xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * arch/parisc/kernel/firmware.c  - safe PDC access routines
4  *
5  *	PDC == Processor Dependent Code
6  *
7  * See http://www.parisc-linux.org/documentation/index.html
8  * for documentation describing the entry points and calling
9  * conventions defined below.
10  *
11  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
12  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
13  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
14  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
15  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
16  */
17 
18 /*	I think it would be in everyone's best interest to follow this
19  *	guidelines when writing PDC wrappers:
20  *
21  *	 - the name of the pdc wrapper should match one of the macros
22  *	   used for the first two arguments
23  *	 - don't use caps for random parts of the name
24  *	 - use the static PDC result buffers and "copyout" to structs
25  *	   supplied by the caller to encapsulate alignment restrictions
26  *	 - hold pdc_lock while in PDC or using static result buffers
27  *	 - use __pa() to convert virtual (kernel) pointers to physical
28  *	   ones.
29  *	 - the name of the struct used for pdc return values should equal
30  *	   one of the macros used for the first two arguments to the
31  *	   corresponding PDC call
32  *	 - keep the order of arguments
33  *	 - don't be smart (setting trailing NUL bytes for strings, return
34  *	   something useful even if the call failed) unless you are sure
35  *	   it's not going to affect functionality or performance
36  *
37  *	Example:
38  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
39  *	{
40  *		int retval;
41  *
42  *		spin_lock_irq(&pdc_lock);
43  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
44  *		convert_to_wide(pdc_result);
45  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
46  *		spin_unlock_irq(&pdc_lock);
47  *
48  *		return retval;
49  *	}
50  *					prumpf	991016
51  */
52 
53 #include <stdarg.h>
54 
55 #include <linux/delay.h>
56 #include <linux/init.h>
57 #include <linux/kernel.h>
58 #include <linux/module.h>
59 #include <linux/string.h>
60 #include <linux/spinlock.h>
61 
62 #include <asm/page.h>
63 #include <asm/pdc.h>
64 #include <asm/pdcpat.h>
65 #include <asm/processor.h>	/* for boot_cpu_data */
66 
67 #if defined(BOOTLOADER)
68 # undef  spin_lock_irqsave
69 # define spin_lock_irqsave(a, b) { b = 1; }
70 # undef  spin_unlock_irqrestore
71 # define spin_unlock_irqrestore(a, b)
72 #else
73 static DEFINE_SPINLOCK(pdc_lock);
74 #endif
75 
76 extern unsigned long pdc_result[NUM_PDC_RESULT];
77 extern unsigned long pdc_result2[NUM_PDC_RESULT];
78 
79 #ifdef CONFIG_64BIT
80 #define WIDE_FIRMWARE 0x1
81 #define NARROW_FIRMWARE 0x2
82 
83 /* Firmware needs to be initially set to narrow to determine the
84  * actual firmware width. */
85 int parisc_narrow_firmware __ro_after_init = 1;
86 #endif
87 
88 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
89  * and MEM_PDC calls are always the same width as the OS.
90  * Some PAT boxes may have 64-bit IODC I/O.
91  *
92  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
93  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
94  * This allowed wide kernels to run on Cxxx boxes.
95  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
96  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
97  */
98 
99 #ifdef CONFIG_64BIT
100 long real64_call(unsigned long function, ...);
101 #endif
102 long real32_call(unsigned long function, ...);
103 
104 #ifdef CONFIG_64BIT
105 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
106 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
107 #else
108 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
109 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
110 #endif
111 
112 
113 /**
114  * f_extend - Convert PDC addresses to kernel addresses.
115  * @address: Address returned from PDC.
116  *
117  * This function is used to convert PDC addresses into kernel addresses
118  * when the PDC address size and kernel address size are different.
119  */
120 static unsigned long f_extend(unsigned long address)
121 {
122 #ifdef CONFIG_64BIT
123 	if(unlikely(parisc_narrow_firmware)) {
124 		if((address & 0xff000000) == 0xf0000000)
125 			return 0xf0f0f0f000000000UL | (u32)address;
126 
127 		if((address & 0xf0000000) == 0xf0000000)
128 			return 0xffffffff00000000UL | (u32)address;
129 	}
130 #endif
131 	return address;
132 }
133 
134 /**
135  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
136  * @address: The return buffer from PDC.
137  *
138  * This function is used to convert the return buffer addresses retrieved from PDC
139  * into kernel addresses when the PDC address size and kernel address size are
140  * different.
141  */
142 static void convert_to_wide(unsigned long *addr)
143 {
144 #ifdef CONFIG_64BIT
145 	int i;
146 	unsigned int *p = (unsigned int *)addr;
147 
148 	if (unlikely(parisc_narrow_firmware)) {
149 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
150 			addr[i] = p[i];
151 	}
152 #endif
153 }
154 
155 #ifdef CONFIG_64BIT
156 void set_firmware_width_unlocked(void)
157 {
158 	int ret;
159 
160 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
161 		__pa(pdc_result), 0);
162 	convert_to_wide(pdc_result);
163 	if (pdc_result[0] != NARROW_FIRMWARE)
164 		parisc_narrow_firmware = 0;
165 }
166 
167 /**
168  * set_firmware_width - Determine if the firmware is wide or narrow.
169  *
170  * This function must be called before any pdc_* function that uses the
171  * convert_to_wide function.
172  */
173 void set_firmware_width(void)
174 {
175 	unsigned long flags;
176 	spin_lock_irqsave(&pdc_lock, flags);
177 	set_firmware_width_unlocked();
178 	spin_unlock_irqrestore(&pdc_lock, flags);
179 }
180 #else
181 void set_firmware_width_unlocked(void)
182 {
183 	return;
184 }
185 
186 void set_firmware_width(void)
187 {
188 	return;
189 }
190 #endif /*CONFIG_64BIT*/
191 
192 
193 #if !defined(BOOTLOADER)
194 /**
195  * pdc_emergency_unlock - Unlock the linux pdc lock
196  *
197  * This call unlocks the linux pdc lock in case we need some PDC functions
198  * (like pdc_add_valid) during kernel stack dump.
199  */
200 void pdc_emergency_unlock(void)
201 {
202  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
203         if (spin_is_locked(&pdc_lock))
204 		spin_unlock(&pdc_lock);
205 }
206 
207 
208 /**
209  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
210  * @address: Address to be verified.
211  *
212  * This PDC call attempts to read from the specified address and verifies
213  * if the address is valid.
214  *
215  * The return value is PDC_OK (0) in case accessing this address is valid.
216  */
217 int pdc_add_valid(unsigned long address)
218 {
219         int retval;
220 	unsigned long flags;
221 
222         spin_lock_irqsave(&pdc_lock, flags);
223         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
224         spin_unlock_irqrestore(&pdc_lock, flags);
225 
226         return retval;
227 }
228 EXPORT_SYMBOL(pdc_add_valid);
229 
230 /**
231  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
232  * @instr: Pointer to variable which will get instruction opcode.
