1 /* 2 * arch/parisc/kernel/firmware.c - safe PDC access routines 3 * 4 * PDC == Processor Dependent Code 5 * 6 * See http://www.parisc-linux.org/documentation/index.html 7 * for documentation describing the entry points and calling 8 * conventions defined below. 9 * 10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 12 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License as published by 18 * the Free Software Foundation; either version 2 of the License, or 19 * (at your option) any later version. 20 * 21 */ 22 23 /* I think it would be in everyone's best interest to follow this 24 * guidelines when writing PDC wrappers: 25 * 26 * - the name of the pdc wrapper should match one of the macros 27 * used for the first two arguments 28 * - don't use caps for random parts of the name 29 * - use the static PDC result buffers and "copyout" to structs 30 * supplied by the caller to encapsulate alignment restrictions 31 * - hold pdc_lock while in PDC or using static result buffers 32 * - use __pa() to convert virtual (kernel) pointers to physical 33 * ones. 34 * - the name of the struct used for pdc return values should equal 35 * one of the macros used for the first two arguments to the 36 * corresponding PDC call 37 * - keep the order of arguments 38 * - don't be smart (setting trailing NUL bytes for strings, return 39 * something useful even if the call failed) unless you are sure 40 * it's not going to affect functionality or performance 41 * 42 * Example: 43 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 44 * { 45 * int retval; 46 * 47 * spin_lock_irq(&pdc_lock); 48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 49 * convert_to_wide(pdc_result); 50 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 51 * spin_unlock_irq(&pdc_lock); 52 * 53 * return retval; 54 * } 55 * prumpf 991016 56 */ 57 58 #include <stdarg.h> 59 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/module.h> 64 #include <linux/string.h> 65 #include <linux/spinlock.h> 66 67 #include <asm/page.h> 68 #include <asm/pdc.h> 69 #include <asm/pdcpat.h> 70 #include <asm/system.h> 71 #include <asm/processor.h> /* for boot_cpu_data */ 72 73 static DEFINE_SPINLOCK(pdc_lock); 74 static unsigned long pdc_result[32] __attribute__ ((aligned (8))); 75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8))); 76 77 #ifdef CONFIG_64BIT 78 #define WIDE_FIRMWARE 0x1 79 #define NARROW_FIRMWARE 0x2 80 81 /* Firmware needs to be initially set to narrow to determine the 82 * actual firmware width. */ 83 int parisc_narrow_firmware __read_mostly = 1; 84 #endif 85 86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 87 * and MEM_PDC calls are always the same width as the OS. 88 * Some PAT boxes may have 64-bit IODC I/O. 89 * 90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 92 * This allowed wide kernels to run on Cxxx boxes. 93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 95 */ 96 97 #ifdef CONFIG_64BIT 98 long real64_call(unsigned long function, ...); 99 #endif 100 long real32_call(unsigned long function, ...); 101 102 #ifdef CONFIG_64BIT 103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 105 #else 106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 108 #endif 109 110 111 /** 112 * f_extend - Convert PDC addresses to kernel addresses. 113 * @address: Address returned from PDC. 114 * 115 * This function is used to convert PDC addresses into kernel addresses 116 * when the PDC address size and kernel address size are different. 117 */ 118 static unsigned long f_extend(unsigned long address) 119 { 120 #ifdef CONFIG_64BIT 121 if(unlikely(parisc_narrow_firmware)) { 122 if((address & 0xff000000) == 0xf0000000) 123 return 0xf0f0f0f000000000UL | (u32)address; 124 125 if((address & 0xf0000000) == 0xf0000000) 126 return 0xffffffff00000000UL | (u32)address; 127 } 128 #endif 129 return address; 130 } 131 132 /** 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 134 * @address: The return buffer from PDC. 135 * 136 * This function is used to convert the return buffer addresses retrieved from PDC 137 * into kernel addresses when the PDC address size and kernel address size are 138 * different. 139 */ 140 static void convert_to_wide(unsigned long *addr) 141 { 142 #ifdef CONFIG_64BIT 143 int i; 144 unsigned int *p = (unsigned int *)addr; 145 146 if(unlikely(parisc_narrow_firmware)) { 147 for(i = 31; i >= 0; --i) 148 addr[i] = p[i]; 149 } 150 #endif 151 } 152 153 /** 154 * set_firmware_width - Determine if the firmware is wide or narrow. 155 * 156 * This function must be called before any pdc_* function that uses the convert_to_wide 157 * function. 158 */ 159 void __init set_firmware_width(void) 160 { 161 #ifdef CONFIG_64BIT 162 int retval; 163 unsigned long flags; 164 165 spin_lock_irqsave(&pdc_lock, flags); 166 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 167 convert_to_wide(pdc_result); 168 if(pdc_result[0] != NARROW_FIRMWARE) 169 parisc_narrow_firmware = 0; 170 spin_unlock_irqrestore(&pdc_lock, flags); 171 #endif 172 } 173 174 /** 175 * pdc_emergency_unlock - Unlock the linux pdc lock 176 * 177 * This call unlocks the linux pdc lock in case we need some PDC functions 178 * (like pdc_add_valid) during kernel stack dump. 179 */ 180 void pdc_emergency_unlock(void) 181 { 182 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 183 if (spin_is_locked(&pdc_lock)) 184 spin_unlock(&pdc_lock); 185 } 186 187 188 /** 189 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 190 * @address: Address to be verified. 