1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * drivers.c 4 * 5 * Copyright (c) 1999 The Puffin Group 6 * Copyright (c) 2001 Matthew Wilcox for Hewlett Packard 7 * Copyright (c) 2001 Helge Deller <deller@gmx.de> 8 * Copyright (c) 2001,2002 Ryan Bradetich 9 * Copyright (c) 2004-2005 Thibaut VARENE <varenet@parisc-linux.org> 10 * 11 * The file handles registering devices and drivers, then matching them. 12 * It's the closest we get to a dating agency. 13 * 14 * If you're thinking about modifying this file, here are some gotchas to 15 * bear in mind: 16 * - 715/Mirage device paths have a dummy device between Lasi and its children 17 * - The EISA adapter may show up as a sibling or child of Wax 18 * - Dino has an optionally functional serial port. If firmware enables it, 19 * it shows up as a child of Dino. If firmware disables it, the buswalk 20 * finds it and it shows up as a child of Cujo 21 * - Dino has both parisc and pci devices as children 22 * - parisc devices are discovered in a random order, including children 23 * before parents in some cases. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/types.h> 28 #include <linux/kernel.h> 29 #include <linux/pci.h> 30 #include <linux/spinlock.h> 31 #include <linux/string.h> 32 #include <linux/export.h> 33 #include <linux/dma-map-ops.h> 34 #include <asm/hardware.h> 35 #include <asm/io.h> 36 #include <asm/pdc.h> 37 #include <asm/parisc-device.h> 38 #include <asm/ropes.h> 39 40 /* See comments in include/asm-parisc/pci.h */ 41 const struct dma_map_ops *hppa_dma_ops __ro_after_init; 42 EXPORT_SYMBOL(hppa_dma_ops); 43 44 static struct device root = { 45 .init_name = "parisc", 46 }; 47 48 static inline int check_dev(struct device *dev) 49 { 50 if (dev->bus == &parisc_bus_type) { 51 struct parisc_device *pdev; 52 pdev = to_parisc_device(dev); 53 return pdev->id.hw_type != HPHW_FAULTY; 54 } 55 return 1; 56 } 57 58 static struct device * 59 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath); 60 61 struct recurse_struct { 62 void * obj; 63 int (*fn)(struct device *, void *); 64 }; 65 66 static int descend_children(struct device * dev, void * data) 67 { 68 struct recurse_struct * recurse_data = (struct recurse_struct *)data; 69 70 if (recurse_data->fn(dev, recurse_data->obj)) 71 return 1; 72 else 73 return device_for_each_child(dev, recurse_data, descend_children); 74 } 75 76 /** 77 * for_each_padev - Iterate over all devices in the tree 78 * @fn: Function to call for each device. 79 * @data: Data to pass to the called function. 80 * 81 * This performs a depth-first traversal of the tree, calling the 82 * function passed for each node. It calls the function for parents 83 * before children. 84 */ 85 86 static int for_each_padev(int (*fn)(struct device *, void *), void * data) 87 { 88 struct recurse_struct recurse_data = { 89 .obj = data, 90 .fn = fn, 91 }; 92 return device_for_each_child(&root, &recurse_data, descend_children); 93 } 94 95 /** 96 * match_device - Report whether this driver can handle this device 97 * @driver: the PA-RISC driver to try 98 * @dev: the PA-RISC device to try 99 */ 100 static int match_device(struct parisc_driver *driver, struct parisc_device *dev) 101 { 102 const struct parisc_device_id *ids; 103 104 for (ids = driver->id_table; ids->sversion; ids++) { 105 if ((ids->sversion != SVERSION_ANY_ID) && 106 (ids->sversion != dev->id.sversion)) 107 continue; 108 109 if ((ids->hw_type != HWTYPE_ANY_ID) && 110 (ids->hw_type != dev->id.hw_type)) 111 continue; 112 113 if ((ids->hversion != HVERSION_ANY_ID) && 114 (ids->hversion != dev->id.hversion)) 115 continue; 116 117 return 1; 118 } 119 return 0; 120 } 121 122 static int parisc_driver_probe(struct device *dev) 123 { 124 int