233  *
234  * The return value is PDC_OK (0) in case call succeeded.
235  */
236 int __init pdc_instr(unsigned int *instr)
237 {
238 	int retval;
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&pdc_lock, flags);
242 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
243 	convert_to_wide(pdc_result);
244 	*instr = pdc_result[0];
245 	spin_unlock_irqrestore(&pdc_lock, flags);
246 
247 	return retval;
248 }
249 
250 /**
251  * pdc_chassis_info - Return chassis information.
252  * @result: The return buffer.
253  * @chassis_info: The memory buffer address.
254  * @len: The size of the memory buffer address.
255  *
256  * An HVERSION dependent call for returning the chassis information.
257  */
258 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
259 {
260         int retval;
261 	unsigned long flags;
262 
263         spin_lock_irqsave(&pdc_lock, flags);
264         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
265         memcpy(&pdc_result2, led_info, len);
266         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
267                               __pa(pdc_result), __pa(pdc_result2), len);
268         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
269         memcpy(led_info, pdc_result2, len);
270         spin_unlock_irqrestore(&pdc_lock, flags);
271 
272         return retval;
273 }
274 
275 /**
276  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
277  * @retval: -1 on error, 0 on success. Other value are PDC errors
278  *
279  * Must be correctly formatted or expect system crash
280  */
281 #ifdef CONFIG_64BIT
282 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
283 {
284 	int retval = 0;
285 	unsigned long flags;
286 
287 	if (!is_pdc_pat())
288 		return -1;
289 
290 	spin_lock_irqsave(&pdc_lock, flags);
291 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
292 	spin_unlock_irqrestore(&pdc_lock, flags);
293 
294 	return retval;
295 }
296 #endif
297 
298 /**
299  * pdc_chassis_disp - Updates chassis code
300  * @retval: -1 on error, 0 on success
301  */
302 int pdc_chassis_disp(unsigned long disp)
303 {
304 	int retval = 0;
305 	unsigned long flags;
306 
307 	spin_lock_irqsave(&pdc_lock, flags);
308 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
309 	spin_unlock_irqrestore(&pdc_lock, flags);
310 
311 	return retval;
312 }
313 
314 /**
315  * pdc_cpu_rendenzvous - Stop currently executing CPU
316  * @retval: -1 on error, 0 on success
317  */
318 int __pdc_cpu_rendezvous(void)
319 {
320 	if (is_pdc_pat())
321 		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
322 	else
323 		return mem_pdc_call(PDC_PROC, 1, 0);
324 }
325 
326 
327 /**
328  * pdc_chassis_warn - Fetches chassis warnings
329  * @retval: -1 on error, 0 on success
330  */
331 int pdc_chassis_warn(unsigned long *warn)
332 {
333 	int retval = 0;
334 	unsigned long flags;
335 
336 	spin_lock_irqsave(&pdc_lock, flags);
337 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
338 	*warn = pdc_result[0];
339 	spin_unlock_irqrestore(&pdc_lock, flags);
340 
341 	return retval;
342 }
343 
344 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
345 {
346 	int ret;
347 
348 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
349 	convert_to_wide(pdc_result);
350 	pdc_coproc_info->ccr_functional = pdc_result[0];
351 	pdc_coproc_info->ccr_present = pdc_result[1];
352 	pdc_coproc_info->revision = pdc_result[17];
353 	pdc_coproc_info->model = pdc_result[18];
354 
355 	return ret;
356 }
357 
358 /**
359  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
360  * @pdc_coproc_info: Return buffer address.
361  *
362  * This PDC call returns the presence and status of all the coprocessors
363  * attached to the processor.
364  */
365 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
366 {
367 	int ret;
368 	unsigned long flags;
369 
370 	spin_lock_irqsave(&pdc_lock, flags);
371 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
372 	spin_unlock_irqrestore(&pdc_lock, flags);
373 
374 	return ret;
375 }
376 
377 /**
378  * pdc_iodc_read - Read data from the modules IODC.
379  * @actcnt: The actual number of bytes.
380  * @hpa: The HPA of the module for the iodc read.
381  * @index: The iodc entry point.
382  * @iodc_data: A buffer memory for the iodc options.
383  * @iodc_data_size: Size of the memory buffer.
384  *
385  * This PDC call reads from the IODC of the module specified by the hpa
386  * argument.
387  */
388 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
389 		  void *iodc_data, unsigned int iodc_data_size)
390 {
391 	int retval;
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(&pdc_lock, flags);
395 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
396 			      index, __pa(pdc_result2), iodc_data_size);
397 	convert_to_wide(pdc_result);
398 	*actcnt = pdc_result[0];
399 	memcpy(iodc_data, pdc_result2, iodc_data_size);
400 	spin_unlock_irqrestore(&pdc_lock, flags);
401 
402 	return retval;
403 }
404 EXPORT_SYMBOL(pdc_iodc_read);
405 
406 /**
407  * pdc_system_map_find_mods - Locate unarchitected modules.
408  * @pdc_mod_info: Return buffer address.
409  * @mod_path: pointer to dev path structure.
410  * @mod_index: fixed address module index.
411  *
412  * To locate and identify modules which reside at fixed I/O addresses, which
413  * do not self-identify via architected bus walks.
414  */
415 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
416 			     struct pdc_module_path *mod_path, long mod_index)
417 {
418 	int retval;
419 	unsigned long flags;
420 
421 	spin_lock_irqsave(&pdc_lock, flags);
422 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
423 			      __pa(pdc_result2), mod_index);
424 	convert_to_wide(pdc_result);
425 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
426 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
427 	spin_unlock_irqrestore(&pdc_lock, flags);
428 
429 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
430 	return retval;
431 }
432 
433 /**
434  * pdc_system_map_find_addrs - Retrieve additional address ranges.
435  * @pdc_addr_info: Return buffer address.
436  * @mod_index: Fixed address module index.
437  * @addr_index: Address range index.
438  *
439  * Retrieve additional information about subsequent address ranges for modules
440  * with multiple address ranges.
441  */
442 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
443 			      long mod_index, long addr_index)
444 {
445 	int retval;
446 	unsigned long flags;
447 
448 	spin_lock_irqsave(&pdc_lock, flags);
449 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
450 			      mod_index, addr_index);
451 	convert_to_wide(pdc_result);
452 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
453 	spin_unlock_irqrestore(&pdc_lock, flags);
454 
455 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
456 	return retval;
457 }
458 
459 /**
460  * pdc_model_info - Return model information about the processor.
461  * @model: The return buffer.