191 * 192 * This PDC call attempts to read from the specified address and verifies 193 * if the address is valid. 194 * 195 * The return value is PDC_OK (0) in case accessing this address is valid. 196 */ 197 int pdc_add_valid(unsigned long address) 198 { 199 int retval; 200 unsigned long flags; 201 202 spin_lock_irqsave(&pdc_lock, flags); 203 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 204 spin_unlock_irqrestore(&pdc_lock, flags); 205 206 return retval; 207 } 208 EXPORT_SYMBOL(pdc_add_valid); 209 210 /** 211 * pdc_chassis_info - Return chassis information. 212 * @result: The return buffer. 213 * @chassis_info: The memory buffer address. 214 * @len: The size of the memory buffer address. 215 * 216 * An HVERSION dependent call for returning the chassis information. 217 */ 218 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 219 { 220 int retval; 221 unsigned long flags; 222 223 spin_lock_irqsave(&pdc_lock, flags); 224 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 225 memcpy(&pdc_result2, led_info, len); 226 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 227 __pa(pdc_result), __pa(pdc_result2), len); 228 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 229 memcpy(led_info, pdc_result2, len); 230 spin_unlock_irqrestore(&pdc_lock, flags); 231 232 return retval; 233 } 234 235 /** 236 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 237 * @retval: -1 on error, 0 on success. Other value are PDC errors 238 * 239 * Must be correctly formatted or expect system crash 240 */ 241 #ifdef CONFIG_64BIT 242 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 243 { 244 int retval = 0; 245 unsigned long flags; 246 247 if (!is_pdc_pat()) 248 return -1; 249 250 spin_lock_irqsave(&pdc_lock, flags); 251 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 252 spin_unlock_irqrestore(&pdc_lock, flags); 253 254 return retval; 255 } 256 #endif 257 258 /** 259 * pdc_chassis_disp - Updates chassis code 260 * @retval: -1 on error, 0 on success 261 */ 262 int pdc_chassis_disp(unsigned long disp) 263 { 264 int retval = 0; 265 unsigned long flags; 266 267 spin_lock_irqsave(&pdc_lock, flags); 268 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 269 spin_unlock_irqrestore(&pdc_lock, flags); 270 271 return retval; 272 } 273 274 /** 275 * pdc_chassis_warn - Fetches chassis warnings 276 * @retval: -1 on error, 0 on success 277 */ 278 int pdc_chassis_warn(unsigned long *warn) 279 { 280 int retval = 0; 281 unsigned long flags; 282 283 spin_lock_irqsave(&pdc_lock, flags); 284 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 285 *warn = pdc_result[0]; 286 spin_unlock_irqrestore(&pdc_lock, flags); 287 288 return retval; 289 } 290 291 /** 292 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 293 * @pdc_coproc_info: Return buffer address. 294 * 295 * This PDC call returns the presence and status of all the coprocessors 296 * attached to the processor. 297 */ 298 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 299 { 300 int retval; 301 unsigned long flags; 302 303 spin_lock_irqsave(&pdc_lock, flags); 304 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 305 convert_to_wide(pdc_result); 306 pdc_coproc_info->ccr_functional = pdc_result[0]; 307 pdc_coproc_info->ccr_present = pdc_result[1]; 308 pdc_coproc_info->revision = pdc_result[17]; 309 pdc_coproc_info->model = pdc_result[18]; 310 spin_unlock_irqrestore(&pdc_lock, flags); 311 312 return retval; 313 } 314 315 /** 316 * pdc_iodc_read - Read data from the modules IODC. 317 * @actcnt: The actual number of bytes. 318 * @hpa: The HPA of the module for the iodc read. 319 * @index: The iodc entry point. 320 * @iodc_data: A buffer memory for the iodc options. 321 * @iodc_data_size: Size of the memory buffer. 322 * 323 * This PDC call reads from the IODC of the module specified by the hpa 324 * argument. 325 */ 326 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 327 void *iodc_data, unsigned int iodc_data_size) 328 { 329 int retval; 330 unsigned long flags; 331 332 spin_lock_irqsave(&pdc_lock, flags); 333 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 334 index, __pa(pdc_result2), iodc_data_size); 335 convert_to_wide(pdc_result); 336 *actcnt = pdc_result[0]; 337 memcpy(iodc_data, pdc_result2, iodc_data_size); 338 spin_unlock_irqrestore(&pdc_lock, flags); 339 340 return retval; 341 } 342 EXPORT_SYMBOL(pdc_iodc_read); 343 344 /** 345 * pdc_system_map_find_mods - Locate unarchitected modules. 346 * @pdc_mod_info: Return buffer address. 347 * @mod_path: pointer to dev path structure. 348 * @mod_index: fixed address module index. 349 * 350 * To locate and identify modules which reside at fixed I/O addresses, which 351 * do not self-identify via architected bus walks. 352 */ 353 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 354 struct pdc_module_path *mod_path, long mod_index) 355 { 356 int retval; 357 unsigned long flags; 358 359 spin_lock_irqsave(&pdc_lock, flags); 360 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 361 __pa(pdc_result2), mod_index); 362 convert_to_wide(pdc_result); 363 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 364 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 365 spin_unlock_irqrestore(&pdc_lock, flags); 366 367 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 368 return retval; 369 } 370 371 /** 372 * pdc_system_map_find_addrs - Retrieve additional address ranges. 373 * @pdc_addr_info: Return buffer address. 374 * @mod_index: Fixed address module index. 