1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * arch/parisc/kernel/firmware.c - safe PDC access routines 4 * 5 * PDC == Processor Dependent Code 6 * 7 * See PDC documentation at 8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation 9 * for documentation describing the entry points and calling 10 * conventions defined below. 11 * 12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 14 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 17 */ 18 19 /* I think it would be in everyone's best interest to follow this 20 * guidelines when writing PDC wrappers: 21 * 22 * - the name of the pdc wrapper should match one of the macros 23 * used for the first two arguments 24 * - don't use caps for random parts of the name 25 * - use the static PDC result buffers and "copyout" to structs 26 * supplied by the caller to encapsulate alignment restrictions 27 * - hold pdc_lock while in PDC or using static result buffers 28 * - use __pa() to convert virtual (kernel) pointers to physical 29 * ones. 30 * - the name of the struct used for pdc return values should equal 31 * one of the macros used for the first two arguments to the 32 * corresponding PDC call 33 * - keep the order of arguments 34 * - don't be smart (setting trailing NUL bytes for strings, return 35 * something useful even if the call failed) unless you are sure 36 * it's not going to affect functionality or performance 37 * 38 * Example: 39 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 40 * { 41 * int retval; 42 * 43 * spin_lock_irq(&pdc_lock); 44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 45 * convert_to_wide(pdc_result); 46 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 47 * spin_unlock_irq(&pdc_lock); 48 * 49 * return retval; 50 * } 51 * prumpf 991016 52 */ 53 54 #include <linux/stdarg.h> 55 56 #include <linux/delay.h> 57 #include <linux/init.h> 58 #include <linux/kernel.h> 59 #include <linux/module.h> 60 #include <linux/string.h> 61 #include <linux/spinlock.h> 62 63 #include <asm/page.h> 64 #include <asm/pdc.h> 65 #include <asm/pdcpat.h> 66 #include <asm/processor.h> /* for boot_cpu_data */ 67 68 #if defined(BOOTLOADER) 69 # undef spin_lock_irqsave 70 # define spin_lock_irqsave(a, b) { b = 1; } 71 # undef spin_unlock_irqrestore 72 # define spin_unlock_irqrestore(a, b) 73 #else 74 static DEFINE_SPINLOCK(pdc_lock); 75 #endif 76 77 unsigned long pdc_result[NUM_PDC_RESULT] __aligned(8); 78 unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8); 79 80 #ifdef CONFIG_64BIT 81 #define WIDE_FIRMWARE 0x1 82 #define NARROW_FIRMWARE 0x2 83 84 /* Firmware needs to be initially set to narrow to determine the 85 * actual firmware width. */ 86 int parisc_narrow_firmware __ro_after_init = 2; 87 #endif 88 89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 90 * and MEM_PDC calls are always the same width as the OS. 91 * Some PAT boxes may have 64-bit IODC I/O. 92 * 93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 95 * This allowed wide kernels to run on Cxxx boxes. 96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 98 */ 99 100 #ifdef CONFIG_64BIT 101 long real64_call(unsigned long function, ...); 102 #endif 103 long real32_call(unsigned long function, ...); 104 105 #ifdef CONFIG_64BIT 106 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 107 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 108 #else 109 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 110 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 111 #endif 112 113 114 /** 115 * f_extend - Convert PDC addresses to kernel addresses. 116 * @address: Address returned from PDC. 117 * 118 * This function is used to convert PDC addresses into kernel addresses 119 * when the PDC address size and kernel address size are different. 120 */ 121 static unsigned long f_extend(unsigned long address) 122 { 123 #ifdef CONFIG_64BIT 124 if(unlikely(parisc_narrow_firmware)) { 125 if((address & 0xff000000) == 0xf0000000) 126 return 0xf0f0f0f000000000UL | (u32)address; 127 128 if((address & 0xf0000000) == 0xf0000000) 129 return 0xffffffff00000000UL | (u32)address; 130 } 131 #endif 132 return address; 133 } 134 135 /** 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 137 * @addr: The return buffer from PDC. 138 * 139 * This function is used to convert the return buffer addresses retrieved from PDC 140 * into kernel addresses when the PDC address size and kernel address size are 141 * different. 142 */ 143 static void convert_to_wide(unsigned long *addr) 144 { 145 #ifdef CONFIG_64BIT 146 int i; 147 unsigned int *p = (unsigned int *)addr; 148 149 if (unlikely(parisc_narrow_firmware)) { 150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i) 151 addr[i] = p[i]; 152 } 153 #endif 154 } 155 156 #ifdef CONFIG_64BIT 157 void set_firmware_width_unlocked(void) 158 { 159 int ret; 160 161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 162 __pa(pdc_result), 0); 163 if (ret < 0) 164 return; 165 convert_to_wide(pdc_result); 166 if (pdc_result[0] != NARROW_FIRMWARE) 167 parisc_narrow_firmware = 0; 168 } 169 170 /** 171 * set_firmware_width - Determine if the firmware is wide or narrow. 172 * 173 * This function must be called before any pdc_* function that uses the 174 * convert_to_wide function. 175 */ 176 void set_firmware_width(void) 177 { 178 unsigned long flags; 179 180 /* already initialized? */ 181 if (parisc_narrow_firmware != 2) 182 return; 183 184 spin_lock_irqsave(&pdc_lock, flags); 185 set_firmware_width_unlocked(); 186 spin_unlock_irqrestore(&pdc_lock, flags); 187 } 188 #else 189 void set_firmware_width_unlocked(void) 190 { 191 return; 192 } 193 194 void set_firmware_width(void) 195 { 196 return; 197 } 198 #endif /*CONFIG_64BIT*/ 199 200 201 #if !defined(BOOTLOADER) 202 /** 203 * pdc_emergency_unlock - Unlock the linux pdc lock 204 * 205 * This call unlocks the linux pdc lock in case we need some PDC functions 206 * (like pdc_add_valid) during kernel stack dump. 207 */ 208 void pdc_emergency_unlock(void) 209 { 210 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 211 if (spin_is_locked(&pdc_lock)) 212 spin_unlock(&pdc_lock); 213 } 214 215 216 /** 217 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 218 * @address: Address to be verified. 219 * 220 * This PDC call attempts to read from the specified address and verifies 221 * if the address is valid. 222 * 223 * The return value is PDC_OK (0) in case accessing this address is valid. 224 */ 225 int pdc_add_valid(unsigned long address) 226 { 227 int retval; 228 unsigned long flags; 229 230 spin_lock_irqsave(&pdc_lock, flags); 231 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 232 spin_unlock_irqrestore(&pdc_lock, flags); 233 234 return retval; 235 } 236 EXPORT_SYMBOL(pdc_add_valid); 237 238 /** 239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler. 240 * @instr: Pointer to variable which will get instruction opcode. 241 * 242 * The return value is PDC_OK (0) in case call succeeded. 