462  *
463  * Returns the version numbers, identifiers, and capabilities from the processor module.
464  */
465 int pdc_model_info(struct pdc_model *model)
466 {
467 	int retval;
468 	unsigned long flags;
469 
470 	spin_lock_irqsave(&pdc_lock, flags);
471 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
472 	convert_to_wide(pdc_result);
473 	memcpy(model, pdc_result, sizeof(*model));
474 	spin_unlock_irqrestore(&pdc_lock, flags);
475 
476 	return retval;
477 }
478 
479 /**
480  * pdc_model_sysmodel - Get the system model name.
481  * @name: A char array of at least 81 characters.
482  *
483  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
484  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
485  * on HP/UX.
486  */
487 int pdc_model_sysmodel(char *name)
488 {
489         int retval;
490 	unsigned long flags;
491 
492         spin_lock_irqsave(&pdc_lock, flags);
493         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
494                               OS_ID_HPUX, __pa(name));
495         convert_to_wide(pdc_result);
496 
497         if (retval == PDC_OK) {
498                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
499         } else {
500                 name[0] = 0;
501         }
502         spin_unlock_irqrestore(&pdc_lock, flags);
503 
504         return retval;
505 }
506 
507 /**
508  * pdc_model_versions - Identify the version number of each processor.
509  * @cpu_id: The return buffer.
510  * @id: The id of the processor to check.
511  *
512  * Returns the version number for each processor component.
513  *
514  * This comment was here before, but I do not know what it means :( -RB
515  * id: 0 = cpu revision, 1 = boot-rom-version
516  */
517 int pdc_model_versions(unsigned long *versions, int id)
518 {
519         int retval;
520 	unsigned long flags;
521 
522         spin_lock_irqsave(&pdc_lock, flags);
523         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
524         convert_to_wide(pdc_result);
525         *versions = pdc_result[0];
526         spin_unlock_irqrestore(&pdc_lock, flags);
527 
528         return retval;
529 }
530 
531 /**
532  * pdc_model_cpuid - Returns the CPU_ID.
533  * @cpu_id: The return buffer.
534  *
535  * Returns the CPU_ID value which uniquely identifies the cpu portion of
536  * the processor module.
537  */
538 int pdc_model_cpuid(unsigned long *cpu_id)
539 {
540         int retval;
541 	unsigned long flags;
542 
543         spin_lock_irqsave(&pdc_lock, flags);
544         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
545         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
546         convert_to_wide(pdc_result);
547         *cpu_id = pdc_result[0];
548         spin_unlock_irqrestore(&pdc_lock, flags);
549 
550         return retval;
551 }
552 
553 /**
554  * pdc_model_capabilities - Returns the platform capabilities.
555  * @capabilities: The return buffer.
556  *
557  * Returns information about platform support for 32- and/or 64-bit
558  * OSes, IO-PDIR coherency, and virtual aliasing.
559  */
560 int pdc_model_capabilities(unsigned long *capabilities)
561 {
562         int retval;
563 	unsigned long flags;
564 
565         spin_lock_irqsave(&pdc_lock, flags);
566         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
567         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
568         convert_to_wide(pdc_result);
569         if (retval == PDC_OK) {
570                 *capabilities = pdc_result[0];
571         } else {
572                 *capabilities = PDC_MODEL_OS32;
573         }
574         spin_unlock_irqrestore(&pdc_lock, flags);
575 
576         return retval;
577 }
578 
579 /**
580  * pdc_model_platform_info - Returns machine product and serial number.
581  * @orig_prod_num: Return buffer for original product number.
582  * @current_prod_num: Return buffer for current product number.
583  * @serial_no: Return buffer for serial number.
584  *
585  * Returns strings containing the original and current product numbers and the
586  * serial number of the system.
587  */
588 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
589 		char *serial_no)
590 {
591 	int retval;
592 	unsigned long flags;
593 
594 	spin_lock_irqsave(&pdc_lock, flags);
595 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
596 		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
597 	convert_to_wide(pdc_result);
598 	spin_unlock_irqrestore(&pdc_lock, flags);
599 
600 	return retval;
601 }
602 
603 /**
604  * pdc_cache_info - Return cache and TLB information.
605  * @cache_info: The return buffer.
606  *
607  * Returns information about the processor's cache and TLB.
608  */
609 int pdc_cache_info(struct pdc_cache_info *cache_info)
610 {
611         int retval;
612 	unsigned long flags;
613 
614         spin_lock_irqsave(&pdc_lock, flags);
615         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
616         convert_to_wide(pdc_result);
617         memcpy(cache_info, pdc_result, sizeof(*cache_info));
618         spin_unlock_irqrestore(&pdc_lock, flags);
619 
620         return retval;
621 }
622 
623 /**
624  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
625  * @space_bits: Should be 0, if not, bad mojo!
626  *
627  * Returns information about Space ID hashing.
628  */
629 int pdc_spaceid_bits(unsigned long *space_bits)
630 {
631 	int retval;
632 	unsigned long flags;
633 
634 	spin_lock_irqsave(&pdc_lock, flags);
635 	pdc_result[0] = 0;
636 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
637 	convert_to_wide(pdc_result);
638 	*space_bits = pdc_result[0];
639 	spin_unlock_irqrestore(&pdc_lock, flags);
640 
641 	return retval;
642 }
643 
644 #ifndef CONFIG_PA20
645 /**
646  * pdc_btlb_info - Return block TLB information.
647  * @btlb: The return buffer.
648  *
649  * Returns information about the hardware Block TLB.
650  */
651 int pdc_btlb_info(struct pdc_btlb_info *btlb)
652 {
653         int retval;
654 	unsigned long flags;
655 
656         spin_lock_irqsave(&pdc_lock, flags);
657         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
658         memcpy(btlb, pdc_result, sizeof(*btlb));
659         spin_unlock_irqrestore(&pdc_lock, flags);
660 
661         if(retval < 0) {
662                 btlb->max_size = 0;
663         }
664         return retval;
665 }
666 
667 /**
668  * pdc_mem_map_hpa - Find fixed module information.
669  * @address: The return buffer
670  * @mod_path: pointer to dev path structure.
671  *
672  * This call was developed for S700 workstations to allow the kernel to find
673  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
674  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
675  * call.
676  *
677  * This call is supported by all existing S700 workstations (up to  Gecko).
678  */
679 int pdc_mem_map_hpa(struct pdc_memory_map *address,
680 		struct pdc_module_path *mod_path)
681 {
682         int retval;
683 	unsigned long flags;
684 
685         spin_lock_irqsave(&pdc_lock, flags);
686         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
687         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
688 				__pa(pdc_result2));
689         memcpy(address, pdc_result, sizeof(*address));
690         spin_unlock_irqrestore(&pdc_lock, flags);
691 
692         return retval;
693 }
694 #endif	/* !CONFIG_PA20 */
695 
696 /**
697  * pdc_lan_station_id - Get the LAN address.