375 * @addr_index: Address range index. 376 * 377 * Retrieve additional information about subsequent address ranges for modules 378 * with multiple address ranges. 379 */ 380 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 381 long mod_index, long addr_index) 382 { 383 int retval; 384 unsigned long flags; 385 386 spin_lock_irqsave(&pdc_lock, flags); 387 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 388 mod_index, addr_index); 389 convert_to_wide(pdc_result); 390 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 391 spin_unlock_irqrestore(&pdc_lock, flags); 392 393 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 394 return retval; 395 } 396 397 /** 398 * pdc_model_info - Return model information about the processor. 399 * @model: The return buffer. 400 * 401 * Returns the version numbers, identifiers, and capabilities from the processor module. 402 */ 403 int pdc_model_info(struct pdc_model *model) 404 { 405 int retval; 406 unsigned long flags; 407 408 spin_lock_irqsave(&pdc_lock, flags); 409 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 410 convert_to_wide(pdc_result); 411 memcpy(model, pdc_result, sizeof(*model)); 412 spin_unlock_irqrestore(&pdc_lock, flags); 413 414 return retval; 415 } 416 417 /** 418 * pdc_model_sysmodel - Get the system model name. 419 * @name: A char array of at least 81 characters. 420 * 421 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 422 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 423 * on HP/UX. 424 */ 425 int pdc_model_sysmodel(char *name) 426 { 427 int retval; 428 unsigned long flags; 429 430 spin_lock_irqsave(&pdc_lock, flags); 431 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 432 OS_ID_HPUX, __pa(name)); 433 convert_to_wide(pdc_result); 434 435 if (retval == PDC_OK) { 436 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 437 } else { 438 name[0] = 0; 439 } 440 spin_unlock_irqrestore(&pdc_lock, flags); 441 442 return retval; 443 } 444 445 /** 446 * pdc_model_versions - Identify the version number of each processor. 447 * @cpu_id: The return buffer. 448 * @id: The id of the processor to check. 449 * 450 * Returns the version number for each processor component. 451 * 452 * This comment was here before, but I do not know what it means :( -RB 453 * id: 0 = cpu revision, 1 = boot-rom-version 454 */ 455 int pdc_model_versions(unsigned long *versions, int id) 456 { 457 int retval; 458 unsigned long flags; 459 460 spin_lock_irqsave(&pdc_lock, flags); 461 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 462 convert_to_wide(pdc_result); 463 *versions = pdc_result[0]; 464 spin_unlock_irqrestore(&pdc_lock, flags); 465 466 return retval; 467 } 468 469 /** 470 * pdc_model_cpuid - Returns the CPU_ID. 471 * @cpu_id: The return buffer. 472 * 473 * Returns the CPU_ID value which uniquely identifies the cpu portion of 474 * the processor module. 475 */ 476 int pdc_model_cpuid(unsigned long *cpu_id) 477 { 478 int retval; 479 unsigned long flags; 480 481 spin_lock_irqsave(&pdc_lock, flags); 482 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 483 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 484 convert_to_wide(pdc_result); 485 *cpu_id = pdc_result[0]; 486 spin_unlock_irqrestore(&pdc_lock, flags); 487 488 return retval; 489 } 490 491 /** 492 * pdc_model_capabilities - Returns the platform capabilities. 493 * @capabilities: The return buffer. 494 * 495 * Returns information about platform support for 32- and/or 64-bit 496 * OSes, IO-PDIR coherency, and virtual aliasing. 497 */ 498 int pdc_model_capabilities(unsigned long *capabilities) 499 { 500 int retval; 501 unsigned long flags; 502 503 spin_lock_irqsave(&pdc_lock, flags); 504 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 505 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 506 convert_to_wide(pdc_result); 507 *capabilities = pdc_result[0]; 508 spin_unlock_irqrestore(&pdc_lock, flags); 509 510 return retval; 511 } 512 513 /** 514 * pdc_cache_info - Return cache and TLB information. 515 * @cache_info: The return buffer. 516 * 517 * Returns information about the processor's cache and TLB. 518 */ 519 int pdc_cache_info(struct pdc_cache_info *cache_info) 520 { 521 int retval; 522 unsigned long flags; 523 524 spin_lock_irqsave(&pdc_lock, flags); 525 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 526 convert_to_wide(pdc_result); 527 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 528 spin_unlock_irqrestore(&pdc_lock, flags); 529 530 return retval; 531 } 532 533 /** 534 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 535 * @space_bits: Should be 0, if not, bad mojo! 536 * 537 * Returns information about Space ID hashing. 538 */ 539 int pdc_spaceid_bits(unsigned long *space_bits) 540 { 541 int retval; 542 unsigned long flags; 543 544 spin_lock_irqsave(&pdc_lock, flags); 545 pdc_result[0] = 0; 546 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 547 convert_to_wide(pdc_result); 548 *space_bits = pdc_result[0]; 549 spin_unlock_irqrestore(&pdc_lock, flags); 550 551 return retval; 552 } 553 554 #ifndef CONFIG_PA20 555 /** 556 * pdc_btlb_info - Return block TLB information. 557 * @btlb: The return buffer. 558 * 559 * Returns information about the hardware Block TLB. 560 */ 561 int pdc_btlb_info(struct pdc_btlb_info *btlb) 562 { 563 int retval; 564 unsigned long flags; 565 566 spin_lock_irqsave(&pdc_lock, flags); 567 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 568 memcpy(btlb, pdc_result, sizeof(*btlb)); 569 spin_unlock_irqrestore(&pdc_lock, flags); 570 571 if(retval < 0) { 572 btlb->max_size = 0; 573 } 574 return retval; 575 } 576 577 /** 578 * pdc_mem_map_hpa - Find fixed module information. 