243 */ 244 int __init pdc_instr(unsigned int *instr) 245 { 246 int retval; 247 unsigned long flags; 248 249 spin_lock_irqsave(&pdc_lock, flags); 250 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result)); 251 convert_to_wide(pdc_result); 252 *instr = pdc_result[0]; 253 spin_unlock_irqrestore(&pdc_lock, flags); 254 255 return retval; 256 } 257 258 /** 259 * pdc_chassis_info - Return chassis information. 260 * @chassis_info: The memory buffer address. 261 * @led_info: The size of the memory buffer address. 262 * @len: The size of the memory buffer address. 263 * 264 * An HVERSION dependent call for returning the chassis information. 265 */ 266 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 267 { 268 int retval; 269 unsigned long flags; 270 271 spin_lock_irqsave(&pdc_lock, flags); 272 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 273 memcpy(&pdc_result2, led_info, len); 274 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 275 __pa(pdc_result), __pa(pdc_result2), len); 276 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 277 memcpy(led_info, pdc_result2, len); 278 spin_unlock_irqrestore(&pdc_lock, flags); 279 280 return retval; 281 } 282 283 /** 284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 285 * @state: state of the machine 286 * @data: value for that state 287 * 288 * Must be correctly formatted or expect system crash 289 */ 290 #ifdef CONFIG_64BIT 291 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 292 { 293 int retval = 0; 294 unsigned long flags; 295 296 if (!is_pdc_pat()) 297 return -1; 298 299 spin_lock_irqsave(&pdc_lock, flags); 300 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 301 spin_unlock_irqrestore(&pdc_lock, flags); 302 303 return retval; 304 } 305 #endif 306 307 /** 308 * pdc_chassis_disp - Updates chassis code 309 * @disp: value to show on display 310 */ 311 int pdc_chassis_disp(unsigned long disp) 312 { 313 int retval = 0; 314 unsigned long flags; 315 316 spin_lock_irqsave(&pdc_lock, flags); 317 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 318 spin_unlock_irqrestore(&pdc_lock, flags); 319 320 return retval; 321 } 322 323 /** 324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return. 325 */ 326 int __pdc_cpu_rendezvous(void) 327 { 328 if (is_pdc_pat()) 329 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS); 330 else 331 return mem_pdc_call(PDC_PROC, 1, 0); 332 } 333 334 /** 335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state 336 */ 337 void pdc_cpu_rendezvous_lock(void) 338 { 339 spin_lock(&pdc_lock); 340 } 341 342 /** 343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state 344 */ 345 void pdc_cpu_rendezvous_unlock(void) 346 { 347 spin_unlock(&pdc_lock); 348 } 349 350 /** 351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU 352 * @pdc_entry: pointer to where the PDC entry point should be stored 353 */ 354 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry) 355 { 356 int retval = 0; 357 unsigned long flags; 358 359 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) { 360 *pdc_entry = MEM_PDC; 361 return 0; 362 } 363 364 spin_lock_irqsave(&pdc_lock, flags); 365 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT, 366 __pa(pdc_result)); 367 *pdc_entry = pdc_result[0]; 368 spin_unlock_irqrestore(&pdc_lock, flags); 369 370 return retval; 371 } 372 /** 373 * pdc_chassis_warn - Fetches chassis warnings 374 * @warn: The warning value to be shown 375 */ 376 int pdc_chassis_warn(unsigned long *warn) 377 { 378 int retval = 0; 379 unsigned long flags; 380 381 spin_lock_irqsave(&pdc_lock, flags); 382 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 383 *warn = pdc_result[0]; 384 spin_unlock_irqrestore(&pdc_lock, flags); 385 386 return retval; 387 } 388 389 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 390 { 391 int ret; 392 393 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 394 convert_to_wide(pdc_result); 395 pdc_coproc_info->ccr_functional = pdc_result[0]; 396 pdc_coproc_info->ccr_present = pdc_result[1]; 397 pdc_coproc_info->revision = pdc_result[17]; 398 pdc_coproc_info->model = pdc_result[18]; 399 400 return ret; 401 } 402 403 /** 404 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 405 * @pdc_coproc_info: Return buffer address. 406 * 407 * This PDC call returns the presence and status of all the coprocessors 408 * attached to the processor. 409 */ 410 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 411 { 412 int ret; 413 unsigned long flags; 414 415 spin_lock_irqsave(&pdc_lock, flags); 416 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 417 spin_unlock_irqrestore(&pdc_lock, flags); 418 419 return ret; 420 } 421 422 /** 423 * pdc_iodc_read - Read data from the modules IODC. 424 * @actcnt: The actual number of bytes. 425 * @hpa: The HPA of the module for the iodc read. 426 * @index: The iodc entry point. 427 * @iodc_data: A buffer memory for the iodc options. 428 * @iodc_data_size: Size of the memory buffer. 429 * 430 * This PDC call reads from the IODC of the module specified by the hpa 431 * argument. 432 */ 433 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 434 void *iodc_data, unsigned int iodc_data_size) 435 { 436 int retval; 437 unsigned long flags; 438 439 spin_lock_irqsave(&pdc_lock, flags); 440 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 441 index, __pa(pdc_result2), iodc_data_size); 442 convert_to_wide(pdc_result); 443 *actcnt = pdc_result[0]; 444 memcpy(iodc_data, pdc_result2, iodc_data_size); 445 spin_unlock_irqrestore(&pdc_lock, flags); 446 447 return retval; 448 } 449 EXPORT_SYMBOL(pdc_iodc_read); 450 451 /** 452 * pdc_system_map_find_mods - Locate unarchitected modules. 453 * @pdc_mod_info: Return buffer address. 454 * @mod_path: pointer to dev path structure. 455 * @mod_index: fixed address module index. 456 * 457 * To locate and identify modules which reside at fixed I/O addresses, which 458 * do not self-identify via architected bus walks. 459 */ 460 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 461 struct pdc_module_path *mod_path, long mod_index) 462 { 463 int retval; 464 unsigned long flags; 465 466 spin_lock_irqsave(&pdc_lock, flags); 467 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 468 __pa(pdc_result2), mod_index); 469 convert_to_wide(pdc_result); 470 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 471 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 472 spin_unlock_irqrestore(&pdc_lock, flags); 473 474 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 475 return retval; 476 } 477 478 /** 479 * pdc_system_map_find_addrs - Retrieve additional address ranges. 480 * @pdc_addr_info: Return buffer address. 481 * @mod_index: Fixed address module index. 482 * @addr_index: Address range index. 483 * 484 * Retrieve additional information about subsequent address ranges for modules 485 * with multiple address ranges. 