698  * @lan_addr: The return buffer.
699  * @hpa: The network device HPA.
700  *
701  * Get the LAN station address when it is not directly available from the LAN hardware.
702  */
703 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
704 {
705 	int retval;
706 	unsigned long flags;
707 
708 	spin_lock_irqsave(&pdc_lock, flags);
709 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
710 			__pa(pdc_result), hpa);
711 	if (retval < 0) {
712 		/* FIXME: else read MAC from NVRAM */
713 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
714 	} else {
715 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
716 	}
717 	spin_unlock_irqrestore(&pdc_lock, flags);
718 
719 	return retval;
720 }
721 EXPORT_SYMBOL(pdc_lan_station_id);
722 
723 /**
724  * pdc_stable_read - Read data from Stable Storage.
725  * @staddr: Stable Storage address to access.
726  * @memaddr: The memory address where Stable Storage data shall be copied.
727  * @count: number of bytes to transfer. count is multiple of 4.
728  *
729  * This PDC call reads from the Stable Storage address supplied in staddr
730  * and copies count bytes to the memory address memaddr.
731  * The call will fail if staddr+count > PDC_STABLE size.
732  */
733 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
734 {
735        int retval;
736 	unsigned long flags;
737 
738        spin_lock_irqsave(&pdc_lock, flags);
739        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
740                __pa(pdc_result), count);
741        convert_to_wide(pdc_result);
742        memcpy(memaddr, pdc_result, count);
743        spin_unlock_irqrestore(&pdc_lock, flags);
744 
745        return retval;
746 }
747 EXPORT_SYMBOL(pdc_stable_read);
748 
749 /**
750  * pdc_stable_write - Write data to Stable Storage.
751  * @staddr: Stable Storage address to access.
752  * @memaddr: The memory address where Stable Storage data shall be read from.
753  * @count: number of bytes to transfer. count is multiple of 4.
754  *
755  * This PDC call reads count bytes from the supplied memaddr address,
756  * and copies count bytes to the Stable Storage address staddr.
757  * The call will fail if staddr+count > PDC_STABLE size.
758  */
759 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
760 {
761        int retval;
762 	unsigned long flags;
763 
764        spin_lock_irqsave(&pdc_lock, flags);
765        memcpy(pdc_result, memaddr, count);
766        convert_to_wide(pdc_result);
767        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
768                __pa(pdc_result), count);
769        spin_unlock_irqrestore(&pdc_lock, flags);
770 
771        return retval;
772 }
773 EXPORT_SYMBOL(pdc_stable_write);
774 
775 /**
776  * pdc_stable_get_size - Get Stable Storage size in bytes.
777  * @size: pointer where the size will be stored.
778  *
779  * This PDC call returns the number of bytes in the processor's Stable
780  * Storage, which is the number of contiguous bytes implemented in Stable
781  * Storage starting from staddr=0. size in an unsigned 64-bit integer
782  * which is a multiple of four.
783  */
784 int pdc_stable_get_size(unsigned long *size)
785 {
786        int retval;
787 	unsigned long flags;
788 
789        spin_lock_irqsave(&pdc_lock, flags);
790        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
791        *size = pdc_result[0];
792        spin_unlock_irqrestore(&pdc_lock, flags);
793 
794        return retval;
795 }
796 EXPORT_SYMBOL(pdc_stable_get_size);
797 
798 /**
799  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
800  *
801  * This PDC call is meant to be used to check the integrity of the current
802  * contents of Stable Storage.
803  */
804 int pdc_stable_verify_contents(void)
805 {
806        int retval;
807 	unsigned long flags;
808 
809        spin_lock_irqsave(&pdc_lock, flags);
810        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
811        spin_unlock_irqrestore(&pdc_lock, flags);
812 
813        return retval;
814 }
815 EXPORT_SYMBOL(pdc_stable_verify_contents);
816 
817 /**
818  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
819  * the validity indicator.
820  *
821  * This PDC call will erase all contents of Stable Storage. Use with care!
822  */
823 int pdc_stable_initialize(void)
824 {
825        int retval;
826 	unsigned long flags;
827 
828        spin_lock_irqsave(&pdc_lock, flags);
829        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
830        spin_unlock_irqrestore(&pdc_lock, flags);
831 
832        return retval;
833 }
834 EXPORT_SYMBOL(pdc_stable_initialize);
835 
836 /**
837  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
838  * @hwpath: fully bc.mod style path to the device.
839  * @initiator: the array to return the result into
840  *
841  * Get the SCSI operational parameters from PDC.
842  * Needed since HPUX never used BIOS or symbios card NVRAM.
843  * Most ncr/sym cards won't have an entry and just use whatever
844  * capabilities of the card are (eg Ultra, LVD). But there are
845  * several cases where it's useful:
846  *    o set SCSI id for Multi-initiator clusters,
847  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
848  *    o bus width exported is less than what the interface chip supports.
849  */
850 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
851 {
852 	int retval;
853 	unsigned long flags;
854 
855 	spin_lock_irqsave(&pdc_lock, flags);
856 
857 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
858 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
859 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
860 
861 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
862 			      __pa(pdc_result), __pa(hwpath));
863 	if (retval < PDC_OK)
864 		goto out;
865 
866 	if (pdc_result[0] < 16) {
867 		initiator->host_id = pdc_result[0];
868 	} else {
869 		initiator->host_id = -1;
870 	}
871 
872 	/*
873 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
874 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
875 	 */
876 	switch (pdc_result[1]) {
877 		case  1: initiator->factor = 50; break;
878 		case  2: initiator->factor = 25; break;
879 		case  5: initiator->factor = 12; break;
880 		case 25: initiator->factor = 10; break;
881 		case 20: initiator->factor = 12; break;
882 		case 40: initiator->factor = 10; break;
883 		default: initiator->factor = -1; break;
884 	}
885 
886 	if (IS_SPROCKETS()) {
887 		initiator->width = pdc_result[4];
888 		initiator->mode = pdc_result[5];
889 	} else {
890 		initiator->width = -1;
891 		initiator->mode = -1;
892 	}
893 
894  out:
895 	spin_unlock_irqrestore(&pdc_lock, flags);
896 
897 	return (retval >= PDC_OK);
898 }
899 EXPORT_SYMBOL(pdc_get_initiator);
900 
901 
902 /**
903  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
904  * @num_entries: The return value.
905  * @hpa: The HPA for the device.
906  *
907  * This PDC function returns the number of entries in the specified cell's
908  * interrupt table.
