 
1331 	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1332 
1333 	spin_lock_irqsave(&pdc_lock, flags);
1334 	for (i = 0; i < count;) {
1335 		switch(str[i]) {
1336 		case '\n':
1337 			iodc_dbuf[i+0] = '\r';
1338 			iodc_dbuf[i+1] = '\n';
1339 			i += 2;
1340 			found = 1;
1341 			goto print;
1342 		default:
1343 			iodc_dbuf[i] = str[i];
1344 			i++;
1345 			break;
1346 		}
1347 	}
1348 
1349 print:
1350 	real32_call(PAGE0->mem_cons.iodc_io,
1351 		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1352 		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1353 		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1354 	spin_unlock_irqrestore(&pdc_lock, flags);
1355 
1356 	return i - found;
1357 }
1358 
1359 #if !defined(BOOTLOADER)
1360 /**
1361  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1362  *
1363  * Read a character (non-blocking) from the PDC console, returns -1 if
1364  * key is not present.
1365  */
1366 int pdc_iodc_getc(void)
1367 {
1368 	int ch;
1369 	int status;
1370 	unsigned long flags;
1371 
1372 	/* Bail if no console input device. */
1373 	if (!PAGE0->mem_kbd.iodc_io)
1374 		return 0;
1375 
1376 	/* wait for a keyboard (rs232)-input */
1377 	spin_lock_irqsave(&pdc_lock, flags);
1378 	real32_call(PAGE0->mem_kbd.iodc_io,
1379 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1380 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1381 		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1382 
1383 	ch = *iodc_dbuf;
1384 	/* like convert_to_wide() but for first return value only: */
1385 	status = *(int *)&pdc_result;
1386 	spin_unlock_irqrestore(&pdc_lock, flags);
1387 
1388 	if (status == 0)
1389 	    return -1;
1390 
1391 	return ch;
1392 }
1393 
1394 int pdc_sti_call(unsigned long func, unsigned long flags,
1395 		unsigned long inptr, unsigned long outputr,
1396 		unsigned long glob_cfg, int do_call64)
1397 {
1398 	int retval = 0;
1399 	unsigned long irqflags;
1400 
1401 	spin_lock_irqsave(&pdc_lock, irqflags);
1402 	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1403 #ifdef CONFIG_64BIT
1404 		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1405 #else
1406 		WARN_ON(1);
1407 #endif
1408 	} else {
1409 		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1410 	}
1411 	spin_unlock_irqrestore(&pdc_lock, irqflags);
1412 
1413 	return retval;
1414 }
1415 EXPORT_SYMBOL(pdc_sti_call);
1416 
1417 #ifdef CONFIG_64BIT
1418 /**
1419  * pdc_pat_cell_get_number - Returns the cell number.
1420  * @cell_info: The return buffer.
1421  *
1422  * This PDC call returns the cell number of the cell from which the call
1423  * is made.
1424  */
1425 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1426 {
1427 	int retval;
1428 	unsigned long flags;
1429 
1430 	spin_lock_irqsave(&pdc_lock, flags);
1431 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1432 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1433 	spin_unlock_irqrestore(&pdc_lock, flags);
1434 
1435 	return retval;
1436 }
1437 
1438 /**
1439  * pdc_pat_cell_module - Retrieve the cell's module information.
1440  * @actcnt: The number of bytes written to mem_addr.
1441  * @ploc: The physical location.
1442  * @mod: The module index.
1443  * @view_type: The view of the address type.
1444  * @mem_addr: The return buffer.
1445  *
1446  * This PDC call returns information about each module attached to the cell
1447  * at the specified location.
1448  */
1449 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1450 			unsigned long view_type, void *mem_addr)
1451 {
1452 	int retval;
1453 	unsigned long flags;
1454 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1455 
1456 	spin_lock_irqsave(&pdc_lock, flags);
1457 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1458 			      ploc, mod, view_type, __pa(&result));
1459 	if(!retval) {
1460 		*actcnt = pdc_result[0];
1461 		memcpy(mem_addr, &result, *actcnt);
1462 	}
1463 	spin_unlock_irqrestore(&pdc_lock, flags);
1464 
1465 	return retval;
1466 }
1467 
1468 /**
1469  * pdc_pat_cell_info - Retrieve the cell's information.
1470  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1471  * @actcnt: The number of bytes which should be written to info.
1472  * @offset: offset of the structure.
1473  * @cell_number: The cell number which should be asked, or -1 for current cell.
1474  *
1475  * This PDC call returns information about the given cell (or all cells).