486 */ 487 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 488 long mod_index, long addr_index) 489 { 490 int retval; 491 unsigned long flags; 492 493 spin_lock_irqsave(&pdc_lock, flags); 494 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 495 mod_index, addr_index); 496 convert_to_wide(pdc_result); 497 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 498 spin_unlock_irqrestore(&pdc_lock, flags); 499 500 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 501 return retval; 502 } 503 504 /** 505 * pdc_model_info - Return model information about the processor. 506 * @model: The return buffer. 507 * 508 * Returns the version numbers, identifiers, and capabilities from the processor module. 509 */ 510 int pdc_model_info(struct pdc_model *model) 511 { 512 int retval; 513 unsigned long flags; 514 515 spin_lock_irqsave(&pdc_lock, flags); 516 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 517 convert_to_wide(pdc_result); 518 memcpy(model, pdc_result, sizeof(*model)); 519 spin_unlock_irqrestore(&pdc_lock, flags); 520 521 return retval; 522 } 523 524 /** 525 * pdc_model_sysmodel - Get the system model name. 526 * @os_id: The operating system ID asked for (an OS_ID_* value) 527 * @name: A char array of at least 81 characters. 528 * 529 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 530 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 531 * on HP/UX. 532 */ 533 int pdc_model_sysmodel(unsigned int os_id, char *name) 534 { 535 int retval; 536 unsigned long flags; 537 538 spin_lock_irqsave(&pdc_lock, flags); 539 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 540 os_id, __pa(name)); 541 convert_to_wide(pdc_result); 542 543 if (retval == PDC_OK) { 544 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 545 } else { 546 name[0] = 0; 547 } 548 spin_unlock_irqrestore(&pdc_lock, flags); 549 550 return retval; 551 } 552 553 /** 554 * pdc_model_versions - Identify the version number of each processor. 555 * @versions: The return buffer. 556 * @id: The id of the processor to check. 557 * 558 * Returns the version number for each processor component. 559 * 560 * This comment was here before, but I do not know what it means :( -RB 561 * id: 0 = cpu revision, 1 = boot-rom-version 562 */ 563 int pdc_model_versions(unsigned long *versions, int id) 564 { 565 int retval; 566 unsigned long flags; 567 568 spin_lock_irqsave(&pdc_lock, flags); 569 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 570 convert_to_wide(pdc_result); 571 *versions = pdc_result[0]; 572 spin_unlock_irqrestore(&pdc_lock, flags); 573 574 return retval; 575 } 576 577 /** 578 * pdc_model_cpuid - Returns the CPU_ID. 579 * @cpu_id: The return buffer. 580 * 581 * Returns the CPU_ID value which uniquely identifies the cpu portion of 582 * the processor module. 583 */ 584 int pdc_model_cpuid(unsigned long *cpu_id) 585 { 586 int retval; 587 unsigned long flags; 588 589 spin_lock_irqsave(&pdc_lock, flags); 590 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 591 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 592 convert_to_wide(pdc_result); 593 *cpu_id = pdc_result[0]; 594 spin_unlock_irqrestore(&pdc_lock, flags); 595 596 return retval; 597 } 598 599 /** 600 * pdc_model_capabilities - Returns the platform capabilities. 601 * @capabilities: The return buffer. 602 * 603 * Returns information about platform support for 32- and/or 64-bit 604 * OSes, IO-PDIR coherency, and virtual aliasing. 605 */ 606 int pdc_model_capabilities(unsigned long *capabilities) 607 { 608 int retval; 609 unsigned long flags; 610 611 spin_lock_irqsave(&pdc_lock, flags); 612 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 613 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 614 convert_to_wide(pdc_result); 615 if (retval == PDC_OK) { 616 *capabilities = pdc_result[0]; 617 } else { 618 *capabilities = PDC_MODEL_OS32; 619 } 620 spin_unlock_irqrestore(&pdc_lock, flags); 621 622 return retval; 623 } 624 625 /** 626 * pdc_model_platform_info - Returns machine product and serial number. 627 * @orig_prod_num: Return buffer for original product number. 628 * @current_prod_num: Return buffer for current product number. 629 * @serial_no: Return buffer for serial number. 630 * 631 * Returns strings containing the original and current product numbers and the 632 * serial number of the system. 633 */ 634 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num, 635 char *serial_no) 636 { 637 int retval; 638 unsigned long flags; 639 640 spin_lock_irqsave(&pdc_lock, flags); 641 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO, 642 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no)); 643 convert_to_wide(pdc_result); 644 spin_unlock_irqrestore(&pdc_lock, flags); 645 646 return retval; 647 } 648 649 /** 650 * pdc_cache_info - Return cache and TLB information. 651 * @cache_info: The return buffer. 652 * 653 * Returns information about the processor's cache and TLB. 654 */ 655 int pdc_cache_info(struct pdc_cache_info *cache_info) 656 { 657 int retval; 658 unsigned long flags; 659 660 spin_lock_irqsave(&pdc_lock, flags); 661 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 662 convert_to_wide(pdc_result); 663 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 664 spin_unlock_irqrestore(&pdc_lock, flags); 665 666 return retval; 667 } 668 669 /** 670 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 671 * @space_bits: Should be 0, if not, bad mojo! 672 * 673 * Returns information about Space ID hashing. 674 */ 675 int pdc_spaceid_bits(unsigned long *space_bits) 676 { 677 int retval; 678 unsigned long flags; 679 680 spin_lock_irqsave(&pdc_lock, flags); 681 pdc_result[0] = 0; 682 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 683 convert_to_wide(pdc_result); 684 *space_bits = pdc_result[0]; 685 spin_unlock_irqrestore(&pdc_lock, flags); 686 687 return retval; 688 } 689 690 #ifndef CONFIG_PA20 691 /** 692 * pdc_btlb_info - Return block TLB information. 693 * @btlb: The return buffer. 694 * 695 * Returns information about the hardware Block TLB. 696 */ 697 int pdc_btlb_info(struct pdc_btlb_info *btlb) 698 { 699 int retval; 700 unsigned long flags; 701 702 spin_lock_irqsave(&pdc_lock, flags); 703 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 704 memcpy(btlb, pdc_result, sizeof(*btlb)); 705 spin_unlock_irqrestore(&pdc_lock, flags); 706 707 if(retval < 0) { 708 btlb->max_size = 0; 709 } 710 return retval; 711 } 712 713 /** 714 * pdc_mem_map_hpa - Find fixed module information. 715 * @address: The return buffer 716 * @mod_path: pointer to dev path structure. 717 * 718 * This call was developed for S700 workstations to allow the kernel to find 719 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 720 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 721 * call. 722 * 723 * This call is supported by all existing S700 workstations (up to Gecko). 