909  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
910  */
911 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
912 {
913 	int retval;
914 	unsigned long flags;
915 
916 	spin_lock_irqsave(&pdc_lock, flags);
917 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
918 			      __pa(pdc_result), hpa);
919 	convert_to_wide(pdc_result);
920 	*num_entries = pdc_result[0];
921 	spin_unlock_irqrestore(&pdc_lock, flags);
922 
923 	return retval;
924 }
925 
926 /**
927  * pdc_pci_irt - Get the PCI interrupt routing table.
928  * @num_entries: The number of entries in the table.
929  * @hpa: The Hard Physical Address of the device.
930  * @tbl:
931  *
932  * Get the PCI interrupt routing table for the device at the given HPA.
933  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
934  */
935 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
936 {
937 	int retval;
938 	unsigned long flags;
939 
940 	BUG_ON((unsigned long)tbl & 0x7);
941 
942 	spin_lock_irqsave(&pdc_lock, flags);
943 	pdc_result[0] = num_entries;
944 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
945 			      __pa(pdc_result), hpa, __pa(tbl));
946 	spin_unlock_irqrestore(&pdc_lock, flags);
947 
948 	return retval;
949 }
950 
951 
952 #if 0	/* UNTEST CODE - left here in case someone needs it */
953 
954 /**
955  * pdc_pci_config_read - read PCI config space.
956  * @hpa		token from PDC to indicate which PCI device
957  * @pci_addr	configuration space address to read from
958  *
959  * Read PCI Configuration space *before* linux PCI subsystem is running.
960  */
961 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
962 {
963 	int retval;
964 	unsigned long flags;
965 
966 	spin_lock_irqsave(&pdc_lock, flags);
967 	pdc_result[0] = 0;
968 	pdc_result[1] = 0;
969 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
970 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
971 	spin_unlock_irqrestore(&pdc_lock, flags);
972 
973 	return retval ? ~0 : (unsigned int) pdc_result[0];
974 }
975 
976 
977 /**
978  * pdc_pci_config_write - read PCI config space.
979  * @hpa		token from PDC to indicate which PCI device
980  * @pci_addr	configuration space address to write
981  * @val		value we want in the 32-bit register
982  *
983  * Write PCI Configuration space *before* linux PCI subsystem is running.
984  */
985 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
986 {
987 	int retval;
988 	unsigned long flags;
989 
990 	spin_lock_irqsave(&pdc_lock, flags);
991 	pdc_result[0] = 0;
992 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
993 			      __pa(pdc_result), hpa,
994 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
995 	spin_unlock_irqrestore(&pdc_lock, flags);
996 
997 	return retval;
998 }
999 #endif /* UNTESTED CODE */
1000 
1001 /**
1002  * pdc_tod_read - Read the Time-Of-Day clock.
1003  * @tod: The return buffer:
1004  *
1005  * Read the Time-Of-Day clock
1006  */
1007 int pdc_tod_read(struct pdc_tod *tod)
1008 {
1009         int retval;
1010 	unsigned long flags;
1011 
1012         spin_lock_irqsave(&pdc_lock, flags);
1013         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014         convert_to_wide(pdc_result);
1015         memcpy(tod, pdc_result, sizeof(*tod));
1016         spin_unlock_irqrestore(&pdc_lock, flags);
1017 
1018         return retval;
1019 }
1020 EXPORT_SYMBOL(pdc_tod_read);
1021 
1022 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023 {
1024 	int retval;
1025 	unsigned long flags;
1026 
1027 	spin_lock_irqsave(&pdc_lock, flags);
1028 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029 	convert_to_wide(pdc_result);
1030 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031 	spin_unlock_irqrestore(&pdc_lock, flags);
1032 
1033 	return retval;
1034 }
1035 
1036 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037 		unsigned long *pdt_entries_ptr)
1038 {
1039 	int retval;
1040 	unsigned long flags;
1041 
1042 	spin_lock_irqsave(&pdc_lock, flags);
1043 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044 			__pa(pdt_entries_ptr));
1045 	if (retval == PDC_OK) {
1046 		convert_to_wide(pdc_result);
1047 		memcpy(pret, pdc_result, sizeof(*pret));
1048 	}
1049 	spin_unlock_irqrestore(&pdc_lock, flags);
1050 
1051 #ifdef CONFIG_64BIT
1052 	/*
1053 	 * 64-bit kernels should not call this PDT function in narrow mode.
1054 	 * The pdt_entries_ptr array above will now contain 32-bit values
1055 	 */
1056 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057 		return PDC_ERROR;
1058 #endif
1059 
1060 	return retval;
1061 }
1062 
1063 /**
1064  * pdc_tod_set - Set the Time-Of-Day clock.
1065  * @sec: The number of seconds since epoch.
1066  * @usec: The number of micro seconds.
1067  *
1068  * Set the Time-Of-Day clock.
1069  */
1070 int pdc_tod_set(unsigned long sec, unsigned long usec)
1071 {
1072         int retval;
1073 	unsigned long flags;
1074 
1075         spin_lock_irqsave(&pdc_lock, flags);
1076         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077         spin_unlock_irqrestore(&pdc_lock, flags);
1078 
1079         return retval;
1080 }
1081 EXPORT_SYMBOL(pdc_tod_set);
1082 
1083 #ifdef CONFIG_64BIT
1084 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085 		struct pdc_memory_table *tbl, unsigned long entries)
1086 {
1087 	int retval;
1088 	unsigned long flags;
1089 
1090 	spin_lock_irqsave(&pdc_lock, flags);
1091 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092 	convert_to_wide(pdc_result);
1093 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095 	spin_unlock_irqrestore(&pdc_lock, flags);
1096 
1097 	return retval;
1098 }
1099 #endif /* CONFIG_64BIT */
1100 
1101 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1102  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1103  * it later. :)
1104  */
1105 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106 {
1107         int retval;
1108 	unsigned long flags;
1109 
1110         spin_lock_irqsave(&pdc_lock, flags);
1111         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113         spin_unlock_irqrestore(&pdc_lock, flags);
1114 
1115         return retval;
1116 }
1117 
1118 /*
1119  * pdc_do_reset - Reset the system.
1120  *
1121  * Reset the system.
1122  */
1123 int pdc_do_reset(void)
1124 {
1125         int retval;
1126 	unsigned long flags;
1127 
1128         spin_lock_irqsave(&pdc_lock, flags);
1129         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130         spin_unlock_irqrestore(&pdc_lock, flags);
1131 
1132         return retval;
1133 }
1134 
1135 /*
1136  * pdc_soft_power_info - Enable soft power switch.