1476  */
1477 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1478 		unsigned long *actcnt, unsigned long offset,
1479 		unsigned long cell_number)
1480 {
1481 	int retval;
1482 	unsigned long flags;
1483 	struct pdc_pat_cell_info_rtn_block result;
1484 
1485 	spin_lock_irqsave(&pdc_lock, flags);
1486 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1487 			__pa(pdc_result), __pa(&result), *actcnt,
1488 			offset, cell_number);
1489 	if (!retval) {
1490 		*actcnt = pdc_result[0];
1491 		memcpy(info, &result, *actcnt);
1492 	}
1493 	spin_unlock_irqrestore(&pdc_lock, flags);
1494 
1495 	return retval;
1496 }
1497 
1498 /**
1499  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1500  * @cpu_info: The return buffer.
1501  * @hpa: The Hard Physical Address of the CPU.
1502  *
1503  * Retrieve the cpu number for the cpu at the specified HPA.
1504  */
1505 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1506 {
1507 	int retval;
1508 	unsigned long flags;
1509 
1510 	spin_lock_irqsave(&pdc_lock, flags);
1511 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1512 			      __pa(&pdc_result), hpa);
1513 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1514 	spin_unlock_irqrestore(&pdc_lock, flags);
1515 
1516 	return retval;
1517 }
1518 
1519 /**
1520  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1521  * @num_entries: The return value.
1522  * @cell_num: The target cell.
1523  *
1524  * This PDC function returns the number of entries in the specified cell's
1525  * interrupt table.
1526  */
1527 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1528 {
1529 	int retval;
1530 	unsigned long flags;
1531 
1532 	spin_lock_irqsave(&pdc_lock, flags);
1533 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1534 			      __pa(pdc_result), cell_num);
1535 	*num_entries = pdc_result[0];
1536 	spin_unlock_irqrestore(&pdc_lock, flags);
1537 
1538 	return retval;
1539 }
1540 
1541 /**
1542  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1543  * @r_addr: The return buffer.
1544  * @cell_num: The target cell.
1545  *
1546  * This PDC function returns the actual interrupt table for the specified cell.
1547  */
1548 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1549 {
1550 	int retval;
1551 	unsigned long flags;
1552 
1553 	spin_lock_irqsave(&pdc_lock, flags);
1554 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1555 			      __pa(r_addr), cell_num);
1556 	spin_unlock_irqrestore(&pdc_lock, flags);
1557 
1558 	return retval;
1559 }
1560 
1561 /**
1562  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1563  * @actual_len: The return buffer.
1564  * @mem_addr: Pointer to the memory buffer.
1565  * @count: The number of bytes to read from the buffer.
1566  * @offset: The offset with respect to the beginning of the buffer.
1567  *
1568  */
1569 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1570 			    unsigned long count, unsigned long offset)
1571 {
1572 	int retval;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&pdc_lock, flags);
1576 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1577 			      __pa(pdc_result2), count, offset);
1578 	*actual_len = pdc_result[0];
1579 	memcpy(mem_addr, pdc_result2, *actual_len);
1580 	spin_unlock_irqrestore(&pdc_lock, flags);
1581 
1582 	return retval;
1583 }
1584 
1585 /**
1586  * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1587  * @legacy_rev: The legacy revision.
1588  * @pat_rev: The PAT revision.
1589  * @pdc_cap: The PDC capabilities.
1590  *
1591  */
1592 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1593 		unsigned long *pat_rev, unsigned long *pdc_cap)
1594 {
1595 	int retval;
1596 	unsigned long flags;
1597 
1598 	spin_lock_irqsave(&pdc_lock, flags);
1599 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1600 				__pa(pdc_result));
1601 	if (retval == PDC_OK) {
1602 		*legacy_rev = pdc_result[0];
1603 		*pat_rev = pdc_result[1];
1604 		*pdc_cap = pdc_result[2];
1605 	}
1606 	spin_unlock_irqrestore(&pdc_lock, flags);
1607 
1608 	return retval;
1609 }
1610 
1611 
1612 /**
1613  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1614  * @pci_addr: PCI configuration space address for which the read request is being made.
1615  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1616  * @mem_addr: Pointer to return memory buffer.
1617  *
1618  */
1619 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1620 {
1621 	int retval;
1622 	unsigned long flags;
1623 
1624 	spin_lock_irqsave(&pdc_lock, flags);
1625 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1626 					__pa(pdc_result), pci_addr, pci_size);
1627 	switch(pci_size) {
1628 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1629 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1630 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1631 	}
1632 	spin_unlock_irqrestore(&pdc_lock, flags);
1633 
1634 	return retval;
1635 }
1636 
1637 /**
1638  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1639  * @pci_addr: PCI configuration space address for which the write  request is being made.