724 */ 725 int pdc_mem_map_hpa(struct pdc_memory_map *address, 726 struct pdc_module_path *mod_path) 727 { 728 int retval; 729 unsigned long flags; 730 731 spin_lock_irqsave(&pdc_lock, flags); 732 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 733 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 734 __pa(pdc_result2)); 735 memcpy(address, pdc_result, sizeof(*address)); 736 spin_unlock_irqrestore(&pdc_lock, flags); 737 738 return retval; 739 } 740 #endif /* !CONFIG_PA20 */ 741 742 /** 743 * pdc_lan_station_id - Get the LAN address. 744 * @lan_addr: The return buffer. 745 * @hpa: The network device HPA. 746 * 747 * Get the LAN station address when it is not directly available from the LAN hardware. 748 */ 749 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 750 { 751 int retval; 752 unsigned long flags; 753 754 spin_lock_irqsave(&pdc_lock, flags); 755 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 756 __pa(pdc_result), hpa); 757 if (retval < 0) { 758 /* FIXME: else read MAC from NVRAM */ 759 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 760 } else { 761 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 762 } 763 spin_unlock_irqrestore(&pdc_lock, flags); 764 765 return retval; 766 } 767 EXPORT_SYMBOL(pdc_lan_station_id); 768 769 /** 770 * pdc_stable_read - Read data from Stable Storage. 771 * @staddr: Stable Storage address to access. 772 * @memaddr: The memory address where Stable Storage data shall be copied. 773 * @count: number of bytes to transfer. count is multiple of 4. 774 * 775 * This PDC call reads from the Stable Storage address supplied in staddr 776 * and copies count bytes to the memory address memaddr. 777 * The call will fail if staddr+count > PDC_STABLE size. 778 */ 779 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 780 { 781 int retval; 782 unsigned long flags; 783 784 spin_lock_irqsave(&pdc_lock, flags); 785 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 786 __pa(pdc_result), count); 787 convert_to_wide(pdc_result); 788 memcpy(memaddr, pdc_result, count); 789 spin_unlock_irqrestore(&pdc_lock, flags); 790 791 return retval; 792 } 793 EXPORT_SYMBOL(pdc_stable_read); 794 795 /** 796 * pdc_stable_write - Write data to Stable Storage. 797 * @staddr: Stable Storage address to access. 798 * @memaddr: The memory address where Stable Storage data shall be read from. 799 * @count: number of bytes to transfer. count is multiple of 4. 800 * 801 * This PDC call reads count bytes from the supplied memaddr address, 802 * and copies count bytes to the Stable Storage address staddr. 803 * The call will fail if staddr+count > PDC_STABLE size. 804 */ 805 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 806 { 807 int retval; 808 unsigned long flags; 809 810 spin_lock_irqsave(&pdc_lock, flags); 811 memcpy(pdc_result, memaddr, count); 812 convert_to_wide(pdc_result); 813 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 814 __pa(pdc_result), count); 815 spin_unlock_irqrestore(&pdc_lock, flags); 816 817 return retval; 818 } 819 EXPORT_SYMBOL(pdc_stable_write); 820 821 /** 822 * pdc_stable_get_size - Get Stable Storage size in bytes. 823 * @size: pointer where the size will be stored. 824 * 825 * This PDC call returns the number of bytes in the processor's Stable 826 * Storage, which is the number of contiguous bytes implemented in Stable 827 * Storage starting from staddr=0. size in an unsigned 64-bit integer 828 * which is a multiple of four. 829 */ 830 int pdc_stable_get_size(unsigned long *size) 831 { 832 int retval; 833 unsigned long flags; 834 835 spin_lock_irqsave(&pdc_lock, flags); 836 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 837 *size = pdc_result[0]; 838 spin_unlock_irqrestore(&pdc_lock, flags); 839 840 return retval; 841 } 842 EXPORT_SYMBOL(pdc_stable_get_size); 843 844 /** 845 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 846 * 847 * This PDC call is meant to be used to check the integrity of the current 848 * contents of Stable Storage. 849 */ 850 int pdc_stable_verify_contents(void) 851 { 852 int retval; 853 unsigned long flags; 854 855 spin_lock_irqsave(&pdc_lock, flags); 856 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 857 spin_unlock_irqrestore(&pdc_lock, flags); 858 859 return retval; 860 } 861 EXPORT_SYMBOL(pdc_stable_verify_contents); 862 863 /** 864 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 865 * the validity indicator. 866 * 867 * This PDC call will erase all contents of Stable Storage. Use with care! 868 */ 869 int pdc_stable_initialize(void) 870 { 871 int retval; 872 unsigned long flags; 873 874 spin_lock_irqsave(&pdc_lock, flags); 875 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 876 spin_unlock_irqrestore(&pdc_lock, flags); 877 878 return retval; 879 } 880 EXPORT_SYMBOL(pdc_stable_initialize); 881 882 /** 883 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 884 * @hwpath: fully bc.mod style path to the device. 885 * @initiator: the array to return the result into 886 * 887 * Get the SCSI operational parameters from PDC. 888 * Needed since HPUX never used BIOS or symbios card NVRAM. 889 * Most ncr/sym cards won't have an entry and just use whatever 890 * capabilities of the card are (eg Ultra, LVD). But there are 891 * several cases where it's useful: 892 * o set SCSI id for Multi-initiator clusters, 893 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 894 * o bus width exported is less than what the interface chip supports. 895 */ 896 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 897 { 898 int retval; 899 unsigned long flags; 900 901 spin_lock_irqsave(&pdc_lock, flags); 902 903 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 904 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 905 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 906 907 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 908 __pa(pdc_result), __pa(hwpath)); 909 if (retval < PDC_OK) 910 goto out; 911 912 if (pdc_result[0] < 16) { 913 initiator->host_id = pdc_result[0]; 914 } else { 915 initiator->host_id = -1; 916 } 917 918 /* 919 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 920 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 921 */ 922 switch (pdc_result[1]) { 923 case 1: initiator->factor = 50; break; 924 case 2: initiator->factor = 25; break; 925 case 5: initiator->factor = 12; break; 926 case 25: initiator->factor = 10; break; 927 case 20: initiator->factor = 12; break; 928 case 40: initiator->factor = 10; break; 929 default: initiator->factor = -1; break; 930 } 931 932 if (IS_SPROCKETS()) { 933 initiator->width = pdc_result[4]; 934 initiator->mode = pdc_result[5]; 935 } else { 936 initiator->width = -1; 937 initiator->mode = -1; 938 } 939 940 out: 941 spin_unlock_irqrestore(&pdc_lock, flags); 942 943 return (retval >= PDC_OK); 944 } 945 EXPORT_SYMBOL(pdc_get_initiator); 946 947 948 /** 949 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 950 * @num_entries: The return value. 951 * @hpa: The HPA for the device. 952 * 953 * This PDC function returns the number of entries in the specified cell's 954 * interrupt table. 