xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision 1fa6ac37)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h>	/* for boot_cpu_data */
72 
73 static DEFINE_SPINLOCK(pdc_lock);
74 extern unsigned long pdc_result[NUM_PDC_RESULT];
75 extern unsigned long pdc_result2[NUM_PDC_RESULT];
76 
77 #ifdef CONFIG_64BIT
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80 
81 /* Firmware needs to be initially set to narrow to determine the
82  * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85 
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87  * and MEM_PDC calls are always the same width as the OS.
88  * Some PAT boxes may have 64-bit IODC I/O.
89  *
90  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92  * This allowed wide kernels to run on Cxxx boxes.
93  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95  */
96 
97 #ifdef CONFIG_64BIT
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101 
102 #ifdef CONFIG_64BIT
103 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109 
110 
111 /**
112  * f_extend - Convert PDC addresses to kernel addresses.
113  * @address: Address returned from PDC.
114  *
115  * This function is used to convert PDC addresses into kernel addresses
116  * when the PDC address size and kernel address size are different.
117  */
118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef CONFIG_64BIT
121 	if(unlikely(parisc_narrow_firmware)) {
122 		if((address & 0xff000000) == 0xf0000000)
123 			return 0xf0f0f0f000000000UL | (u32)address;
124 
125 		if((address & 0xf0000000) == 0xf0000000)
126 			return 0xffffffff00000000UL | (u32)address;
127 	}
128 #endif
129 	return address;
130 }
131 
132 /**
133  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134  * @address: The return buffer from PDC.
135  *
136  * This function is used to convert the return buffer addresses retrieved from PDC
137  * into kernel addresses when the PDC address size and kernel address size are
138  * different.
139  */
140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef CONFIG_64BIT
143 	int i;
144 	unsigned int *p = (unsigned int *)addr;
145 
146 	if(unlikely(parisc_narrow_firmware)) {
147 		for(i = 31; i >= 0; --i)
148 			addr[i] = p[i];
149 	}
150 #endif
151 }
152 
153 #ifdef CONFIG_64BIT
154 void __cpuinit set_firmware_width_unlocked(void)
155 {
156 	int ret;
157 
158 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
159 		__pa(pdc_result), 0);
160 	convert_to_wide(pdc_result);
161 	if (pdc_result[0] != NARROW_FIRMWARE)
162 		parisc_narrow_firmware = 0;
163 }
164 
165 /**
166  * set_firmware_width - Determine if the firmware is wide or narrow.
167  *
168  * This function must be called before any pdc_* function that uses the
169  * convert_to_wide function.
170  */
171 void __cpuinit set_firmware_width(void)
172 {
173 	unsigned long flags;
174 	spin_lock_irqsave(&pdc_lock, flags);
175 	set_firmware_width_unlocked();
176 	spin_unlock_irqrestore(&pdc_lock, flags);
177 }
178 #else
179 void __cpuinit set_firmware_width_unlocked(void) {
180 	return;
181 }
182 
183 void __cpuinit set_firmware_width(void) {
184 	return;
185 }
186 #endif /*CONFIG_64BIT*/
187 
188 /**
189  * pdc_emergency_unlock - Unlock the linux pdc lock
190  *
191  * This call unlocks the linux pdc lock in case we need some PDC functions
192  * (like pdc_add_valid) during kernel stack dump.
193  */
194 void pdc_emergency_unlock(void)
195 {
196  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
197         if (spin_is_locked(&pdc_lock))
198 		spin_unlock(&pdc_lock);
199 }
200 
201 
202 /**
203  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
204  * @address: Address to be verified.
205  *
206  * This PDC call attempts to read from the specified address and verifies
207  * if the address is valid.
208  *
209  * The return value is PDC_OK (0) in case accessing this address is valid.
210  */
211 int pdc_add_valid(unsigned long address)
212 {
213         int retval;
214 	unsigned long flags;
215 
216         spin_lock_irqsave(&pdc_lock, flags);
217         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
218         spin_unlock_irqrestore(&pdc_lock, flags);
219 
220         return retval;
221 }
222 EXPORT_SYMBOL(pdc_add_valid);
223 
224 /**
225  * pdc_chassis_info - Return chassis information.
226  * @result: The return buffer.
227  * @chassis_info: The memory buffer address.
228  * @len: The size of the memory buffer address.
229  *
230  * An HVERSION dependent call for returning the chassis information.