1640  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1641  * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1642  *         written to PCI Config space.
1643  *
1644  */
1645 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1646 {
1647 	int retval;
1648 	unsigned long flags;
1649 
1650 	spin_lock_irqsave(&pdc_lock, flags);
1651 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1652 				pci_addr, pci_size, val);
1653 	spin_unlock_irqrestore(&pdc_lock, flags);
1654 
1655 	return retval;
1656 }
1657 
1658 /**
1659  * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1660  * @rinfo: memory pdt information
1661  *
1662  */
1663 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1664 {
1665 	int retval;
1666 	unsigned long flags;
1667 
1668 	spin_lock_irqsave(&pdc_lock, flags);
1669 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1670 			__pa(&pdc_result));
1671 	if (retval == PDC_OK)
1672 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1673 	spin_unlock_irqrestore(&pdc_lock, flags);
1674 
1675 	return retval;
1676 }
1677 
1678 /**
1679  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1680  *				table of a cell
1681  * @rinfo: memory pdt information
1682  * @cell: cell number
1683  *
1684  */
1685 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1686 		unsigned long cell)
1687 {
1688 	int retval;
1689 	unsigned long flags;
1690 
1691 	spin_lock_irqsave(&pdc_lock, flags);
1692 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1693 			__pa(&pdc_result), cell);
1694 	if (retval == PDC_OK)
1695 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1696 	spin_unlock_irqrestore(&pdc_lock, flags);
1697 
1698 	return retval;
1699 }
1700 
1701 /**
1702  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1703  * @pret: array of PDT entries
1704  * @pdt_entries_ptr: ptr to hold number of PDT entries
1705  * @max_entries: maximum number of entries to be read
1706  *
1707  */
1708 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1709 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1710 {
1711 	int retval;
1712 	unsigned long flags, entries;
1713 
1714 	spin_lock_irqsave(&pdc_lock, flags);
1715 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1716 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1717 			__pa(&pdc_result), parisc_cell_num,
1718 			__pa(pdt_entries_ptr));
1719 
1720 	if (retval == PDC_OK) {
1721 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1722 		entries = min(pdc_result[0], max_entries);
1723 		pret->pdt_entries = entries;
1724 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1725 	}
1726 
1727 	spin_unlock_irqrestore(&pdc_lock, flags);
1728 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1729 
1730 	return retval;
1731 }
1732 /**
1733  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1734  * @pret: array of PDT entries
1735  * @pdt_entries_ptr: ptr to hold number of PDT entries
1736  * @count: number of bytes to read
1737  * @offset: offset to start (in bytes)
1738  *
1739  */
1740 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1741 		unsigned long *pdt_entries_ptr, unsigned long count,
1742 		unsigned long offset)
1743 {
1744 	int retval;
1745 	unsigned long flags, entries;
1746 
1747 	spin_lock_irqsave(&pdc_lock, flags);
1748 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1749 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1750 		count, offset);
1751 
1752 	if (retval == PDC_OK) {
1753 		entries = min(pdc_result[0], count);
1754 		pret->actual_count_bytes = entries;
1755 		pret->pdt_entries = entries / sizeof(unsigned long);
1756 	}
1757 
1758 	spin_unlock_irqrestore(&pdc_lock, flags);
1759 
1760 	return retval;
1761 }
1762 
1763 /**
1764  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1765  * @pret: ptr to hold returned information
1766  * @phys_addr: physical address to examine
1767  *
1768  */
1769 int pdc_pat_mem_get_dimm_phys_location(
1770 		struct pdc_pat_mem_phys_mem_location *pret,
1771 		unsigned long phys_addr)
1772 {
1773 	int retval;
1774 	unsigned long flags;
1775 
1776 	spin_lock_irqsave(&pdc_lock, flags);
1777 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1778 		__pa(&pdc_result), phys_addr);
1779 
1780 	if (retval == PDC_OK)
1781 		memcpy(pret, &pdc_result, sizeof(*pret));
1782 
1783 	spin_unlock_irqrestore(&pdc_lock, flags);
1784 
1785 	return retval;
1786 }
1787 #endif /* CONFIG_64BIT */
1788 #endif /* defined(BOOTLOADER) */
1789 
1790 
1791 /***************** 32-bit real-mode calls ***********/
1792 /* The struct below is used
1793  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1794  * real32_call_asm() then uses this stack in narrow real mode
1795  */
1796 
1797 struct narrow_stack {
1798 	/* use int, not long which is 64 bits */
1799 	unsigned int arg13;
1800 	unsigned int arg12;
1801 	unsigned int arg11;
1802 	unsigned int arg10;
1803 	unsigned int arg9;
1804 	unsigned int arg8;
1805 	unsigned int arg7;
1806 	unsigned int arg6;
1807 	unsigned int arg5;
1808 	unsigned int arg4;
1809 	unsigned int arg3;
1810 	unsigned int arg2;
1811 	unsigned int arg1;
1812 	unsigned int arg0;
1813 	unsigned int frame_marker[8];
1814 	unsigned int sp;
1815 	/* in reality, there's nearly 8k of stack after this */
1816 };
1817 
1818 long real32_call(unsigned long fn, ...)