1137  * @power_reg: address of soft power register
1138  *
1139  * Return the absolute address of the soft power switch register
1140  */
1141 int __init pdc_soft_power_info(unsigned long *power_reg)
1142 {
1143 	int retval;
1144 	unsigned long flags;
1145 
1146 	*power_reg = (unsigned long) (-1);
1147 
1148 	spin_lock_irqsave(&pdc_lock, flags);
1149 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150 	if (retval == PDC_OK) {
1151                 convert_to_wide(pdc_result);
1152                 *power_reg = f_extend(pdc_result[0]);
1153 	}
1154 	spin_unlock_irqrestore(&pdc_lock, flags);
1155 
1156 	return retval;
1157 }
1158 
1159 /*
1160  * pdc_soft_power_button - Control the soft power button behaviour
1161  * @sw_control: 0 for hardware control, 1 for software control
1162  *
1163  *
1164  * This PDC function places the soft power button under software or
1165  * hardware control.
1166  * Under software control the OS may control to when to allow to shut
1167  * down the system. Under hardware control pressing the power button
1168  * powers off the system immediately.
1169  */
1170 int pdc_soft_power_button(int sw_control)
1171 {
1172 	int retval;
1173 	unsigned long flags;
1174 
1175 	spin_lock_irqsave(&pdc_lock, flags);
1176 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177 	spin_unlock_irqrestore(&pdc_lock, flags);
1178 
1179 	return retval;
1180 }
1181 
1182 /*
1183  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185  * who knows what other platform firmware might do with this OS "hook".
1186  */
1187 void pdc_io_reset(void)
1188 {
1189 	unsigned long flags;
1190 
1191 	spin_lock_irqsave(&pdc_lock, flags);
1192 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193 	spin_unlock_irqrestore(&pdc_lock, flags);
1194 }
1195 
1196 /*
1197  * pdc_io_reset_devices - Hack to Stop USB controller
1198  *
1199  * If PDC used the usb controller, the usb controller
1200  * is still running and will crash the machines during iommu
1201  * setup, because of still running DMA. This PDC call
1202  * stops the USB controller.
1203  * Normally called after calling pdc_io_reset().
1204  */
1205 void pdc_io_reset_devices(void)
1206 {
1207 	unsigned long flags;
1208 
1209 	spin_lock_irqsave(&pdc_lock, flags);
1210 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211 	spin_unlock_irqrestore(&pdc_lock, flags);
1212 }
1213 
1214 #endif /* defined(BOOTLOADER) */
1215 
1216 /* locked by pdc_console_lock */
1217 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1218 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219 
1220 /**
1221  * pdc_iodc_print - Console print using IODC.
1222  * @str: the string to output.
1223  * @count: length of str
1224  *
1225  * Note that only these special chars are architected for console IODC io:
1226  * BEL, BS, CR, and LF. Others are passed through.
1227  * Since the HP console requires CR+LF to perform a 'newline', we translate
1228  * "\n" to "\r\n".
1229  */
1230 int pdc_iodc_print(const unsigned char *str, unsigned count)
1231 {
1232 	unsigned int i;
1233 	unsigned long flags;
1234 
1235 	for (i = 0; i < count;) {
1236 		switch(str[i]) {
1237 		case '\n':
1238 			iodc_dbuf[i+0] = '\r';
1239 			iodc_dbuf[i+1] = '\n';
1240 			i += 2;
1241 			goto print;
1242 		default:
1243 			iodc_dbuf[i] = str[i];
1244 			i++;
1245 			break;
1246 		}
1247 	}
1248 
1249 print:
1250         spin_lock_irqsave(&pdc_lock, flags);
1251         real32_call(PAGE0->mem_cons.iodc_io,
1252                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255         spin_unlock_irqrestore(&pdc_lock, flags);
1256 
1257 	return i;
1258 }
1259 
1260 #if !defined(BOOTLOADER)
1261 /**
1262  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263  *
1264  * Read a character (non-blocking) from the PDC console, returns -1 if
1265  * key is not present.
1266  */
1267 int pdc_iodc_getc(void)
1268 {
1269 	int ch;
1270 	int status;
1271 	unsigned long flags;
1272 
1273 	/* Bail if no console input device. */
1274 	if (!PAGE0->mem_kbd.iodc_io)
1275 		return 0;
1276 
1277 	/* wait for a keyboard (rs232)-input */
1278 	spin_lock_irqsave(&pdc_lock, flags);
1279 	real32_call(PAGE0->mem_kbd.iodc_io,
1280 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1282 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283 
1284 	ch = *iodc_dbuf;
1285 	status = *iodc_retbuf;
1286 	spin_unlock_irqrestore(&pdc_lock, flags);
1287 
1288 	if (status == 0)
1289 	    return -1;
1290 
1291 	return ch;
1292 }
1293 
1294 int pdc_sti_call(unsigned long func, unsigned long flags,
1295                  unsigned long inptr, unsigned long outputr,
1296                  unsigned long glob_cfg)
1297 {
1298         int retval;
1299 	unsigned long irqflags;
1300 
1301         spin_lock_irqsave(&pdc_lock, irqflags);
1302         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303         spin_unlock_irqrestore(&pdc_lock, irqflags);
1304 
1305         return retval;
1306 }
1307 EXPORT_SYMBOL(pdc_sti_call);
1308 
1309 #ifdef CONFIG_64BIT
1310 /**
1311  * pdc_pat_cell_get_number - Returns the cell number.
1312  * @cell_info: The return buffer.
1313  *
1314  * This PDC call returns the cell number of the cell from which the call
1315  * is made.
1316  */
1317 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318 {
1319 	int retval;
1320 	unsigned long flags;
1321 
1322 	spin_lock_irqsave(&pdc_lock, flags);
1323 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325 	spin_unlock_irqrestore(&pdc_lock, flags);
1326 
1327 	return retval;
1328 }
1329 
1330 /**
1331  * pdc_pat_cell_module - Retrieve the cell's module information.
1332  * @actcnt: The number of bytes written to mem_addr.
1333  * @ploc: The physical location.
1334  * @mod: The module index.
1335  * @view_type: The view of the address type.
1336  * @mem_addr: The return buffer.
1337  *
1338  * This PDC call returns information about each module attached to the cell
1339  * at the specified location.
1340  */
1341 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342 			unsigned long view_type, void *mem_addr)
1343 {
1344 	int retval;
1345 	unsigned long flags;
1346 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347 
1348 	spin_lock_irqsave(&pdc_lock, flags);
1349 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1350 			      ploc, mod, view_type, __pa(&result));
1351 	if(!retval) {
1352 		*actcnt = pdc_result[0];
1353 		memcpy(mem_addr, &result, *actcnt);
1354 	}
1355 	spin_unlock_irqrestore(&pdc_lock, flags);
1356 
1357 	return retval;
1358 }
1359 
1360 /**
1361  * pdc_pat_cell_info - Retrieve the cell's information.
1362  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363  * @actcnt: The number of bytes which should be written to info.
1364  * @offset: offset of the structure.