955 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 956 */ 957 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 958 { 959 int retval; 960 unsigned long flags; 961 962 spin_lock_irqsave(&pdc_lock, flags); 963 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 964 __pa(pdc_result), hpa); 965 convert_to_wide(pdc_result); 966 *num_entries = pdc_result[0]; 967 spin_unlock_irqrestore(&pdc_lock, flags); 968 969 return retval; 970 } 971 972 /** 973 * pdc_pci_irt - Get the PCI interrupt routing table. 974 * @num_entries: The number of entries in the table. 975 * @hpa: The Hard Physical Address of the device. 976 * @tbl: 977 * 978 * Get the PCI interrupt routing table for the device at the given HPA. 979 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 980 */ 981 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 982 { 983 int retval; 984 unsigned long flags; 985 986 BUG_ON((unsigned long)tbl & 0x7); 987 988 spin_lock_irqsave(&pdc_lock, flags); 989 pdc_result[0] = num_entries; 990 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 991 __pa(pdc_result), hpa, __pa(tbl)); 992 spin_unlock_irqrestore(&pdc_lock, flags); 993 994 return retval; 995 } 996 997 998 #if 0 /* UNTEST CODE - left here in case someone needs it */ 999 1000 /** 1001 * pdc_pci_config_read - read PCI config space. 1002 * @hpa: Token from PDC to indicate which PCI device 1003 * @cfg_addr: Configuration space address to read from 1004 * 1005 * Read PCI Configuration space *before* linux PCI subsystem is running. 1006 */ 1007 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 1008 { 1009 int retval; 1010 unsigned long flags; 1011 1012 spin_lock_irqsave(&pdc_lock, flags); 1013 pdc_result[0] = 0; 1014 pdc_result[1] = 0; 1015 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 1016 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 1017 spin_unlock_irqrestore(&pdc_lock, flags); 1018 1019 return retval ? ~0 : (unsigned int) pdc_result[0]; 1020 } 1021 1022 1023 /** 1024 * pdc_pci_config_write - read PCI config space. 1025 * @hpa: Token from PDC to indicate which PCI device 1026 * @cfg_addr: Configuration space address to write 1027 * @val: Value we want in the 32-bit register 1028 * 1029 * Write PCI Configuration space *before* linux PCI subsystem is running. 1030 */ 1031 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 1032 { 1033 int retval; 1034 unsigned long flags; 1035 1036 spin_lock_irqsave(&pdc_lock, flags); 1037 pdc_result[0] = 0; 1038 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 1039 __pa(pdc_result), hpa, 1040 cfg_addr&~3UL, 4UL, (unsigned long) val); 1041 spin_unlock_irqrestore(&pdc_lock, flags); 1042 1043 return retval; 1044 } 1045 #endif /* UNTESTED CODE */ 1046 1047 /** 1048 * pdc_tod_read - Read the Time-Of-Day clock. 1049 * @tod: The return buffer: 1050 * 1051 * Read the Time-Of-Day clock 1052 */ 1053 int pdc_tod_read(struct pdc_tod *tod) 1054 { 1055 int retval; 1056 unsigned long flags; 1057 1058 spin_lock_irqsave(&pdc_lock, flags); 1059 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 1060 convert_to_wide(pdc_result); 1061 memcpy(tod, pdc_result, sizeof(*tod)); 1062 spin_unlock_irqrestore(&pdc_lock, flags); 1063 1064 return retval; 1065 } 1066 EXPORT_SYMBOL(pdc_tod_read); 1067 1068 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo) 1069 { 1070 int retval; 1071 unsigned long flags; 1072 1073 spin_lock_irqsave(&pdc_lock, flags); 1074 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0); 1075 convert_to_wide(pdc_result); 1076 memcpy(rinfo, pdc_result, sizeof(*rinfo)); 1077 spin_unlock_irqrestore(&pdc_lock, flags); 1078 1079 return retval; 1080 } 1081 1082 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret, 1083 unsigned long *pdt_entries_ptr) 1084 { 1085 int retval; 1086 unsigned long flags; 1087 1088 spin_lock_irqsave(&pdc_lock, flags); 1089 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result), 1090 __pa(pdt_entries_ptr)); 1091 if (retval == PDC_OK) { 1092 convert_to_wide(pdc_result); 1093 memcpy(pret, pdc_result, sizeof(*pret)); 1094 } 1095 spin_unlock_irqrestore(&pdc_lock, flags); 1096 1097 #ifdef CONFIG_64BIT 1098 /* 1099 * 64-bit kernels should not call this PDT function in narrow mode. 1100 * The pdt_entries_ptr array above will now contain 32-bit values 1101 */ 1102 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware)) 1103 return PDC_ERROR; 1104 #endif 1105 1106 return retval; 1107 } 1108 1109 /** 1110 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware. 1111 * @ret: pointer to return buffer 1112 */ 1113 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret) 1114 { 1115 int retval; 1116 unsigned long flags; 1117 1118 spin_lock_irqsave(&pdc_lock, flags); 1119 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1120 __pa(ret), sizeof(*ret)); 1121 spin_unlock_irqrestore(&pdc_lock, flags); 1122 return retval; 1123 } 1124 1125 /** 1126 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware. 1127 * @ret: pointer to return buffer 1128 */ 1129 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret) 1130 { 1131 int retval; 1132 unsigned long flags; 1133 1134 spin_lock_irqsave(&pdc_lock, flags); 1135 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1136 __pa(ret), sizeof(*ret)); 1137 spin_unlock_irqrestore(&pdc_lock, flags); 1138 return retval; 1139 } 1140 1141 /** 1142 * pdc_tod_set - Set the Time-Of-Day clock. 1143 * @sec: The number of seconds since epoch. 1144 * @usec: The number of micro seconds. 1145 * 1146 * Set the Time-Of-Day clock. 1147 */ 1148 int pdc_tod_set(unsigned long sec, unsigned long usec) 1149 { 1150 int retval; 1151 unsigned long flags; 1152 1153 spin_lock_irqsave(&pdc_lock, flags); 1154 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 1155 spin_unlock_irqrestore(&pdc_lock, flags); 1156 1157 return retval; 1158 } 1159 EXPORT_SYMBOL(pdc_tod_set); 1160 1161 #ifdef CONFIG_64BIT 1162 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 1163 struct pdc_memory_table *tbl, unsigned long entries) 1164 { 1165 int retval; 1166 unsigned long flags; 1167 1168 spin_lock_irqsave(&pdc_lock, flags); 1169 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 1170 convert_to_wide(pdc_result); 1171 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 1172 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 1173 spin_unlock_irqrestore(&pdc_lock, flags); 1174 1175 return retval; 1176 } 1177 #endif /* CONFIG_64BIT */ 1178 1179 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 1180 * so I guessed at unsigned long. Someone who knows what this does, can fix 1181 * it later. :) 1182 */ 1183 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1184 { 1185 int retval; 1186 unsigned long flags; 1187 1188 spin_lock_irqsave(&pdc_lock, flags); 1189 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1190 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1191 spin_unlock_irqrestore(&pdc_lock, flags); 1192 1193 return retval; 1194 } 1195 1196 /* 1197 * pdc_do_reset - Reset the system. 1198 * 1199 * Reset the system. 