231  */
232 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
233 {
234         int retval;
235 	unsigned long flags;
236 
237         spin_lock_irqsave(&pdc_lock, flags);
238         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
239         memcpy(&pdc_result2, led_info, len);
240         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
241                               __pa(pdc_result), __pa(pdc_result2), len);
242         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
243         memcpy(led_info, pdc_result2, len);
244         spin_unlock_irqrestore(&pdc_lock, flags);
245 
246         return retval;
247 }
248 
249 /**
250  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
251  * @retval: -1 on error, 0 on success. Other value are PDC errors
252  *
253  * Must be correctly formatted or expect system crash
254  */
255 #ifdef CONFIG_64BIT
256 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
257 {
258 	int retval = 0;
259 	unsigned long flags;
260 
261 	if (!is_pdc_pat())
262 		return -1;
263 
264 	spin_lock_irqsave(&pdc_lock, flags);
265 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
266 	spin_unlock_irqrestore(&pdc_lock, flags);
267 
268 	return retval;
269 }
270 #endif
271 
272 /**
273  * pdc_chassis_disp - Updates chassis code
274  * @retval: -1 on error, 0 on success
275  */
276 int pdc_chassis_disp(unsigned long disp)
277 {
278 	int retval = 0;
279 	unsigned long flags;
280 
281 	spin_lock_irqsave(&pdc_lock, flags);
282 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
283 	spin_unlock_irqrestore(&pdc_lock, flags);
284 
285 	return retval;
286 }
287 
288 /**
289  * pdc_chassis_warn - Fetches chassis warnings
290  * @retval: -1 on error, 0 on success
291  */
292 int pdc_chassis_warn(unsigned long *warn)
293 {
294 	int retval = 0;
295 	unsigned long flags;
296 
297 	spin_lock_irqsave(&pdc_lock, flags);
298 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
299 	*warn = pdc_result[0];
300 	spin_unlock_irqrestore(&pdc_lock, flags);
301 
302 	return retval;
303 }
304 
305 int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
306 {
307 	int ret;
308 
309 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
310 	convert_to_wide(pdc_result);
311 	pdc_coproc_info->ccr_functional = pdc_result[0];
312 	pdc_coproc_info->ccr_present = pdc_result[1];
313 	pdc_coproc_info->revision = pdc_result[17];
314 	pdc_coproc_info->model = pdc_result[18];
315 
316 	return ret;
317 }
318 
319 /**
320  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
321  * @pdc_coproc_info: Return buffer address.
322  *
323  * This PDC call returns the presence and status of all the coprocessors
324  * attached to the processor.
325  */
326 int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
327 {
328 	int ret;
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&pdc_lock, flags);
332 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
333 	spin_unlock_irqrestore(&pdc_lock, flags);
334 
335 	return ret;
336 }
337 
338 /**
339  * pdc_iodc_read - Read data from the modules IODC.
340  * @actcnt: The actual number of bytes.
341  * @hpa: The HPA of the module for the iodc read.
342  * @index: The iodc entry point.
343  * @iodc_data: A buffer memory for the iodc options.
344  * @iodc_data_size: Size of the memory buffer.
345  *
346  * This PDC call reads from the IODC of the module specified by the hpa
347  * argument.
348  */
349 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
350 		  void *iodc_data, unsigned int iodc_data_size)
351 {
352 	int retval;
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(&pdc_lock, flags);
356 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
357 			      index, __pa(pdc_result2), iodc_data_size);
358 	convert_to_wide(pdc_result);
359 	*actcnt = pdc_result[0];
360 	memcpy(iodc_data, pdc_result2, iodc_data_size);
361 	spin_unlock_irqrestore(&pdc_lock, flags);
362 
363 	return retval;
364 }
365 EXPORT_SYMBOL(pdc_iodc_read);
366 
367 /**
368  * pdc_system_map_find_mods - Locate unarchitected modules.
369  * @pdc_mod_info: Return buffer address.
370  * @mod_path: pointer to dev path structure.
371  * @mod_index: fixed address module index.
372  *
373  * To locate and identify modules which reside at fixed I/O addresses, which
374  * do not self-identify via architected bus walks.
375  */
376 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
377 			     struct pdc_module_path *mod_path, long mod_index)
378 {
379 	int retval;
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&pdc_lock, flags);
383 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
384 			      __pa(pdc_result2), mod_index);
385 	convert_to_wide(pdc_result);
386 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
387 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
388 	spin_unlock_irqrestore(&pdc_lock, flags);
389 
390 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
391 	return retval;
392 }
393 
394 /**
395  * pdc_system_map_find_addrs - Retrieve additional address ranges.
396  * @pdc_addr_info: Return buffer address.
397  * @mod_index: Fixed address module index.
398  * @addr_index: Address range index.
399  *
400  * Retrieve additional information about subsequent address ranges for modules
401  * with multiple address ranges.
402  */
403 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
404 			      long mod_index, long addr_index)
405 {
406 	int retval;
407 	unsigned long flags;
408 
409 	spin_lock_irqsave(&pdc_lock, flags);
410 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
411 			      mod_index, addr_index);
412 	convert_to_wide(pdc_result);
413 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
414 	spin_unlock_irqrestore(&pdc_lock, flags);
415 
416 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
417 	return retval;
418 }
419 
420 /**
421  * pdc_model_info - Return model information about the processor.
422  * @model: The return buffer.
423  *
424  * Returns the version numbers, identifiers, and capabilities from the processor module.
425  */
426 int pdc_model_info(struct pdc_model *model)
427 {
428 	int retval;
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(&pdc_lock, flags);
432 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
433 	convert_to_wide(pdc_result);
434 	memcpy(model, pdc_result, sizeof(*model));
435 	spin_unlock_irqrestore(&pdc_lock, flags);
436 
437 	return retval;
438 }
439 
440 /**
441  * pdc_model_sysmodel - Get the system model name.
442  * @name: A char array of at least 81 characters.
443  *
444  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
445  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
446  * on HP/UX.
447  */
448 int pdc_model_sysmodel(char *name)
449 {
450         int retval;
451 	unsigned long flags;
452 
453         spin_lock_irqsave(&pdc_lock, flags);
454         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
455                               OS_ID_HPUX, __pa(name));
456         convert_to_wide(pdc_result);
457 
458         if (retval == PDC_OK) {
459                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
460         } else {
461                 name[0] = 0;
462         }
463         spin_unlock_irqrestore(&pdc_lock, flags);
464 
465         return retval;
466 }
467 
468 /**
469  * pdc_model_versions - Identify the version number of each processor.