579 * @address: The return buffer 580 * @mod_path: pointer to dev path structure. 581 * 582 * This call was developed for S700 workstations to allow the kernel to find 583 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 584 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 585 * call. 586 * 587 * This call is supported by all existing S700 workstations (up to Gecko). 588 */ 589 int pdc_mem_map_hpa(struct pdc_memory_map *address, 590 struct pdc_module_path *mod_path) 591 { 592 int retval; 593 unsigned long flags; 594 595 spin_lock_irqsave(&pdc_lock, flags); 596 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 597 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 598 __pa(pdc_result2)); 599 memcpy(address, pdc_result, sizeof(*address)); 600 spin_unlock_irqrestore(&pdc_lock, flags); 601 602 return retval; 603 } 604 #endif /* !CONFIG_PA20 */ 605 606 /** 607 * pdc_lan_station_id - Get the LAN address. 608 * @lan_addr: The return buffer. 609 * @hpa: The network device HPA. 610 * 611 * Get the LAN station address when it is not directly available from the LAN hardware. 612 */ 613 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 614 { 615 int retval; 616 unsigned long flags; 617 618 spin_lock_irqsave(&pdc_lock, flags); 619 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 620 __pa(pdc_result), hpa); 621 if (retval < 0) { 622 /* FIXME: else read MAC from NVRAM */ 623 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 624 } else { 625 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 626 } 627 spin_unlock_irqrestore(&pdc_lock, flags); 628 629 return retval; 630 } 631 EXPORT_SYMBOL(pdc_lan_station_id); 632 633 /** 634 * pdc_stable_read - Read data from Stable Storage. 635 * @staddr: Stable Storage address to access. 636 * @memaddr: The memory address where Stable Storage data shall be copied. 637 * @count: number of bytes to transfer. count is multiple of 4. 638 * 639 * This PDC call reads from the Stable Storage address supplied in staddr 640 * and copies count bytes to the memory address memaddr. 641 * The call will fail if staddr+count > PDC_STABLE size. 642 */ 643 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 644 { 645 int retval; 646 unsigned long flags; 647 648 spin_lock_irqsave(&pdc_lock, flags); 649 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 650 __pa(pdc_result), count); 651 convert_to_wide(pdc_result); 652 memcpy(memaddr, pdc_result, count); 653 spin_unlock_irqrestore(&pdc_lock, flags); 654 655 return retval; 656 } 657 EXPORT_SYMBOL(pdc_stable_read); 658 659 /** 660 * pdc_stable_write - Write data to Stable Storage. 661 * @staddr: Stable Storage address to access. 662 * @memaddr: The memory address where Stable Storage data shall be read from. 663 * @count: number of bytes to transfer. count is multiple of 4. 664 * 665 * This PDC call reads count bytes from the supplied memaddr address, 666 * and copies count bytes to the Stable Storage address staddr. 667 * The call will fail if staddr+count > PDC_STABLE size. 668 */ 669 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 670 { 671 int retval; 672 unsigned long flags; 673 674 spin_lock_irqsave(&pdc_lock, flags); 675 memcpy(pdc_result, memaddr, count); 676 convert_to_wide(pdc_result); 677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 678 __pa(pdc_result), count); 679 spin_unlock_irqrestore(&pdc_lock, flags); 680 681 return retval; 682 } 683 EXPORT_SYMBOL(pdc_stable_write); 684 685 /** 686 * pdc_stable_get_size - Get Stable Storage size in bytes. 687 * @size: pointer where the size will be stored. 688 * 689 * This PDC call returns the number of bytes in the processor's Stable 690 * Storage, which is the number of contiguous bytes implemented in Stable 691 * Storage starting from staddr=0. size in an unsigned 64-bit integer 692 * which is a multiple of four. 693 */ 694 int pdc_stable_get_size(unsigned long *size) 695 { 696 int retval; 697 unsigned long flags; 698 699 spin_lock_irqsave(&pdc_lock, flags); 700 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 701 *size = pdc_result[0]; 702 spin_unlock_irqrestore(&pdc_lock, flags); 703 704 return retval; 705 } 706 EXPORT_SYMBOL(pdc_stable_get_size); 707 708 /** 709 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 710 * 711 * This PDC call is meant to be used to check the integrity of the current 712 * contents of Stable Storage. 713 */ 714 int pdc_stable_verify_contents(void) 715 { 716 int retval; 717 unsigned long flags; 718 719 spin_lock_irqsave(&pdc_lock, flags); 720 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 721 spin_unlock_irqrestore(&pdc_lock, flags); 722 723 return retval; 724 } 725 EXPORT_SYMBOL(pdc_stable_verify_contents); 726 727 /** 728 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 729 * the validity indicator. 730 * 731 * This PDC call will erase all contents of Stable Storage. Use with care! 732 */ 733 int pdc_stable_initialize(void) 734 { 735 int retval; 736 unsigned long flags; 737 738 spin_lock_irqsave(&pdc_lock, flags); 739 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 740 spin_unlock_irqrestore(&pdc_lock, flags); 741 742 return retval; 743 } 744 EXPORT_SYMBOL(pdc_stable_initialize); 745 746 /** 747 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 748 * @hwpath: fully bc.mod style path to the device. 