1819 {
1820 	va_list args;
1821 	extern struct narrow_stack real_stack;
1822 	extern unsigned long real32_call_asm(unsigned int *,
1823 					     unsigned int *,
1824 					     unsigned int);
1825 
1826 	va_start(args, fn);
1827 	real_stack.arg0 = va_arg(args, unsigned int);
1828 	real_stack.arg1 = va_arg(args, unsigned int);
1829 	real_stack.arg2 = va_arg(args, unsigned int);
1830 	real_stack.arg3 = va_arg(args, unsigned int);
1831 	real_stack.arg4 = va_arg(args, unsigned int);
1832 	real_stack.arg5 = va_arg(args, unsigned int);
1833 	real_stack.arg6 = va_arg(args, unsigned int);
1834 	real_stack.arg7 = va_arg(args, unsigned int);
1835 	real_stack.arg8 = va_arg(args, unsigned int);
1836 	real_stack.arg9 = va_arg(args, unsigned int);
1837 	real_stack.arg10 = va_arg(args, unsigned int);
1838 	real_stack.arg11 = va_arg(args, unsigned int);
1839 	real_stack.arg12 = va_arg(args, unsigned int);
1840 	real_stack.arg13 = va_arg(args, unsigned int);
1841 	va_end(args);
1842 
1843 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1844 }
1845 
1846 #ifdef CONFIG_64BIT
1847 /***************** 64-bit real-mode calls ***********/
1848 
1849 struct wide_stack {
1850 	unsigned long arg0;
1851 	unsigned long arg1;
1852 	unsigned long arg2;
1853 	unsigned long arg3;
1854 	unsigned long arg4;
1855 	unsigned long arg5;
1856 	unsigned long arg6;
1857 	unsigned long arg7;
1858 	unsigned long arg8;
1859 	unsigned long arg9;
1860 	unsigned long arg10;
1861 	unsigned long arg11;
1862 	unsigned long arg12;
1863 	unsigned long arg13;
1864 	unsigned long frame_marker[2];	/* rp, previous sp */
1865 	unsigned long sp;
1866 	/* in reality, there's nearly 8k of stack after this */
1867 };
1868 
1869 long real64_call(unsigned long fn, ...)
1870 {
1871 	va_list args;
1872 	extern struct wide_stack real64_stack;
1873 	extern unsigned long real64_call_asm(unsigned long *,
1874 					     unsigned long *,
1875 					     unsigned long);
1876 
1877 	va_start(args, fn);
1878 	real64_stack.arg0 = va_arg(args, unsigned long);
1879 	real64_stack.arg1 = va_arg(args, unsigned long);
1880 	real64_stack.arg2 = va_arg(args, unsigned long);
1881 	real64_stack.arg3 = va_arg(args, unsigned long);
1882 	real64_stack.arg4 = va_arg(args, unsigned long);
1883 	real64_stack.arg5 = va_arg(args, unsigned long);
1884 	real64_stack.arg6 = va_arg(args, unsigned long);
1885 	real64_stack.arg7 = va_arg(args, unsigned long);
1886 	real64_stack.arg8 = va_arg(args, unsigned long);
1887 	real64_stack.arg9 = va_arg(args, unsigned long);
1888 	real64_stack.arg10 = va_arg(args, unsigned long);
1889 	real64_stack.arg11 = va_arg(args, unsigned long);
1890 	real64_stack.arg12 = va_arg(args, unsigned long);
1891 	real64_stack.arg13 = va_arg(args, unsigned long);
1892 	va_end(args);
1893 
1894 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1895 }
1896 
1897 #endif /* CONFIG_64BIT */
1898