1365  * @cell_number: The cell number which should be asked, or -1 for current cell.
1366  *
1367  * This PDC call returns information about the given cell (or all cells).
1368  */
1369 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370 		unsigned long *actcnt, unsigned long offset,
1371 		unsigned long cell_number)
1372 {
1373 	int retval;
1374 	unsigned long flags;
1375 	struct pdc_pat_cell_info_rtn_block result;
1376 
1377 	spin_lock_irqsave(&pdc_lock, flags);
1378 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379 			__pa(pdc_result), __pa(&result), *actcnt,
1380 			offset, cell_number);
1381 	if (!retval) {
1382 		*actcnt = pdc_result[0];
1383 		memcpy(info, &result, *actcnt);
1384 	}
1385 	spin_unlock_irqrestore(&pdc_lock, flags);
1386 
1387 	return retval;
1388 }
1389 
1390 /**
1391  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392  * @cpu_info: The return buffer.
1393  * @hpa: The Hard Physical Address of the CPU.
1394  *
1395  * Retrieve the cpu number for the cpu at the specified HPA.
1396  */
1397 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398 {
1399 	int retval;
1400 	unsigned long flags;
1401 
1402 	spin_lock_irqsave(&pdc_lock, flags);
1403 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404 			      __pa(&pdc_result), hpa);
1405 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406 	spin_unlock_irqrestore(&pdc_lock, flags);
1407 
1408 	return retval;
1409 }
1410 
1411 /**
1412  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413  * @num_entries: The return value.
1414  * @cell_num: The target cell.
1415  *
1416  * This PDC function returns the number of entries in the specified cell's
1417  * interrupt table.
1418  */
1419 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420 {
1421 	int retval;
1422 	unsigned long flags;
1423 
1424 	spin_lock_irqsave(&pdc_lock, flags);
1425 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426 			      __pa(pdc_result), cell_num);
1427 	*num_entries = pdc_result[0];
1428 	spin_unlock_irqrestore(&pdc_lock, flags);
1429 
1430 	return retval;
1431 }
1432 
1433 /**
1434  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435  * @r_addr: The return buffer.
1436  * @cell_num: The target cell.
1437  *
1438  * This PDC function returns the actual interrupt table for the specified cell.
1439  */
1440 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441 {
1442 	int retval;
1443 	unsigned long flags;
1444 
1445 	spin_lock_irqsave(&pdc_lock, flags);
1446 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447 			      __pa(r_addr), cell_num);
1448 	spin_unlock_irqrestore(&pdc_lock, flags);
1449 
1450 	return retval;
1451 }
1452 
1453 /**
1454  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455  * @actlen: The return buffer.
1456  * @mem_addr: Pointer to the memory buffer.
1457  * @count: The number of bytes to read from the buffer.
1458  * @offset: The offset with respect to the beginning of the buffer.
1459  *
1460  */
1461 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1462 			    unsigned long count, unsigned long offset)
1463 {
1464 	int retval;
1465 	unsigned long flags;
1466 
1467 	spin_lock_irqsave(&pdc_lock, flags);
1468 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1469 			      __pa(pdc_result2), count, offset);
1470 	*actual_len = pdc_result[0];
1471 	memcpy(mem_addr, pdc_result2, *actual_len);
1472 	spin_unlock_irqrestore(&pdc_lock, flags);
1473 
1474 	return retval;
1475 }
1476 
1477 /**
1478  * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479  * @legacy_rev: The legacy revision.
1480  * @pat_rev: The PAT revision.
1481  * @pdc_cap: The PDC capabilities.
1482  *
1483  */
1484 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485 		unsigned long *pat_rev, unsigned long *pdc_cap)
1486 {
1487 	int retval;
1488 	unsigned long flags;
1489 
1490 	spin_lock_irqsave(&pdc_lock, flags);
1491 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492 				__pa(pdc_result));
1493 	if (retval == PDC_OK) {
1494 		*legacy_rev = pdc_result[0];
1495 		*pat_rev = pdc_result[1];
1496 		*pdc_cap = pdc_result[2];
1497 	}
1498 	spin_unlock_irqrestore(&pdc_lock, flags);
1499 
1500 	return retval;
1501 }
1502 
1503 
1504 /**
1505  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506  * @pci_addr: PCI configuration space address for which the read request is being made.
1507  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1508  * @mem_addr: Pointer to return memory buffer.
1509  *
1510  */
1511 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512 {
1513 	int retval;
1514 	unsigned long flags;
1515 
1516 	spin_lock_irqsave(&pdc_lock, flags);
1517 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518 					__pa(pdc_result), pci_addr, pci_size);
1519 	switch(pci_size) {
1520 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1521 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1522 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1523 	}
1524 	spin_unlock_irqrestore(&pdc_lock, flags);
1525 
1526 	return retval;
1527 }
1528 
1529 /**
1530  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531  * @pci_addr: PCI configuration space address for which the write  request is being made.
1532  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1533  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1534  *         written to PCI Config space.