749 * @initiator: the array to return the result into 750 * 751 * Get the SCSI operational parameters from PDC. 752 * Needed since HPUX never used BIOS or symbios card NVRAM. 753 * Most ncr/sym cards won't have an entry and just use whatever 754 * capabilities of the card are (eg Ultra, LVD). But there are 755 * several cases where it's useful: 756 * o set SCSI id for Multi-initiator clusters, 757 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 758 * o bus width exported is less than what the interface chip supports. 759 */ 760 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 761 { 762 int retval; 763 unsigned long flags; 764 765 spin_lock_irqsave(&pdc_lock, flags); 766 767 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 768 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 769 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 770 771 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 772 __pa(pdc_result), __pa(hwpath)); 773 if (retval < PDC_OK) 774 goto out; 775 776 if (pdc_result[0] < 16) { 777 initiator->host_id = pdc_result[0]; 778 } else { 779 initiator->host_id = -1; 780 } 781 782 /* 783 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 784 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 785 */ 786 switch (pdc_result[1]) { 787 case 1: initiator->factor = 50; break; 788 case 2: initiator->factor = 25; break; 789 case 5: initiator->factor = 12; break; 790 case 25: initiator->factor = 10; break; 791 case 20: initiator->factor = 12; break; 792 case 40: initiator->factor = 10; break; 793 default: initiator->factor = -1; break; 794 } 795 796 if (IS_SPROCKETS()) { 797 initiator->width = pdc_result[4]; 798 initiator->mode = pdc_result[5]; 799 } else { 800 initiator->width = -1; 801 initiator->mode = -1; 802 } 803 804 out: 805 spin_unlock_irqrestore(&pdc_lock, flags); 806 807 return (retval >= PDC_OK); 808 } 809 EXPORT_SYMBOL(pdc_get_initiator); 810 811 812 /** 813 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 814 * @num_entries: The return value. 815 * @hpa: The HPA for the device. 816 * 817 * This PDC function returns the number of entries in the specified cell's 818 * interrupt table. 819 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 820 */ 821 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 822 { 823 int retval; 824 unsigned long flags; 825 826 spin_lock_irqsave(&pdc_lock, flags); 827 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 828 __pa(pdc_result), hpa); 829 convert_to_wide(pdc_result); 830 *num_entries = pdc_result[0]; 831 spin_unlock_irqrestore(&pdc_lock, flags); 832 833 return retval; 834 } 835 836 /** 837 * pdc_pci_irt - Get the PCI interrupt routing table. 838 * @num_entries: The number of entries in the table. 839 * @hpa: The Hard Physical Address of the device. 840 * @tbl: 841 * 842 * Get the PCI interrupt routing table for the device at the given HPA. 843 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 844 */ 845 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 846 { 847 int retval; 848 unsigned long flags; 849 850 BUG_ON((unsigned long)tbl & 0x7); 851 852 spin_lock_irqsave(&pdc_lock, flags); 853 pdc_result[0] = num_entries; 854 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 855 __pa(pdc_result), hpa, __pa(tbl)); 856 spin_unlock_irqrestore(&pdc_lock, flags); 857 858 return retval; 859 } 860 861 862 #if 0 /* UNTEST CODE - left here in case someone needs it */ 863 864 /** 865 * pdc_pci_config_read - read PCI config space. 866 * @hpa token from PDC to indicate which PCI device 867 * @pci_addr configuration space address to read from 868 * 869 * Read PCI Configuration space *before* linux PCI subsystem is running. 870 */ 871 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 872 { 873 int retval; 874 unsigned long flags; 875 876 spin_lock_irqsave(&pdc_lock, flags); 877 pdc_result[0] = 0; 878 pdc_result[1] = 0; 879 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 880 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 881 spin_unlock_irqrestore(&pdc_lock, flags); 882 883 return retval ? ~0 : (unsigned int) pdc_result[0]; 884 } 885 886 887 /** 888 * pdc_pci_config_write - read PCI config space. 889 * @hpa token from PDC to indicate which PCI device 890 * @pci_addr configuration space address to write 891 * @val value we want in the 32-bit register 892 * 893 * Write PCI Configuration space *before* linux PCI subsystem is running. 894 */ 895 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 896 { 897 int retval; 898 unsigned long flags; 899 900 spin_lock_irqsave(&pdc_lock, flags); 901 pdc_result[0] = 0; 902 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 903 __pa(pdc_result), hpa, 904 cfg_addr&~3UL, 4UL, (unsigned long) val); 905 spin_unlock_irqrestore(&pdc_lock, flags); 906 907 return retval; 908 } 909 #endif /* UNTESTED CODE */ 910 911 /** 912 * pdc_tod_read - Read the Time-Of-Day clock. 913 * @tod: The return buffer: 914 * 915 * Read the Time-Of-Day clock 916 */ 917 int pdc_tod_read(struct pdc_tod *tod) 918 { 919 int retval; 920 unsigned long flags; 921 922 spin_lock_irqsave(&pdc_lock, flags); 923 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 924 convert_to_wide(pdc_result); 925 memcpy(tod, pdc_result, sizeof(*tod)); 926 spin_unlock_irqrestore(&pdc_lock, flags); 927 928 return retval; 929 } 930 EXPORT_SYMBOL(pdc_tod_read); 931 932 /** 933 * pdc_tod_set - Set the Time-Of-Day clock. 934 * @sec: The number of seconds since epoch. 935 * @usec: The number of micro seconds. 936 * 937 * Set the Time-Of-Day clock. 