1200 */ 1201 int pdc_do_reset(void) 1202 { 1203 int retval; 1204 unsigned long flags; 1205 1206 spin_lock_irqsave(&pdc_lock, flags); 1207 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1208 spin_unlock_irqrestore(&pdc_lock, flags); 1209 1210 return retval; 1211 } 1212 1213 /* 1214 * pdc_soft_power_info - Enable soft power switch. 1215 * @power_reg: address of soft power register 1216 * 1217 * Return the absolute address of the soft power switch register 1218 */ 1219 int __init pdc_soft_power_info(unsigned long *power_reg) 1220 { 1221 int retval; 1222 unsigned long flags; 1223 1224 *power_reg = (unsigned long) (-1); 1225 1226 spin_lock_irqsave(&pdc_lock, flags); 1227 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1228 if (retval == PDC_OK) { 1229 convert_to_wide(pdc_result); 1230 *power_reg = f_extend(pdc_result[0]); 1231 } 1232 spin_unlock_irqrestore(&pdc_lock, flags); 1233 1234 return retval; 1235 } 1236 1237 /* 1238 * pdc_soft_power_button{_panic} - Control the soft power button behaviour 1239 * @sw_control: 0 for hardware control, 1 for software control 1240 * 1241 * 1242 * This PDC function places the soft power button under software or 1243 * hardware control. 1244 * Under software control the OS may control to when to allow to shut 1245 * down the system. Under hardware control pressing the power button 1246 * powers off the system immediately. 1247 * 1248 * The _panic version relies on spin_trylock to prevent deadlock 1249 * on panic path. 1250 */ 1251 int pdc_soft_power_button(int sw_control) 1252 { 1253 int retval; 1254 unsigned long flags; 1255 1256 spin_lock_irqsave(&pdc_lock, flags); 1257 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1258 spin_unlock_irqrestore(&pdc_lock, flags); 1259 1260 return retval; 1261 } 1262 1263 int pdc_soft_power_button_panic(int sw_control) 1264 { 1265 int retval; 1266 unsigned long flags; 1267 1268 if (!spin_trylock_irqsave(&pdc_lock, flags)) { 1269 pr_emerg("Couldn't enable soft power button\n"); 1270 return -EBUSY; /* ignored by the panic notifier */ 1271 } 1272 1273 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1274 spin_unlock_irqrestore(&pdc_lock, flags); 1275 1276 return retval; 1277 } 1278 1279 /* 1280 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1281 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1282 * who knows what other platform firmware might do with this OS "hook". 1283 */ 1284 void pdc_io_reset(void) 1285 { 1286 unsigned long flags; 1287 1288 spin_lock_irqsave(&pdc_lock, flags); 1289 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1290 spin_unlock_irqrestore(&pdc_lock, flags); 1291 } 1292 1293 /* 1294 * pdc_io_reset_devices - Hack to Stop USB controller 1295 * 1296 * If PDC used the usb controller, the usb controller 1297 * is still running and will crash the machines during iommu 1298 * setup, because of still running DMA. This PDC call 1299 * stops the USB controller. 1300 * Normally called after calling pdc_io_reset(). 1301 */ 1302 void pdc_io_reset_devices(void) 1303 { 1304 unsigned long flags; 1305 1306 spin_lock_irqsave(&pdc_lock, flags); 1307 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1308 spin_unlock_irqrestore(&pdc_lock, flags); 1309 } 1310 1311 #endif /* defined(BOOTLOADER) */ 1312 1313 /* locked by pdc_lock */ 1314 static char iodc_dbuf[4096] __page_aligned_bss; 1315 1316 /** 1317 * pdc_iodc_print - Console print using IODC. 1318 * @str: the string to output. 1319 * @count: length of str 1320 * 1321 * Note that only these special chars are architected for console IODC io: 1322 * BEL, BS, CR, and LF. Others are passed through. 1323 * Since the HP console requires CR+LF to perform a 'newline', we translate 1324 * "\n" to "\r\n". 1325 */ 1326 int pdc_iodc_print(const unsigned char *str, unsigned count) 1327 { 1328 unsigned int i, found = 0; 1329 unsigned long flags; 1330 1331 count = min_t(unsigned int, count, sizeof(iodc_dbuf)); 1332 1333 spin_lock_irqsave(&pdc_lock, flags); 1334 for (i = 0; i < count;) { 1335 switch(str[i]) { 1336 case '\n': 1337 iodc_dbuf[i+0] = '\r'; 1338 iodc_dbuf[i+1] = '\n'; 1339 i += 2; 1340 found = 1; 1341 goto print; 1342 default: 1343 iodc_dbuf[i] = str[i]; 1344 i++; 1345 break; 1346 } 1347 } 1348 1349 print: 1350 real32_call(PAGE0->mem_cons.iodc_io, 1351 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1352 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1353 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0); 1354 spin_unlock_irqrestore(&pdc_lock, flags); 1355 1356 return i - found; 1357 } 1358 1359 #if !defined(BOOTLOADER) 1360 /** 1361 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1362 * 1363 * Read a character (non-blocking) from the PDC console, returns -1 if 1364 * key is not present. 1365 */ 1366 int pdc_iodc_getc(void) 1367 { 1368 int ch; 1369 int status; 1370 unsigned long flags; 1371 1372 /* Bail if no console input device. */ 1373 if (!PAGE0->mem_kbd.iodc_io) 1374 return 0; 1375 1376 /* wait for a keyboard (rs232)-input */ 1377 spin_lock_irqsave(&pdc_lock, flags); 1378 real32_call(PAGE0->mem_kbd.iodc_io, 1379 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1380 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1381 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0); 1382 1383 ch = *iodc_dbuf; 1384 /* like convert_to_wide() but for first return value only: */ 1385 status = *(int *)&pdc_result; 1386 spin_unlock_irqrestore(&pdc_lock, flags); 1387 1388 if (status == 0) 1389 return -1; 1390 1391 return ch; 1392 } 1393 1394 int pdc_sti_call(unsigned long func, unsigned long flags, 1395 unsigned long inptr, unsigned long outputr, 1396 unsigned long glob_cfg, int do_call64) 1397 { 1398 int retval = 0; 1399 unsigned long irqflags; 1400 1401 spin_lock_irqsave(&pdc_lock, irqflags); 1402 if (IS_ENABLED(CONFIG_64BIT) && do_call64) { 1403 #ifdef CONFIG_64BIT 1404 retval = real64_call(func, flags, inptr, outputr, glob_cfg); 1405 #else 1406 WARN_ON(1); 1407 #endif 1408 } else { 1409 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1410 } 1411 spin_unlock_irqrestore(&pdc_lock, irqflags); 1412 1413 return retval; 1414 } 1415 EXPORT_SYMBOL(pdc_sti_call); 1416 1417 #ifdef CONFIG_64BIT 1418 /** 1419 * pdc_pat_cell_get_number - Returns the cell number. 1420 * @cell_info: The return buffer. 1421 * 1422 * This PDC call returns the cell number of the cell from which the call 1423 * is made. 1424 */ 1425 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1426 { 1427 int retval; 1428 unsigned long flags; 1429 1430 spin_lock_irqsave(&pdc_lock, flags); 1431 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1432 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1433 spin_unlock_irqrestore(&pdc_lock, flags); 1434 1435 return retval; 1436 } 1437 1438 /** 1439 * pdc_pat_cell_module - Retrieve the cell's module information. 1440 * @actcnt: The number of bytes written to mem_addr. 1441 * @ploc: The physical location. 1442 * @mod: The module index. 1443 * @view_type: The view of the address type. 1444 * @mem_addr: The return buffer. 