1535  *
1536  */
1537 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538 {
1539 	int retval;
1540 	unsigned long flags;
1541 
1542 	spin_lock_irqsave(&pdc_lock, flags);
1543 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544 				pci_addr, pci_size, val);
1545 	spin_unlock_irqrestore(&pdc_lock, flags);
1546 
1547 	return retval;
1548 }
1549 
1550 /**
1551  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552  * @rinfo: memory pdt information
1553  *
1554  */
1555 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556 {
1557 	int retval;
1558 	unsigned long flags;
1559 
1560 	spin_lock_irqsave(&pdc_lock, flags);
1561 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562 			__pa(&pdc_result));
1563 	if (retval == PDC_OK)
1564 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565 	spin_unlock_irqrestore(&pdc_lock, flags);
1566 
1567 	return retval;
1568 }
1569 
1570 /**
1571  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572  *				table of a cell
1573  * @rinfo: memory pdt information
1574  * @cell: cell number
1575  *
1576  */
1577 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578 		unsigned long cell)
1579 {
1580 	int retval;
1581 	unsigned long flags;
1582 
1583 	spin_lock_irqsave(&pdc_lock, flags);
1584 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585 			__pa(&pdc_result), cell);
1586 	if (retval == PDC_OK)
1587 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588 	spin_unlock_irqrestore(&pdc_lock, flags);
1589 
1590 	return retval;
1591 }
1592 
1593 /**
1594  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595  * @pret: array of PDT entries
1596  * @pdt_entries_ptr: ptr to hold number of PDT entries
1597  * @max_entries: maximum number of entries to be read
1598  *
1599  */
1600 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602 {
1603 	int retval;
1604 	unsigned long flags, entries;
1605 
1606 	spin_lock_irqsave(&pdc_lock, flags);
1607 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609 			__pa(&pdc_result), parisc_cell_num,
1610 			__pa(pdt_entries_ptr));
1611 
1612 	if (retval == PDC_OK) {
1613 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1614 		entries = min(pdc_result[0], max_entries);
1615 		pret->pdt_entries = entries;
1616 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1617 	}
1618 
1619 	spin_unlock_irqrestore(&pdc_lock, flags);
1620 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621 
1622 	return retval;
1623 }
1624 /**
1625  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626  * @pret: array of PDT entries
1627  * @pdt_entries_ptr: ptr to hold number of PDT entries
1628  * @count: number of bytes to read
1629  * @offset: offset to start (in bytes)
1630  *
1631  */
1632 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633 		unsigned long *pdt_entries_ptr, unsigned long count,
1634 		unsigned long offset)
1635 {
1636 	int retval;
1637 	unsigned long flags, entries;
1638 
1639 	spin_lock_irqsave(&pdc_lock, flags);
1640 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1642 		count, offset);
1643 
1644 	if (retval == PDC_OK) {
1645 		entries = min(pdc_result[0], count);
1646 		pret->actual_count_bytes = entries;
1647 		pret->pdt_entries = entries / sizeof(unsigned long);
1648 	}
1649 
1650 	spin_unlock_irqrestore(&pdc_lock, flags);
1651 
1652 	return retval;
1653 }
1654 
1655 /**
1656  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657  * @pret: ptr to hold returned information
1658  * @phys_addr: physical address to examine
1659  *
1660  */
1661 int pdc_pat_mem_get_dimm_phys_location(
1662 		struct pdc_pat_mem_phys_mem_location *pret,
1663 		unsigned long phys_addr)
1664 {
1665 	int retval;
1666 	unsigned long flags;
1667 
1668 	spin_lock_irqsave(&pdc_lock, flags);
1669 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670 		__pa(&pdc_result), phys_addr);
1671 
1672 	if (retval == PDC_OK)
1673 		memcpy(pret, &pdc_result, sizeof(*pret));
1674 
1675 	spin_unlock_irqrestore(&pdc_lock, flags);
1676 
1677 	return retval;
1678 }
1679 #endif /* CONFIG_64BIT */
1680 #endif /* defined(BOOTLOADER) */
1681 
1682 
1683 /***************** 32-bit real-mode calls ***********/
1684 /* The struct below is used
1685  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686  * real32_call_asm() then uses this stack in narrow real mode
1687  */
1688 
1689 struct narrow_stack {
1690 	/* use int, not long which is 64 bits */
1691 	unsigned int arg13;
1692 	unsigned int arg12;
1693 	unsigned int arg11;
1694 	unsigned int arg10;
1695 	unsigned int arg9;
1696 	unsigned int arg8;
1697 	unsigned int arg7;
1698 	unsigned int arg6;
1699 	unsigned int arg5;
1700 	unsigned int arg4;
1701 	unsigned int arg3;
1702 	unsigned int arg2;
1703 	unsigned int arg1;
1704 	unsigned int arg0;
1705 	unsigned int frame_marker[8];
1706 	unsigned int sp;
1707 	/* in reality, there's nearly 8k of stack after this */
1708 };
1709 
1710 long real32_call(unsigned long fn, ...)
1711 {
1712 	va_list args;
1713 	extern struct narrow_stack real_stack;
1714 	extern unsigned long real32_call_asm(unsigned int *,
1715 					     unsigned int *,
1716 					     unsigned int);
1717 
1718 	va_start(args, fn);
1719 	real_stack.arg0 = va_arg(args, unsigned int);
1720 	real_stack.arg1 = va_arg(args, unsigned int);
1721 	real_stack.arg2 = va_arg(args, unsigned int);
1722 	real_stack.arg3 = va_arg(args, unsigned int);
1723 	real_stack.arg4 = va_arg(args, unsigned int);
1724 	real_stack.arg5 = va_arg(args, unsigned int);
1725 	real_stack.arg6 = va_arg(args, unsigned int);
1726 	real_stack.arg7 = va_arg(args, unsigned int);
1727 	real_stack.arg8 = va_arg(args, unsigned int);
1728 	real_stack.arg9 = va_arg(args, unsigned int);
1729 	real_stack.arg10 = va_arg(args, unsigned int);
1730 	real_stack.arg11 = va_arg(args, unsigned int);
1731 	real_stack.arg12 = va_arg(args, unsigned int);
1732 	real_stack.arg13 = va_arg(args, unsigned int);
1733 	va_end(args);
1734 
1735 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736 }
1737 
1738 #ifdef CONFIG_64BIT
1739 /***************** 64-bit real-mode calls ***********/
1740 
1741 struct wide_stack {
1742 	unsigned long arg0;
1743 	unsigned long arg1;
1744 	unsigned long arg2;
1745 	unsigned long arg3;
1746 	unsigned long arg4;
1747 	unsigned long arg5;
1748 	unsigned long arg6;
1749 	unsigned long arg7;
1750 	unsigned long arg8;
1751 	unsigned long arg9;
1752 	unsigned long arg10;
1753 	unsigned long arg11;
1754 	unsigned long arg12;
1755 	unsigned long arg13;
1756 	unsigned long frame_marker[2];	/* rp, previous sp */
1757 	unsigned long sp;
1758 	/* in reality, there's nearly 8k of stack after this */
1759 };
1760 
1761 long real64_call(unsigned long fn, ...)
1762 {
1763 	va_list args;
1764 	extern struct wide_stack real64_stack;
1765 	extern unsigned long real64_call_asm(unsigned long *,
1766 					     unsigned long *,
1767 					     unsigned long);
1768 
1769 	va_start(args, fn);
1770 	real64_stack.arg0 = va_arg(args, unsigned long);
1771 	real64_stack.arg1 = va_arg(args, unsigned long);
1772 	real64_stack.arg2 = va_arg(args, unsigned long);
1773 	real64_stack.arg3 = va_arg(args, unsigned long);
1774 	real64_stack.arg4 = va_arg(args, unsigned long);
1775 	real64_stack.arg5 = va_arg(args, unsigned long);
1776 	real64_stack.arg6 = va_arg(args, unsigned long);
1777 	real64_stack.arg7 = va_arg(args, unsigned long);
1778 	real64_stack.arg8 = va_arg(args, unsigned long);
1779 	real64_stack.arg9 = va_arg(args, unsigned long);
1780 	real64_stack.arg10 = va_arg(args, unsigned long);
1781 	real64_stack.arg11 = va_arg(args, unsigned long);
1782 	real64_stack.arg12 = va_arg(args, unsigned long);
1783 	real64_stack.arg13 = va_arg(args, unsigned long);
1784 	va_end(args);
1785 
1786 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787 }
1788 
1789 #endif /* CONFIG_64BIT */
1790