470  * @cpu_id: The return buffer.
471  * @id: The id of the processor to check.
472  *
473  * Returns the version number for each processor component.
474  *
475  * This comment was here before, but I do not know what it means :( -RB
476  * id: 0 = cpu revision, 1 = boot-rom-version
477  */
478 int pdc_model_versions(unsigned long *versions, int id)
479 {
480         int retval;
481 	unsigned long flags;
482 
483         spin_lock_irqsave(&pdc_lock, flags);
484         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
485         convert_to_wide(pdc_result);
486         *versions = pdc_result[0];
487         spin_unlock_irqrestore(&pdc_lock, flags);
488 
489         return retval;
490 }
491 
492 /**
493  * pdc_model_cpuid - Returns the CPU_ID.
494  * @cpu_id: The return buffer.
495  *
496  * Returns the CPU_ID value which uniquely identifies the cpu portion of
497  * the processor module.
498  */
499 int pdc_model_cpuid(unsigned long *cpu_id)
500 {
501         int retval;
502 	unsigned long flags;
503 
504         spin_lock_irqsave(&pdc_lock, flags);
505         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
506         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
507         convert_to_wide(pdc_result);
508         *cpu_id = pdc_result[0];
509         spin_unlock_irqrestore(&pdc_lock, flags);
510 
511         return retval;
512 }
513 
514 /**
515  * pdc_model_capabilities - Returns the platform capabilities.
516  * @capabilities: The return buffer.
517  *
518  * Returns information about platform support for 32- and/or 64-bit
519  * OSes, IO-PDIR coherency, and virtual aliasing.
520  */
521 int pdc_model_capabilities(unsigned long *capabilities)
522 {
523         int retval;
524 	unsigned long flags;
525 
526         spin_lock_irqsave(&pdc_lock, flags);
527         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
528         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
529         convert_to_wide(pdc_result);
530         if (retval == PDC_OK) {
531                 *capabilities = pdc_result[0];
532         } else {
533                 *capabilities = PDC_MODEL_OS32;
534         }
535         spin_unlock_irqrestore(&pdc_lock, flags);
536 
537         return retval;
538 }
539 
540 /**
541  * pdc_cache_info - Return cache and TLB information.
542  * @cache_info: The return buffer.
543  *
544  * Returns information about the processor's cache and TLB.
545  */
546 int pdc_cache_info(struct pdc_cache_info *cache_info)
547 {
548         int retval;
549 	unsigned long flags;
550 
551         spin_lock_irqsave(&pdc_lock, flags);
552         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
553         convert_to_wide(pdc_result);
554         memcpy(cache_info, pdc_result, sizeof(*cache_info));
555         spin_unlock_irqrestore(&pdc_lock, flags);
556 
557         return retval;
558 }
559 
560 /**
561  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
562  * @space_bits: Should be 0, if not, bad mojo!
563  *
564  * Returns information about Space ID hashing.
565  */
566 int pdc_spaceid_bits(unsigned long *space_bits)
567 {
568 	int retval;
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(&pdc_lock, flags);
572 	pdc_result[0] = 0;
573 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
574 	convert_to_wide(pdc_result);
575 	*space_bits = pdc_result[0];
576 	spin_unlock_irqrestore(&pdc_lock, flags);
577 
578 	return retval;
579 }
580 
581 #ifndef CONFIG_PA20
582 /**
583  * pdc_btlb_info - Return block TLB information.
584  * @btlb: The return buffer.
585  *
586  * Returns information about the hardware Block TLB.
587  */
588 int pdc_btlb_info(struct pdc_btlb_info *btlb)
589 {
590         int retval;
591 	unsigned long flags;
592 
593         spin_lock_irqsave(&pdc_lock, flags);
594         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
595         memcpy(btlb, pdc_result, sizeof(*btlb));
596         spin_unlock_irqrestore(&pdc_lock, flags);
597 
598         if(retval < 0) {
599                 btlb->max_size = 0;
600         }
601         return retval;
602 }
603 
604 /**
605  * pdc_mem_map_hpa - Find fixed module information.
606  * @address: The return buffer
607  * @mod_path: pointer to dev path structure.
608  *
609  * This call was developed for S700 workstations to allow the kernel to find
610  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
611  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
612  * call.
613  *
614  * This call is supported by all existing S700 workstations (up to  Gecko).
615  */
616 int pdc_mem_map_hpa(struct pdc_memory_map *address,
617 		struct pdc_module_path *mod_path)
618 {
619         int retval;
620 	unsigned long flags;
621 
622         spin_lock_irqsave(&pdc_lock, flags);
623         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
624         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
625 				__pa(pdc_result2));
626         memcpy(address, pdc_result, sizeof(*address));
627         spin_unlock_irqrestore(&pdc_lock, flags);
628 
629         return retval;
630 }
631 #endif	/* !CONFIG_PA20 */
632 
633 /**
634  * pdc_lan_station_id - Get the LAN address.
635  * @lan_addr: The return buffer.
636  * @hpa: The network device HPA.
637  *
638  * Get the LAN station address when it is not directly available from the LAN hardware.
639  */
640 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
641 {
642 	int retval;
643 	unsigned long flags;
644 
645 	spin_lock_irqsave(&pdc_lock, flags);
646 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
647 			__pa(pdc_result), hpa);
648 	if (retval < 0) {
649 		/* FIXME: else read MAC from NVRAM */
650 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
651 	} else {
652 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
653 	}
654 	spin_unlock_irqrestore(&pdc_lock, flags);
655 
656 	return retval;
657 }
658 EXPORT_SYMBOL(pdc_lan_station_id);
659 
660 /**
661  * pdc_stable_read - Read data from Stable Storage.