938 */ 939 int pdc_tod_set(unsigned long sec, unsigned long usec) 940 { 941 int retval; 942 unsigned long flags; 943 944 spin_lock_irqsave(&pdc_lock, flags); 945 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 946 spin_unlock_irqrestore(&pdc_lock, flags); 947 948 return retval; 949 } 950 EXPORT_SYMBOL(pdc_tod_set); 951 952 #ifdef CONFIG_64BIT 953 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 954 struct pdc_memory_table *tbl, unsigned long entries) 955 { 956 int retval; 957 unsigned long flags; 958 959 spin_lock_irqsave(&pdc_lock, flags); 960 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 961 convert_to_wide(pdc_result); 962 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 963 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 964 spin_unlock_irqrestore(&pdc_lock, flags); 965 966 return retval; 967 } 968 #endif /* CONFIG_64BIT */ 969 970 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 971 * so I guessed at unsigned long. Someone who knows what this does, can fix 972 * it later. :) 973 */ 974 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 975 { 976 int retval; 977 unsigned long flags; 978 979 spin_lock_irqsave(&pdc_lock, flags); 980 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 981 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 982 spin_unlock_irqrestore(&pdc_lock, flags); 983 984 return retval; 985 } 986 987 /* 988 * pdc_do_reset - Reset the system. 989 * 990 * Reset the system. 991 */ 992 int pdc_do_reset(void) 993 { 994 int retval; 995 unsigned long flags; 996 997 spin_lock_irqsave(&pdc_lock, flags); 998 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 999 spin_unlock_irqrestore(&pdc_lock, flags); 1000 1001 return retval; 1002 } 1003 1004 /* 1005 * pdc_soft_power_info - Enable soft power switch. 1006 * @power_reg: address of soft power register 1007 * 1008 * Return the absolute address of the soft power switch register 1009 */ 1010 int __init pdc_soft_power_info(unsigned long *power_reg) 1011 { 1012 int retval; 1013 unsigned long flags; 1014 1015 *power_reg = (unsigned long) (-1); 1016 1017 spin_lock_irqsave(&pdc_lock, flags); 1018 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1019 if (retval == PDC_OK) { 1020 convert_to_wide(pdc_result); 1021 *power_reg = f_extend(pdc_result[0]); 1022 } 1023 spin_unlock_irqrestore(&pdc_lock, flags); 1024 1025 return retval; 1026 } 1027 1028 /* 1029 * pdc_soft_power_button - Control the soft power button behaviour 1030 * @sw_control: 0 for hardware control, 1 for software control 1031 * 1032 * 1033 * This PDC function places the soft power button under software or 1034 * hardware control. 1035 * Under software control the OS may control to when to allow to shut 1036 * down the system. Under hardware control pressing the power button 1037 * powers off the system immediately. 1038 */ 1039 int pdc_soft_power_button(int sw_control) 1040 { 1041 int retval; 1042 unsigned long flags; 1043 1044 spin_lock_irqsave(&pdc_lock, flags); 1045 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1046 spin_unlock_irqrestore(&pdc_lock, flags); 1047 1048 return retval; 1049 } 1050 1051 /* 1052 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1053 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1054 * who knows what other platform firmware might do with this OS "hook". 1055 */ 1056 void pdc_io_reset(void) 1057 { 1058 unsigned long flags; 1059 1060 spin_lock_irqsave(&pdc_lock, flags); 1061 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1062 spin_unlock_irqrestore(&pdc_lock, flags); 1063 } 1064 1065 /* 1066 * pdc_io_reset_devices - Hack to Stop USB controller 1067 * 1068 * If PDC used the usb controller, the usb controller 1069 * is still running and will crash the machines during iommu 1070 * setup, because of still running DMA. This PDC call 1071 * stops the USB controller. 1072 * Normally called after calling pdc_io_reset(). 1073 */ 1074 void pdc_io_reset_devices(void) 1075 { 1076 unsigned long flags; 1077 1078 spin_lock_irqsave(&pdc_lock, flags); 1079 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1080 spin_unlock_irqrestore(&pdc_lock, flags); 1081 } 1082 1083 /* locked by pdc_console_lock */ 1084 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1085 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1086 1087 /** 1088 * pdc_iodc_print - Console print using IODC. 1089 * @str: the string to output. 1090 * @count: length of str 1091 * 1092 * Note that only these special chars are architected for console IODC io: 1093 * BEL, BS, CR, and LF. Others are passed through. 1094 * Since the HP console requires CR+LF to perform a 'newline', we translate 1095 * "\n" to "\r\n". 1096 */ 1097 int pdc_iodc_print(const unsigned char *str, unsigned count) 1098 { 1099 static int posx; /* for simple TAB-Simulation... */ 1100 unsigned int i; 1101 unsigned long flags; 1102 1103 for (i = 0; i < count && i < 79;) { 1104 switch(str[i]) { 1105 case '\n': 1106 iodc_dbuf[i+0] = '\r'; 1107 iodc_dbuf[i+1] = '\n'; 1108 i += 2; 1109 posx = 0; 1110 goto print; 1111 case '\t': 1112 while (posx & 7) { 1113 iodc_dbuf[i] = ' '; 1114 i++, posx++; 1115 } 1116 break; 1117 case '\b': /* BS */ 1118 posx -= 2; 1119 default: 1120 iodc_dbuf[i] = str[i]; 1121 i++, posx++; 1122 break; 1123 } 1124 } 1125 1126 /* if we're at the end of line, and not already inserting a newline, 1127 * insert one anyway. iodc console doesn't claim to support >79 char 1128 * lines. don't account for this in the return value. 