1445 * 1446 * This PDC call returns information about each module attached to the cell 1447 * at the specified location. 1448 */ 1449 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1450 unsigned long view_type, void *mem_addr) 1451 { 1452 int retval; 1453 unsigned long flags; 1454 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1455 1456 spin_lock_irqsave(&pdc_lock, flags); 1457 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1458 ploc, mod, view_type, __pa(&result)); 1459 if(!retval) { 1460 *actcnt = pdc_result[0]; 1461 memcpy(mem_addr, &result, *actcnt); 1462 } 1463 spin_unlock_irqrestore(&pdc_lock, flags); 1464 1465 return retval; 1466 } 1467 1468 /** 1469 * pdc_pat_cell_info - Retrieve the cell's information. 1470 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block. 1471 * @actcnt: The number of bytes which should be written to info. 1472 * @offset: offset of the structure. 1473 * @cell_number: The cell number which should be asked, or -1 for current cell. 1474 * 1475 * This PDC call returns information about the given cell (or all cells). 1476 */ 1477 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info, 1478 unsigned long *actcnt, unsigned long offset, 1479 unsigned long cell_number) 1480 { 1481 int retval; 1482 unsigned long flags; 1483 struct pdc_pat_cell_info_rtn_block result; 1484 1485 spin_lock_irqsave(&pdc_lock, flags); 1486 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO, 1487 __pa(pdc_result), __pa(&result), *actcnt, 1488 offset, cell_number); 1489 if (!retval) { 1490 *actcnt = pdc_result[0]; 1491 memcpy(info, &result, *actcnt); 1492 } 1493 spin_unlock_irqrestore(&pdc_lock, flags); 1494 1495 return retval; 1496 } 1497 1498 /** 1499 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1500 * @cpu_info: The return buffer. 1501 * @hpa: The Hard Physical Address of the CPU. 1502 * 1503 * Retrieve the cpu number for the cpu at the specified HPA. 1504 */ 1505 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa) 1506 { 1507 int retval; 1508 unsigned long flags; 1509 1510 spin_lock_irqsave(&pdc_lock, flags); 1511 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1512 __pa(&pdc_result), hpa); 1513 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1514 spin_unlock_irqrestore(&pdc_lock, flags); 1515 1516 return retval; 1517 } 1518 1519 /** 1520 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1521 * @num_entries: The return value. 1522 * @cell_num: The target cell. 1523 * 1524 * This PDC function returns the number of entries in the specified cell's 1525 * interrupt table. 1526 */ 1527 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1528 { 1529 int retval; 1530 unsigned long flags; 1531 1532 spin_lock_irqsave(&pdc_lock, flags); 1533 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1534 __pa(pdc_result), cell_num); 1535 *num_entries = pdc_result[0]; 1536 spin_unlock_irqrestore(&pdc_lock, flags); 1537 1538 return retval; 1539 } 1540 1541 /** 1542 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1543 * @r_addr: The return buffer. 1544 * @cell_num: The target cell. 1545 * 1546 * This PDC function returns the actual interrupt table for the specified cell. 1547 */ 1548 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1549 { 1550 int retval; 1551 unsigned long flags; 1552 1553 spin_lock_irqsave(&pdc_lock, flags); 1554 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1555 __pa(r_addr), cell_num); 1556 spin_unlock_irqrestore(&pdc_lock, flags); 1557 1558 return retval; 1559 } 1560 1561 /** 1562 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1563 * @actual_len: The return buffer. 1564 * @mem_addr: Pointer to the memory buffer. 1565 * @count: The number of bytes to read from the buffer. 1566 * @offset: The offset with respect to the beginning of the buffer. 1567 * 1568 */ 1569 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1570 unsigned long count, unsigned long offset) 1571 { 1572 int retval; 1573 unsigned long flags; 1574 1575 spin_lock_irqsave(&pdc_lock, flags); 1576 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1577 __pa(pdc_result2), count, offset); 1578 *actual_len = pdc_result[0]; 1579 memcpy(mem_addr, pdc_result2, *actual_len); 1580 spin_unlock_irqrestore(&pdc_lock, flags); 1581 1582 return retval; 1583 } 1584 1585 /** 1586 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions. 1587 * @legacy_rev: The legacy revision. 1588 * @pat_rev: The PAT revision. 1589 * @pdc_cap: The PDC capabilities. 1590 * 1591 */ 1592 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev, 1593 unsigned long *pat_rev, unsigned long *pdc_cap) 1594 { 1595 int retval; 1596 unsigned long flags; 1597 1598 spin_lock_irqsave(&pdc_lock, flags); 1599 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV, 1600 __pa(pdc_result)); 1601 if (retval == PDC_OK) { 1602 *legacy_rev = pdc_result[0]; 1603 *pat_rev = pdc_result[1]; 1604 *pdc_cap = pdc_result[2]; 1605 } 1606 spin_unlock_irqrestore(&pdc_lock, flags); 1607 1608 return retval; 1609 } 1610 1611 1612 /** 1613 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1614 * @pci_addr: PCI configuration space address for which the read request is being made. 1615 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1616 * @mem_addr: Pointer to return memory buffer. 1617 * 1618 */ 1619 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1620 { 1621 int retval; 1622 unsigned long flags; 1623 1624 spin_lock_irqsave(&pdc_lock, flags); 1625 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1626 __pa(pdc_result), pci_addr, pci_size); 1627 switch(pci_size) { 1628 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break; 1629 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break; 1630 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break; 1631 } 1632 spin_unlock_irqrestore(&pdc_lock, flags); 1633 1634 return retval; 1635 } 1636 1637 /** 1638 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1639 * @pci_addr: PCI configuration space address for which the write request is being made. 1640 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1641 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1642 * written to PCI Config space. 