662  * @staddr: Stable Storage address to access.
663  * @memaddr: The memory address where Stable Storage data shall be copied.
664  * @count: number of bytes to transfer. count is multiple of 4.
665  *
666  * This PDC call reads from the Stable Storage address supplied in staddr
667  * and copies count bytes to the memory address memaddr.
668  * The call will fail if staddr+count > PDC_STABLE size.
669  */
670 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
671 {
672        int retval;
673 	unsigned long flags;
674 
675        spin_lock_irqsave(&pdc_lock, flags);
676        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
677                __pa(pdc_result), count);
678        convert_to_wide(pdc_result);
679        memcpy(memaddr, pdc_result, count);
680        spin_unlock_irqrestore(&pdc_lock, flags);
681 
682        return retval;
683 }
684 EXPORT_SYMBOL(pdc_stable_read);
685 
686 /**
687  * pdc_stable_write - Write data to Stable Storage.
688  * @staddr: Stable Storage address to access.
689  * @memaddr: The memory address where Stable Storage data shall be read from.
690  * @count: number of bytes to transfer. count is multiple of 4.
691  *
692  * This PDC call reads count bytes from the supplied memaddr address,
693  * and copies count bytes to the Stable Storage address staddr.
694  * The call will fail if staddr+count > PDC_STABLE size.
695  */
696 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
697 {
698        int retval;
699 	unsigned long flags;
700 
701        spin_lock_irqsave(&pdc_lock, flags);
702        memcpy(pdc_result, memaddr, count);
703        convert_to_wide(pdc_result);
704        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
705                __pa(pdc_result), count);
706        spin_unlock_irqrestore(&pdc_lock, flags);
707 
708        return retval;
709 }
710 EXPORT_SYMBOL(pdc_stable_write);
711 
712 /**
713  * pdc_stable_get_size - Get Stable Storage size in bytes.
714  * @size: pointer where the size will be stored.
715  *
716  * This PDC call returns the number of bytes in the processor's Stable
717  * Storage, which is the number of contiguous bytes implemented in Stable
718  * Storage starting from staddr=0. size in an unsigned 64-bit integer
719  * which is a multiple of four.
720  */
721 int pdc_stable_get_size(unsigned long *size)
722 {
723        int retval;
724 	unsigned long flags;
725 
726        spin_lock_irqsave(&pdc_lock, flags);
727        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
728        *size = pdc_result[0];
729        spin_unlock_irqrestore(&pdc_lock, flags);
730 
731        return retval;
732 }
733 EXPORT_SYMBOL(pdc_stable_get_size);
734 
735 /**
736  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
737  *
738  * This PDC call is meant to be used to check the integrity of the current
739  * contents of Stable Storage.
740  */
741 int pdc_stable_verify_contents(void)
742 {
743        int retval;
744 	unsigned long flags;
745 
746        spin_lock_irqsave(&pdc_lock, flags);
747        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
748        spin_unlock_irqrestore(&pdc_lock, flags);
749 
750        return retval;
751 }
752 EXPORT_SYMBOL(pdc_stable_verify_contents);
753 
754 /**
755  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
756  * the validity indicator.
757  *
758  * This PDC call will erase all contents of Stable Storage. Use with care!
759  */
760 int pdc_stable_initialize(void)
761 {
762        int retval;
763 	unsigned long flags;
764 
765        spin_lock_irqsave(&pdc_lock, flags);
766        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
767        spin_unlock_irqrestore(&pdc_lock, flags);
768 
769        return retval;
770 }
771 EXPORT_SYMBOL(pdc_stable_initialize);
772 
773 /**
774  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
775  * @hwpath: fully bc.mod style path to the device.
776  * @initiator: the array to return the result into
777  *
778  * Get the SCSI operational parameters from PDC.
779  * Needed since HPUX never used BIOS or symbios card NVRAM.
780  * Most ncr/sym cards won't have an entry and just use whatever
781  * capabilities of the card are (eg Ultra, LVD). But there are
782  * several cases where it's useful:
783  *    o set SCSI id for Multi-initiator clusters,
784  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
785  *    o bus width exported is less than what the interface chip supports.
786  */
787 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
788 {
789 	int retval;
790 	unsigned long flags;
791 
792 	spin_lock_irqsave(&pdc_lock, flags);
793 
794 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
795 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
796 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
797 
798 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
799 			      __pa(pdc_result), __pa(hwpath));
800 	if (retval < PDC_OK)
801 		goto out;
802 
803 	if (pdc_result[0] < 16) {
804 		initiator->host_id = pdc_result[0];
805 	} else {
806 		initiator->host_id = -1;
807 	}
808 
809 	/*
810 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
811 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
812 	 */
813 	switch (pdc_result[1]) {
814 		case  1: initiator->factor = 50; break;
815 		case  2: initiator->factor = 25; break;
816 		case  5: initiator->factor = 12; break;
817 		case 25: initiator->factor = 10; break;
818 		case 20: initiator->factor = 12; break;
819 		case 40: initiator->factor = 10; break;
820 		default: initiator->factor = -1; break;
821 	}
822 
823 	if (IS_SPROCKETS()) {
824 		initiator->width = pdc_result[4];
825 		initiator->mode = pdc_result[5];
826 	} else {
827 		initiator->width = -1;
828 		initiator->mode = -1;
829 	}
830 
831  out:
832 	spin_unlock_irqrestore(&pdc_lock, flags);
833 
834 	return (retval >= PDC_OK);
835 }
836 EXPORT_SYMBOL(pdc_get_initiator);
837 
838 
839 /**
840  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
841  * @num_entries: The return value.