1129 */ 1130 if (i == 79 && iodc_dbuf[i-1] != '\n') { 1131 iodc_dbuf[i+0] = '\r'; 1132 iodc_dbuf[i+1] = '\n'; 1133 } 1134 1135 print: 1136 spin_lock_irqsave(&pdc_lock, flags); 1137 real32_call(PAGE0->mem_cons.iodc_io, 1138 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1139 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1140 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0); 1141 spin_unlock_irqrestore(&pdc_lock, flags); 1142 1143 return i; 1144 } 1145 1146 /** 1147 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1148 * 1149 * Read a character (non-blocking) from the PDC console, returns -1 if 1150 * key is not present. 1151 */ 1152 int pdc_iodc_getc(void) 1153 { 1154 int ch; 1155 int status; 1156 unsigned long flags; 1157 1158 /* Bail if no console input device. */ 1159 if (!PAGE0->mem_kbd.iodc_io) 1160 return 0; 1161 1162 /* wait for a keyboard (rs232)-input */ 1163 spin_lock_irqsave(&pdc_lock, flags); 1164 real32_call(PAGE0->mem_kbd.iodc_io, 1165 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1166 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1167 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1168 1169 ch = *iodc_dbuf; 1170 status = *iodc_retbuf; 1171 spin_unlock_irqrestore(&pdc_lock, flags); 1172 1173 if (status == 0) 1174 return -1; 1175 1176 return ch; 1177 } 1178 1179 int pdc_sti_call(unsigned long func, unsigned long flags, 1180 unsigned long inptr, unsigned long outputr, 1181 unsigned long glob_cfg) 1182 { 1183 int retval; 1184 unsigned long irqflags; 1185 1186 spin_lock_irqsave(&pdc_lock, irqflags); 1187 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1188 spin_unlock_irqrestore(&pdc_lock, irqflags); 1189 1190 return retval; 1191 } 1192 EXPORT_SYMBOL(pdc_sti_call); 1193 1194 #ifdef CONFIG_64BIT 1195 /** 1196 * pdc_pat_cell_get_number - Returns the cell number. 1197 * @cell_info: The return buffer. 1198 * 1199 * This PDC call returns the cell number of the cell from which the call 1200 * is made. 1201 */ 1202 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1203 { 1204 int retval; 1205 unsigned long flags; 1206 1207 spin_lock_irqsave(&pdc_lock, flags); 1208 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1209 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1210 spin_unlock_irqrestore(&pdc_lock, flags); 1211 1212 return retval; 1213 } 1214 1215 /** 1216 * pdc_pat_cell_module - Retrieve the cell's module information. 1217 * @actcnt: The number of bytes written to mem_addr. 1218 * @ploc: The physical location. 1219 * @mod: The module index. 1220 * @view_type: The view of the address type. 1221 * @mem_addr: The return buffer. 1222 * 1223 * This PDC call returns information about each module attached to the cell 1224 * at the specified location. 1225 */ 1226 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1227 unsigned long view_type, void *mem_addr) 1228 { 1229 int retval; 1230 unsigned long flags; 1231 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1232 1233 spin_lock_irqsave(&pdc_lock, flags); 1234 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1235 ploc, mod, view_type, __pa(&result)); 1236 if(!retval) { 1237 *actcnt = pdc_result[0]; 1238 memcpy(mem_addr, &result, *actcnt); 1239 } 1240 spin_unlock_irqrestore(&pdc_lock, flags); 1241 1242 return retval; 1243 } 1244 1245 /** 1246 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1247 * @cpu_info: The return buffer. 1248 * @hpa: The Hard Physical Address of the CPU. 1249 * 1250 * Retrieve the cpu number for the cpu at the specified HPA. 1251 */ 1252 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa) 1253 { 1254 int retval; 1255 unsigned long flags; 1256 1257 spin_lock_irqsave(&pdc_lock, flags); 1258 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1259 __pa(&pdc_result), hpa); 1260 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1261 spin_unlock_irqrestore(&pdc_lock, flags); 1262 1263 return retval; 1264 } 1265 1266 /** 1267 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1268 * @num_entries: The return value. 1269 * @cell_num: The target cell. 1270 * 1271 * This PDC function returns the number of entries in the specified cell's 1272 * interrupt table. 1273 */ 1274 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1275 { 1276 int retval; 1277 unsigned long flags; 1278 1279 spin_lock_irqsave(&pdc_lock, flags); 1280 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1281 __pa(pdc_result), cell_num); 1282 *num_entries = pdc_result[0]; 1283 spin_unlock_irqrestore(&pdc_lock, flags); 1284 1285 return retval; 1286 } 1287 1288 /** 1289 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1290 * @r_addr: The return buffer. 1291 * @cell_num: The target cell. 1292 * 1293 * This PDC function returns the actual interrupt table for the specified cell. 1294 */ 1295 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1296 { 1297 int retval; 1298 unsigned long flags; 1299 1300 spin_lock_irqsave(&pdc_lock, flags); 1301 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1302 __pa(r_addr), cell_num); 1303 spin_unlock_irqrestore(&pdc_lock, flags); 1304 1305 return retval; 1306 } 1307 1308 /** 1309 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1310 * @actlen: The return buffer. 1311 * @mem_addr: Pointer to the memory buffer. 1312 * @count: The number of bytes to read from the buffer. 1313 * @offset: The offset with respect to the beginning of the buffer. 