1643 * 1644 */ 1645 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1646 { 1647 int retval; 1648 unsigned long flags; 1649 1650 spin_lock_irqsave(&pdc_lock, flags); 1651 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1652 pci_addr, pci_size, val); 1653 spin_unlock_irqrestore(&pdc_lock, flags); 1654 1655 return retval; 1656 } 1657 1658 /** 1659 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table 1660 * @rinfo: memory pdt information 1661 * 1662 */ 1663 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo) 1664 { 1665 int retval; 1666 unsigned long flags; 1667 1668 spin_lock_irqsave(&pdc_lock, flags); 1669 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO, 1670 __pa(&pdc_result)); 1671 if (retval == PDC_OK) 1672 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1673 spin_unlock_irqrestore(&pdc_lock, flags); 1674 1675 return retval; 1676 } 1677 1678 /** 1679 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation 1680 * table of a cell 1681 * @rinfo: memory pdt information 1682 * @cell: cell number 1683 * 1684 */ 1685 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo, 1686 unsigned long cell) 1687 { 1688 int retval; 1689 unsigned long flags; 1690 1691 spin_lock_irqsave(&pdc_lock, flags); 1692 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO, 1693 __pa(&pdc_result), cell); 1694 if (retval == PDC_OK) 1695 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1696 spin_unlock_irqrestore(&pdc_lock, flags); 1697 1698 return retval; 1699 } 1700 1701 /** 1702 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware 1703 * @pret: array of PDT entries 1704 * @pdt_entries_ptr: ptr to hold number of PDT entries 1705 * @max_entries: maximum number of entries to be read 1706 * 1707 */ 1708 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1709 unsigned long *pdt_entries_ptr, unsigned long max_entries) 1710 { 1711 int retval; 1712 unsigned long flags, entries; 1713 1714 spin_lock_irqsave(&pdc_lock, flags); 1715 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */ 1716 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ, 1717 __pa(&pdc_result), parisc_cell_num, 1718 __pa(pdt_entries_ptr)); 1719 1720 if (retval == PDC_OK) { 1721 /* build up return value as for PDC_PAT_MEM_PD_READ */ 1722 entries = min(pdc_result[0], max_entries); 1723 pret->pdt_entries = entries; 1724 pret->actual_count_bytes = entries * sizeof(unsigned long); 1725 } 1726 1727 spin_unlock_irqrestore(&pdc_lock, flags); 1728 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries); 1729 1730 return retval; 1731 } 1732 /** 1733 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware 1734 * @pret: array of PDT entries 1735 * @pdt_entries_ptr: ptr to hold number of PDT entries 1736 * @count: number of bytes to read 1737 * @offset: offset to start (in bytes) 1738 * 1739 */ 1740 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1741 unsigned long *pdt_entries_ptr, unsigned long count, 1742 unsigned long offset) 1743 { 1744 int retval; 1745 unsigned long flags, entries; 1746 1747 spin_lock_irqsave(&pdc_lock, flags); 1748 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ, 1749 __pa(&pdc_result), __pa(pdt_entries_ptr), 1750 count, offset); 1751 1752 if (retval == PDC_OK) { 1753 entries = min(pdc_result[0], count); 1754 pret->actual_count_bytes = entries; 1755 pret->pdt_entries = entries / sizeof(unsigned long); 1756 } 1757 1758 spin_unlock_irqrestore(&pdc_lock, flags); 1759 1760 return retval; 1761 } 1762 1763 /** 1764 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware 1765 * @pret: ptr to hold returned information 1766 * @phys_addr: physical address to examine 1767 * 1768 */ 1769 int pdc_pat_mem_get_dimm_phys_location( 1770 struct pdc_pat_mem_phys_mem_location *pret, 1771 unsigned long phys_addr) 1772 { 1773 int retval; 1774 unsigned long flags; 1775 1776 spin_lock_irqsave(&pdc_lock, flags); 1777 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS, 1778 __pa(&pdc_result), phys_addr); 1779 1780 if (retval == PDC_OK) 1781 memcpy(pret, &pdc_result, sizeof(*pret)); 1782 1783 spin_unlock_irqrestore(&pdc_lock, flags); 1784 1785 return retval; 1786 } 1787 #endif /* CONFIG_64BIT */ 1788 #endif /* defined(BOOTLOADER) */ 1789 1790 1791 /***************** 32-bit real-mode calls ***********/ 1792 /* The struct below is used 1793 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1794 * real32_call_asm() then uses this stack in narrow real mode 1795 */ 1796 1797 struct narrow_stack { 1798 /* use int, not long which is 64 bits */ 1799 unsigned int arg13; 1800 unsigned int arg12; 1801 unsigned int arg11; 1802 unsigned int arg10; 1803 unsigned int arg9; 1804 unsigned int arg8; 1805 unsigned int arg7; 1806 unsigned int arg6; 1807 unsigned int arg5; 1808 unsigned int arg4; 1809 unsigned int arg3; 1810 unsigned int arg2; 1811 unsigned int arg1; 1812 unsigned int arg0; 1813 unsigned int frame_marker[8]; 1814 unsigned int sp; 1815 /* in reality, there's nearly 8k of stack after this */ 1816 }; 1817 1818 long real32_call(unsigned long fn, ...) 1819 { 1820 va_list args; 1821 extern struct narrow_stack real_stack; 1822 extern unsigned long real32_call_asm(unsigned int *, 1823 unsigned int *, 1824 unsigned int); 1825 1826 va_start(args, fn); 1827 real_stack.arg0 = va_arg(args, unsigned int); 1828 real_stack.arg1 = va_arg(args, unsigned int); 1829 real_stack.arg2 = va_arg(args, unsigned int); 1830 real_stack.arg3 = va_arg(args, unsigned int); 1831 real_stack.arg4 = va_arg(args, unsigned int); 1832 real_stack.arg5 = va_arg(args, unsigned int); 1833 real_stack.arg6 = va_arg(args, unsigned int); 1834 real_stack.arg7 = va_arg(args, unsigned int); 1835 real_stack.arg8 = va_arg(args, unsigned int); 1836 real_stack.arg9 = va_arg(args, unsigned int); 1837 real_stack.arg10 = va_arg(args, unsigned int); 1838 real_stack.arg11 = va_arg(args, unsigned int); 1839 real_stack.arg12 = va_arg(args, unsigned int); 1840 real_stack.arg13 = va_arg(args, unsigned int); 1841 va_end(args); 1842 1843 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1844 } 1845 1846 #ifdef CONFIG_64BIT 1847 /***************** 64-bit real-mode calls ***********/ 1848 1849 struct wide_stack { 1850 unsigned long arg0; 1851 unsigned long arg1; 1852 unsigned long arg2; 1853 unsigned long arg3; 1854 unsigned long arg4; 1855 unsigned long arg5; 1856 unsigned long arg6; 1857 unsigned long arg7; 1858 unsigned long arg8; 1859 unsigned long arg9; 1860 unsigned long arg10; 1861 unsigned long arg11; 1862 unsigned long arg12; 1863 unsigned long arg13; 1864 unsigned long frame_marker[2]; /* rp, previous sp */ 1865 unsigned long sp; 1866 /* in reality, there's nearly 8k of stack after this */ 1867 }; 1868 1869 long real64_call(unsigned long fn, ...) 1870 { 1871 va_list args; 1872 extern struct wide_stack real64_stack; 1873 extern unsigned long real64_call_asm(unsigned long *, 1874 unsigned long *, 1875 unsigned long); 1876 1877 va_start(args, fn); 1878 real64_stack.arg0 = va_arg(args, unsigned long); 1879 real64_stack.arg1 = va_arg(args, unsigned long); 1880 real64_stack.arg2 = va_arg(args, unsigned long); 1881 real64_stack.arg3 = va_arg(args, unsigned long); 1882 real64_stack.arg4 = va_arg(args, unsigned long); 1883 real64_stack.arg5 = va_arg(args, unsigned long); 1884 real64_stack.arg6 = va_arg(args, unsigned long); 1885 real64_stack.arg7 = va_arg(args, unsigned long); 1886 real64_stack.arg8 = va_arg(args, unsigned long); 1887 real64_stack.arg9 = va_arg(args, unsigned long); 1888 real64_stack.arg10 = va_arg(args, unsigned long); 1889 real64_stack.arg11 = va_arg(args, unsigned long); 1890 real64_stack.arg12 = va_arg(args, unsigned long); 1891 real64_stack.arg13 = va_arg(args, unsigned long); 1892 va_end(args); 1893 1894 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1895 } 1896 1897 #endif /* CONFIG_64BIT */ 1898