842  * @hpa: The HPA for the device.
843  *
844  * This PDC function returns the number of entries in the specified cell's
845  * interrupt table.
846  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
847  */
848 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
849 {
850 	int retval;
851 	unsigned long flags;
852 
853 	spin_lock_irqsave(&pdc_lock, flags);
854 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
855 			      __pa(pdc_result), hpa);
856 	convert_to_wide(pdc_result);
857 	*num_entries = pdc_result[0];
858 	spin_unlock_irqrestore(&pdc_lock, flags);
859 
860 	return retval;
861 }
862 
863 /**
864  * pdc_pci_irt - Get the PCI interrupt routing table.
865  * @num_entries: The number of entries in the table.
866  * @hpa: The Hard Physical Address of the device.
867  * @tbl:
868  *
869  * Get the PCI interrupt routing table for the device at the given HPA.
870  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
871  */
872 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
873 {
874 	int retval;
875 	unsigned long flags;
876 
877 	BUG_ON((unsigned long)tbl & 0x7);
878 
879 	spin_lock_irqsave(&pdc_lock, flags);
880 	pdc_result[0] = num_entries;
881 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
882 			      __pa(pdc_result), hpa, __pa(tbl));
883 	spin_unlock_irqrestore(&pdc_lock, flags);
884 
885 	return retval;
886 }
887 
888 
889 #if 0	/* UNTEST CODE - left here in case someone needs it */
890 
891 /**
892  * pdc_pci_config_read - read PCI config space.
893  * @hpa		token from PDC to indicate which PCI device
894  * @pci_addr	configuration space address to read from
895  *
896  * Read PCI Configuration space *before* linux PCI subsystem is running.
897  */
898 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
899 {
900 	int retval;
901 	unsigned long flags;
902 
903 	spin_lock_irqsave(&pdc_lock, flags);
904 	pdc_result[0] = 0;
905 	pdc_result[1] = 0;
906 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
907 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
908 	spin_unlock_irqrestore(&pdc_lock, flags);
909 
910 	return retval ? ~0 : (unsigned int) pdc_result[0];
911 }
912 
913 
914 /**
915  * pdc_pci_config_write - read PCI config space.
916  * @hpa		token from PDC to indicate which PCI device
917  * @pci_addr	configuration space address to write
918  * @val		value we want in the 32-bit register
919  *
920  * Write PCI Configuration space *before* linux PCI subsystem is running.
921  */
922 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
923 {
924 	int retval;
925 	unsigned long flags;
926 
927 	spin_lock_irqsave(&pdc_lock, flags);
928 	pdc_result[0] = 0;
929 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
930 			      __pa(pdc_result), hpa,
931 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
932 	spin_unlock_irqrestore(&pdc_lock, flags);
933 
934 	return retval;
935 }
936 #endif /* UNTESTED CODE */
937 
938 /**
939  * pdc_tod_read - Read the Time-Of-Day clock.
940  * @tod: The return buffer:
941  *
942  * Read the Time-Of-Day clock
943  */
944 int pdc_tod_read(struct pdc_tod *tod)
945 {
946         int retval;
947 	unsigned long flags;
948 
949         spin_lock_irqsave(&pdc_lock, flags);
950         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
951         convert_to_wide(pdc_result);
952         memcpy(tod, pdc_result, sizeof(*tod));
953         spin_unlock_irqrestore(&pdc_lock, flags);
954 
955         return retval;
956 }
957 EXPORT_SYMBOL(pdc_tod_read);
958 
959 /**
960  * pdc_tod_set - Set the Time-Of-Day clock.
961  * @sec: The number of seconds since epoch.
962  * @usec: The number of micro seconds.
963  *
964  * Set the Time-Of-Day clock.
965  */
966 int pdc_tod_set(unsigned long sec, unsigned long usec)
967 {
968         int retval;
969 	unsigned long flags;
970 
971         spin_lock_irqsave(&pdc_lock, flags);
972         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
973         spin_unlock_irqrestore(&pdc_lock, flags);
974 
975         return retval;
976 }
977 EXPORT_SYMBOL(pdc_tod_set);
978 
979 #ifdef CONFIG_64BIT
980 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
981 		struct pdc_memory_table *tbl, unsigned long entries)
982 {
983 	int retval;
984 	unsigned long flags;
985 
986 	spin_lock_irqsave(&pdc_lock, flags);
987 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
988 	convert_to_wide(pdc_result);
989 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
990 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
991 	spin_unlock_irqrestore(&pdc_lock, flags);
992 
993 	return retval;
994 }
995 #endif /* CONFIG_64BIT */
996 
997 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
998  * so I guessed at unsigned long.  Someone who knows what this does, can fix
999  * it later. :)
1000  */
1001 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002 {
1003         int retval;
1004 	unsigned long flags;
1005 
1006         spin_lock_irqsave(&pdc_lock, flags);
1007         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009         spin_unlock_irqrestore(&pdc_lock, flags);
1010 
1011         return retval;
1012 }
1013 
1014 /*
1015  * pdc_do_reset - Reset the system.