1314 * 1315 */ 1316 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1317 unsigned long count, unsigned long offset) 1318 { 1319 int retval; 1320 unsigned long flags; 1321 1322 spin_lock_irqsave(&pdc_lock, flags); 1323 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1324 __pa(pdc_result2), count, offset); 1325 *actual_len = pdc_result[0]; 1326 memcpy(mem_addr, pdc_result2, *actual_len); 1327 spin_unlock_irqrestore(&pdc_lock, flags); 1328 1329 return retval; 1330 } 1331 1332 /** 1333 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1334 * @pci_addr: PCI configuration space address for which the read request is being made. 1335 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1336 * @mem_addr: Pointer to return memory buffer. 1337 * 1338 */ 1339 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1340 { 1341 int retval; 1342 unsigned long flags; 1343 1344 spin_lock_irqsave(&pdc_lock, flags); 1345 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1346 __pa(pdc_result), pci_addr, pci_size); 1347 switch(pci_size) { 1348 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; 1349 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; 1350 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; 1351 } 1352 spin_unlock_irqrestore(&pdc_lock, flags); 1353 1354 return retval; 1355 } 1356 1357 /** 1358 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1359 * @pci_addr: PCI configuration space address for which the write request is being made. 1360 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1361 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1362 * written to PCI Config space. 1363 * 1364 */ 1365 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1366 { 1367 int retval; 1368 unsigned long flags; 1369 1370 spin_lock_irqsave(&pdc_lock, flags); 1371 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1372 pci_addr, pci_size, val); 1373 spin_unlock_irqrestore(&pdc_lock, flags); 1374 1375 return retval; 1376 } 1377 #endif /* CONFIG_64BIT */ 1378 1379 1380 /***************** 32-bit real-mode calls ***********/ 1381 /* The struct below is used 1382 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1383 * real32_call_asm() then uses this stack in narrow real mode 1384 */ 1385 1386 struct narrow_stack { 1387 /* use int, not long which is 64 bits */ 1388 unsigned int arg13; 1389 unsigned int arg12; 1390 unsigned int arg11; 1391 unsigned int arg10; 1392 unsigned int arg9; 1393 unsigned int arg8; 1394 unsigned int arg7; 1395 unsigned int arg6; 1396 unsigned int arg5; 1397 unsigned int arg4; 1398 unsigned int arg3; 1399 unsigned int arg2; 1400 unsigned int arg1; 1401 unsigned int arg0; 1402 unsigned int frame_marker[8]; 1403 unsigned int sp; 1404 /* in reality, there's nearly 8k of stack after this */ 1405 }; 1406 1407 long real32_call(unsigned long fn, ...) 1408 { 1409 va_list args; 1410 extern struct narrow_stack real_stack; 1411 extern unsigned long real32_call_asm(unsigned int *, 1412 unsigned int *, 1413 unsigned int); 1414 1415 va_start(args, fn); 1416 real_stack.arg0 = va_arg(args, unsigned int); 1417 real_stack.arg1 = va_arg(args, unsigned int); 1418 real_stack.arg2 = va_arg(args, unsigned int); 1419 real_stack.arg3 = va_arg(args, unsigned int); 1420 real_stack.arg4 = va_arg(args, unsigned int); 1421 real_stack.arg5 = va_arg(args, unsigned int); 1422 real_stack.arg6 = va_arg(args, unsigned int); 1423 real_stack.arg7 = va_arg(args, unsigned int); 1424 real_stack.arg8 = va_arg(args, unsigned int); 1425 real_stack.arg9 = va_arg(args, unsigned int); 1426 real_stack.arg10 = va_arg(args, unsigned int); 1427 real_stack.arg11 = va_arg(args, unsigned int); 1428 real_stack.arg12 = va_arg(args, unsigned int); 1429 real_stack.arg13 = va_arg(args, unsigned int); 1430 va_end(args); 1431 1432 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1433 } 1434 1435 #ifdef CONFIG_64BIT 1436 /***************** 64-bit real-mode calls ***********/ 1437 1438 struct wide_stack { 1439 unsigned long arg0; 1440 unsigned long arg1; 1441 unsigned long arg2; 1442 unsigned long arg3; 1443 unsigned long arg4; 1444 unsigned long arg5; 1445 unsigned long arg6; 1446 unsigned long arg7; 1447 unsigned long arg8; 1448 unsigned long arg9; 1449 unsigned long arg10; 1450 unsigned long arg11; 1451 unsigned long arg12; 1452 unsigned long arg13; 1453 unsigned long frame_marker[2]; /* rp, previous sp */ 1454 unsigned long sp; 1455 /* in reality, there's nearly 8k of stack after this */ 1456 }; 1457 1458 long real64_call(unsigned long fn, ...) 1459 { 1460 va_list args; 1461 extern struct wide_stack real64_stack; 1462 extern unsigned long real64_call_asm(unsigned long *, 1463 unsigned long *, 1464 unsigned long); 1465 1466 va_start(args, fn); 1467 real64_stack.arg0 = va_arg(args, unsigned long); 1468 real64_stack.arg1 = va_arg(args, unsigned long); 1469 real64_stack.arg2 = va_arg(args, unsigned long); 1470 real64_stack.arg3 = va_arg(args, unsigned long); 1471 real64_stack.arg4 = va_arg(args, unsigned long); 1472 real64_stack.arg5 = va_arg(args, unsigned long); 1473 real64_stack.arg6 = va_arg(args, unsigned long); 1474 real64_stack.arg7 = va_arg(args, unsigned long); 1475 real64_stack.arg8 = va_arg(args, unsigned long); 1476 real64_stack.arg9 = va_arg(args, unsigned long); 1477 real64_stack.arg10 = va_arg(args, unsigned long); 1478 real64_stack.arg11 = va_arg(args, unsigned long); 1479 real64_stack.arg12 = va_arg(args, unsigned long); 1480 real64_stack.arg13 = va_arg(args, unsigned long); 1481 va_end(args); 1482 1483 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1484 } 1485 1486 #endif /* CONFIG_64BIT */ 1487 1488