1016  *
1017  * Reset the system.
1018  */
1019 int pdc_do_reset(void)
1020 {
1021         int retval;
1022 	unsigned long flags;
1023 
1024         spin_lock_irqsave(&pdc_lock, flags);
1025         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026         spin_unlock_irqrestore(&pdc_lock, flags);
1027 
1028         return retval;
1029 }
1030 
1031 /*
1032  * pdc_soft_power_info - Enable soft power switch.
1033  * @power_reg: address of soft power register
1034  *
1035  * Return the absolute address of the soft power switch register
1036  */
1037 int __init pdc_soft_power_info(unsigned long *power_reg)
1038 {
1039 	int retval;
1040 	unsigned long flags;
1041 
1042 	*power_reg = (unsigned long) (-1);
1043 
1044 	spin_lock_irqsave(&pdc_lock, flags);
1045 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046 	if (retval == PDC_OK) {
1047                 convert_to_wide(pdc_result);
1048                 *power_reg = f_extend(pdc_result[0]);
1049 	}
1050 	spin_unlock_irqrestore(&pdc_lock, flags);
1051 
1052 	return retval;
1053 }
1054 
1055 /*
1056  * pdc_soft_power_button - Control the soft power button behaviour
1057  * @sw_control: 0 for hardware control, 1 for software control
1058  *
1059  *
1060  * This PDC function places the soft power button under software or
1061  * hardware control.
1062  * Under software control the OS may control to when to allow to shut
1063  * down the system. Under hardware control pressing the power button
1064  * powers off the system immediately.
1065  */
1066 int pdc_soft_power_button(int sw_control)
1067 {
1068 	int retval;
1069 	unsigned long flags;
1070 
1071 	spin_lock_irqsave(&pdc_lock, flags);
1072 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073 	spin_unlock_irqrestore(&pdc_lock, flags);
1074 
1075 	return retval;
1076 }
1077 
1078 /*
1079  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1081  * who knows what other platform firmware might do with this OS "hook".
1082  */
1083 void pdc_io_reset(void)
1084 {
1085 	unsigned long flags;
1086 
1087 	spin_lock_irqsave(&pdc_lock, flags);
1088 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089 	spin_unlock_irqrestore(&pdc_lock, flags);
1090 }
1091 
1092 /*
1093  * pdc_io_reset_devices - Hack to Stop USB controller
1094  *
1095  * If PDC used the usb controller, the usb controller
1096  * is still running and will crash the machines during iommu
1097  * setup, because of still running DMA. This PDC call
1098  * stops the USB controller.
1099  * Normally called after calling pdc_io_reset().
1100  */
1101 void pdc_io_reset_devices(void)
1102 {
1103 	unsigned long flags;
1104 
1105 	spin_lock_irqsave(&pdc_lock, flags);
1106 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107 	spin_unlock_irqrestore(&pdc_lock, flags);
1108 }
1109 
1110 /* locked by pdc_console_lock */
1111 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1112 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113 
1114 /**
1115  * pdc_iodc_print - Console print using IODC.
1116  * @str: the string to output.
1117  * @count: length of str
1118  *
1119  * Note that only these special chars are architected for console IODC io:
1120  * BEL, BS, CR, and LF. Others are passed through.
1121  * Since the HP console requires CR+LF to perform a 'newline', we translate
1122  * "\n" to "\r\n".
1123  */
1124 int pdc_iodc_print(const unsigned char *str, unsigned count)
1125 {
1126 	static int posx;        /* for simple TAB-Simulation... */
1127 	unsigned int i;
1128 	unsigned long flags;
1129 
1130 	for (i = 0; i < count && i < 79;) {
1131 		switch(str[i]) {
1132 		case '\n':
1133 			iodc_dbuf[i+0] = '\r';
1134 			iodc_dbuf[i+1] = '\n';
1135 			i += 2;
1136 			posx = 0;
1137 			goto print;
1138 		case '\t':
1139 			while (posx & 7) {
1140 				iodc_dbuf[i] = ' ';
1141 				i++, posx++;
1142 			}
1143 			break;
1144 		case '\b':	/* BS */
1145 			posx -= 2;
1146 		default:
1147 			iodc_dbuf[i] = str[i];
1148 			i++, posx++;
1149 			break;
1150 		}
1151 	}
1152 
1153 	/* if we're at the end of line, and not already inserting a newline,
1154 	 * insert one anyway. iodc console doesn't claim to support >79 char
1155 	 * lines. don't account for this in the return value.
1156 	 */
1157 	if (i == 79 && iodc_dbuf[i-1] != '\n') {
1158 		iodc_dbuf[i+0] = '\r';
1159 		iodc_dbuf[i+1] = '\n';
1160 	}
1161 
1162 print:
1163         spin_lock_irqsave(&pdc_lock, flags);
1164         real32_call(PAGE0->mem_cons.iodc_io,
1165                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1166                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1167                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1168         spin_unlock_irqrestore(&pdc_lock, flags);
1169 
1170 	return i;
1171 }
1172 
1173 /**
1174  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1175  *
1176  * Read a character (non-blocking) from the PDC console, returns -1 if
1177  * key is not present.
1178  */
1179 int pdc_iodc_getc(void)
1180 {
1181 	int ch;
1182 	int status;
1183 	unsigned long flags;
1184 
1185 	/* Bail if no console input device. */
1186 	if (!PAGE0->mem_kbd.iodc_io)
1187 		return 0;
1188 
1189 	/* wait for a keyboard (rs232)-input */
1190 	spin_lock_irqsave(&pdc_lock, flags);
1191 	real32_call(PAGE0->mem_kbd.iodc_io,
1192 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1193 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1194 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1195 
1196 	ch = *iodc_dbuf;
1197 	status = *iodc_retbuf;
1198 	spin_unlock_irqrestore(&pdc_lock, flags);
1199 
1200 	if (status == 0)
1201 	    return -1;
1202 
1203 	return ch;
1204 }
1205 
1206 int pdc_sti_call(unsigned long func, unsigned long flags,
1207                  unsigned long inptr, unsigned long outputr,
1208                  unsigned long glob_cfg)
1209 {
1210         int retval;
1211 	unsigned long irqflags;
1212 
1213         spin_lock_irqsave(&pdc_lock, irqflags);
1214         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1215         spin_unlock_irqrestore(&pdc_lock, irqflags);
1216 
1217         return retval;
1218 }
1219 EXPORT_SYMBOL(pdc_sti_call);
1220 
1221 #ifdef CONFIG_64BIT
1222 /**
1223  * pdc_pat_cell_get_number - Returns the cell number.
1224  * @cell_info: The return buffer.
1225  *
1226  * This PDC call returns the cell number of the cell from which the call
1227  * is made.
1228  */
1229 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1230 {
1231 	int retval;
1232 	unsigned long flags;
1233 
1234 	spin_lock_irqsave(&pdc_lock, flags);
1235 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1236 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1237 	spin_unlock_irqrestore(&pdc_lock, flags);
1238 
1239 	return retval;
1240 }
1241 
1242 /**
1243  * pdc_pat_cell_module - Retrieve the cell's module information.
1244  * @actcnt: The number of bytes written to mem_addr.
1245  * @ploc: The physical location.
1246  * @mod: The module index.
1247  * @view_type: The view of the address type.
1248  * @mem_addr: The return buffer.
1249  *
1250  * This PDC call returns information about each module attached to the cell
1251  * at the specified location.
1252  */
1253 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1254 			unsigned long view_type, void *mem_addr)
1255 {
1256 	int retval;
1257 	unsigned long flags;
1258 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1259 
1260 	spin_lock_irqsave(&pdc_lock, flags);
1261 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1262 			      ploc, mod, view_type, __pa(&result));
1263 	if(!retval) {
1264 		*actcnt = pdc_result[0];
1265 		memcpy(mem_addr, &result, *actcnt);
1266 	}
1267 	spin_unlock_irqrestore(&pdc_lock, flags);
1268 
1269 	return retval;
1270 }
1271 
1272 /**
1273  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1274  * @cpu_info: The return buffer.
1275  * @hpa: The Hard Physical Address of the CPU.
1276  *
1277  * Retrieve the cpu number for the cpu at the specified HPA.
1278  */
1279 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1280 {
1281 	int retval;
1282 	unsigned long flags;
1283 
1284 	spin_lock_irqsave(&pdc_lock, flags);
1285 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1286 			      __pa(&pdc_result), hpa);
1287 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1288 	spin_unlock_irqrestore(&pdc_lock, flags);
1289 
1290 	return retval;
1291 }
1292 
1293 /**
1294  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1295  * @num_entries: The return value.
1296  * @cell_num: The target cell.
1297  *
1298  * This PDC function returns the number of entries in the specified cell's
1299  * interrupt table.
1300  */
1301 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1302 {
1303 	int retval;
1304 	unsigned long flags;
1305 
1306 	spin_lock_irqsave(&pdc_lock, flags);
1307 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1308 			      __pa(pdc_result), cell_num);
1309 	*num_entries = pdc_result[0];
1310 	spin_unlock_irqrestore(&pdc_lock, flags);
1311 
1312 	return retval;
1313 }
1314 
1315 /**
1316  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1317  * @r_addr: The return buffer.
1318  * @cell_num: The target cell.
1319  *
1320  * This PDC function returns the actual interrupt table for the specified cell.
1321  */
1322 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1323 {
1324 	int retval;
1325 	unsigned long flags;
1326 
1327 	spin_lock_irqsave(&pdc_lock, flags);
1328 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1329 			      __pa(r_addr), cell_num);
1330 	spin_unlock_irqrestore(&pdc_lock, flags);
1331 
1332 	return retval;
1333 }
1334 
1335 /**
1336  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1337  * @actlen: The return buffer.
1338  * @mem_addr: Pointer to the memory buffer.
1339  * @count: The number of bytes to read from the buffer.
1340  * @offset: The offset with respect to the beginning of the buffer.
1341  *
1342  */
1343 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1344 			    unsigned long count, unsigned long offset)
1345 {
1346 	int retval;
1347 	unsigned long flags;
1348 
1349 	spin_lock_irqsave(&pdc_lock, flags);
1350 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1351 			      __pa(pdc_result2), count, offset);
1352 	*actual_len = pdc_result[0];
1353 	memcpy(mem_addr, pdc_result2, *actual_len);
1354 	spin_unlock_irqrestore(&pdc_lock, flags);
1355 
1356 	return retval;
1357 }
1358 
1359 /**
1360  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1361  * @pci_addr: PCI configuration space address for which the read request is being made.
1362  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1363  * @mem_addr: Pointer to return memory buffer.
1364  *
1365  */
1366 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1367 {
1368 	int retval;
1369 	unsigned long flags;
1370 
1371 	spin_lock_irqsave(&pdc_lock, flags);
1372 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1373 					__pa(pdc_result), pci_addr, pci_size);
1374 	switch(pci_size) {
1375 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1376 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1377 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1378 	}
1379 	spin_unlock_irqrestore(&pdc_lock, flags);
1380 
1381 	return retval;
1382 }
1383 
1384 /**
1385  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1386  * @pci_addr: PCI configuration space address for which the write  request is being made.
1387  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1388  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1389  *         written to PCI Config space.
1390  *
1391  */
1392 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1393 {
1394 	int retval;
1395 	unsigned long flags;
1396 
1397 	spin_lock_irqsave(&pdc_lock, flags);
1398 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1399 				pci_addr, pci_size, val);
1400 	spin_unlock_irqrestore(&pdc_lock, flags);
1401 
1402 	return retval;
1403 }
1404 #endif /* CONFIG_64BIT */
1405 
1406 
1407 /***************** 32-bit real-mode calls ***********/
1408 /* The struct below is used
1409  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1410  * real32_call_asm() then uses this stack in narrow real mode
1411  */
1412 
1413 struct narrow_stack {
1414 	/* use int, not long which is 64 bits */
1415 	unsigned int arg13;
1416 	unsigned int arg12;
1417 	unsigned int arg11;
1418 	unsigned int arg10;
1419 	unsigned int arg9;
1420 	unsigned int arg8;
1421 	unsigned int arg7;
1422 	unsigned int arg6;
1423 	unsigned int arg5;
1424 	unsigned int arg4;
1425 	unsigned int arg3;
1426 	unsigned int arg2;
1427 	unsigned int arg1;
1428 	unsigned int arg0;
1429 	unsigned int frame_marker[8];
1430 	unsigned int sp;
1431 	/* in reality, there's nearly 8k of stack after this */
1432 };
1433 
1434 long real32_call(unsigned long fn, ...)
1435 {
1436 	va_list args;
1437 	extern struct narrow_stack real_stack;
1438 	extern unsigned long real32_call_asm(unsigned int *,
1439 					     unsigned int *,
1440 					     unsigned int);
1441 
1442 	va_start(args, fn);
1443 	real_stack.arg0 = va_arg(args, unsigned int);
1444 	real_stack.arg1 = va_arg(args, unsigned int);
1445 	real_stack.arg2 = va_arg(args, unsigned int);
1446 	real_stack.arg3 = va_arg(args, unsigned int);
1447 	real_stack.arg4 = va_arg(args, unsigned int);
1448 	real_stack.arg5 = va_arg(args, unsigned int);
1449 	real_stack.arg6 = va_arg(args, unsigned int);
1450 	real_stack.arg7 = va_arg(args, unsigned int);
1451 	real_stack.arg8 = va_arg(args, unsigned int);
1452 	real_stack.arg9 = va_arg(args, unsigned int);
1453 	real_stack.arg10 = va_arg(args, unsigned int);
1454 	real_stack.arg11 = va_arg(args, unsigned int);
1455 	real_stack.arg12 = va_arg(args, unsigned int);
1456 	real_stack.arg13 = va_arg(args, unsigned int);
1457 	va_end(args);
1458 
1459 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1460 }
1461 
1462 #ifdef CONFIG_64BIT
1463 /***************** 64-bit real-mode calls ***********/
1464 
1465 struct wide_stack {
1466 	unsigned long arg0;
1467 	unsigned long arg1;
1468 	unsigned long arg2;
1469 	unsigned long arg3;
1470 	unsigned long arg4;
1471 	unsigned long arg5;
1472 	unsigned long arg6;
1473 	unsigned long arg7;
1474 	unsigned long arg8;
1475 	unsigned long arg9;
1476 	unsigned long arg10;
1477 	unsigned long arg11;
1478 	unsigned long arg12;
1479 	unsigned long arg13;
1480 	unsigned long frame_marker[2];	/* rp, previous sp */
1481 	unsigned long sp;
1482 	/* in reality, there's nearly 8k of stack after this */
1483 };
1484 
1485 long real64_call(unsigned long fn, ...)
1486 {
1487 	va_list args;
1488 	extern struct wide_stack real64_stack;
1489 	extern unsigned long real64_call_asm(unsigned long *,
1490 					     unsigned long *,
1491 					     unsigned long);
1492 
1493 	va_start(args, fn);
1494 	real64_stack.arg0 = va_arg(args, unsigned long);
1495 	real64_stack.arg1 = va_arg(args, unsigned long);
1496 	real64_stack.arg2 = va_arg(args, unsigned long);
1497 	real64_stack.arg3 = va_arg(args, unsigned long);
1498 	real64_stack.arg4 = va_arg(args, unsigned long);
1499 	real64_stack.arg5 = va_arg(args, unsigned long);
1500 	real64_stack.arg6 = va_arg(args, unsigned long);
1501 	real64_stack.arg7 = va_arg(args, unsigned long);
1502 	real64_stack.arg8 = va_arg(args, unsigned long);
1503 	real64_stack.arg9 = va_arg(args, unsigned long);
1504 	real64_stack.arg10 = va_arg(args, unsigned long);
1505 	real64_stack.arg11 = va_arg(args, unsigned long);
1506 	real64_stack.arg12 = va_arg(args, unsigned long);
1507 	real64_stack.arg13 = va_arg(args, unsigned long);
1508 	va_end(args);
1509 
1510 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1511 }
1512 
1513 #endif /* CONFIG_64BIT */
1514 
1515