rc; 125 struct parisc_device *pa_dev = to_parisc_device(dev); 126 struct parisc_driver *pa_drv = to_parisc_driver(dev->driver); 127 128 rc = pa_drv->probe(pa_dev); 129 130 if (!rc) 131 pa_dev->driver = pa_drv; 132 133 return rc; 134 } 135 136 static int __exit parisc_driver_remove(struct device *dev) 137 { 138 struct parisc_device *pa_dev = to_parisc_device(dev); 139 struct parisc_driver *pa_drv = to_parisc_driver(dev->driver); 140 if (pa_drv->remove) 141 pa_drv->remove(pa_dev); 142 143 return 0; 144 } 145 146 147 /** 148 * register_parisc_driver - Register this driver if it can handle a device 149 * @driver: the PA-RISC driver to try 150 */ 151 int register_parisc_driver(struct parisc_driver *driver) 152 { 153 /* FIXME: we need this because apparently the sti 154 * driver can be registered twice */ 155 if (driver->drv.name) { 156 pr_warn("BUG: skipping previously registered driver %s\n", 157 driver->name); 158 return 1; 159 } 160 161 if (!driver->probe) { 162 pr_warn("BUG: driver %s has no probe routine\n", driver->name); 163 return 1; 164 } 165 166 driver->drv.bus = &parisc_bus_type; 167 168 /* We install our own probe and remove routines */ 169 WARN_ON(driver->drv.probe != NULL); 170 WARN_ON(driver->drv.remove != NULL); 171 172 driver->drv.name = driver->name; 173 174 return driver_register(&driver->drv); 175 } 176 EXPORT_SYMBOL(register_parisc_driver); 177 178 179 struct match_count { 180 struct parisc_driver * driver; 181 int count; 182 }; 183 184 static int match_and_count(struct device * dev, void * data) 185 { 186 struct match_count * m = data; 187 struct parisc_device * pdev = to_parisc_device(dev); 188 189 if (check_dev(dev)) { 190 if (match_device(m->driver, pdev)) 191 m->count++; 192 } 193 return 0; 194 } 195 196 /** 197 * count_parisc_driver - count # of devices this driver would match 198 * @driver: the PA-RISC driver to try 199 * 200 * Use by IOMMU support to "guess" the right size IOPdir. 201 * Formula is something like memsize/(num_iommu * entry_size). 202 */ 203 int __init count_parisc_driver(struct parisc_driver *driver) 204 { 205 struct match_count m = { 206 .driver = driver, 207 .count = 0, 208 }; 209 210 for_each_padev(match_and_count, &m); 211 212 return m.count; 213 } 214 215 216 217 /** 218 * unregister_parisc_driver - Unregister this driver from the list of drivers 219 * @driver: the PA-RISC driver to unregister 220 */ 221 int unregister_parisc_driver(struct parisc_driver *driver) 222 { 223 driver_unregister(&driver->drv); 224 return 0; 225 } 226 EXPORT_SYMBOL(unregister_parisc_driver); 227 228 struct find_data { 229 unsigned long hpa; 230 struct parisc_device * dev; 231 }; 232 233 static int find_device(struct device * dev, void * data) 234 { 235 struct parisc_device * pdev = to_parisc_device(dev); 236 struct find_data * d = (struct find_data*)data; 237 238 if (check_dev(dev)) { 239 if (pdev->hpa.start == d->hpa) { 240 d->dev = pdev; 241 return 1; 242 } 243 } 244 return 0; 245 } 246 247 static struct parisc_device *find_device_by_addr(unsigned long hpa) 248 { 249 struct find_data d = { 250 .hpa = hpa, 251 }; 252 int ret; 253 254 ret = for_each_padev(find_device, &d); 255 return ret ? d.dev : NULL; 256 } 257 258 static int __init is_IKE_device(struct device *dev, void *data) 259 { 260 struct parisc_device *pdev = to_parisc_device(dev); 261 262 if (!check_dev(dev)) 263 return 0; 264 if (pdev->id.hw_type != HPHW_BCPORT) 265 return 0; 266 if (IS_IKE(pdev) || 267 (pdev->id.hversion == REO_MERCED_PORT) || 268 (pdev->id.hversion == REOG_MERCED_PORT)) { 269 return 1; 270 } 271 return 0; 272 } 273 274 int __init machine_has_merced_bus(void) 275 { 276 int ret; 277 278 ret = for_each_padev(is_IKE_device, NULL); 279 return ret ? 1 : 0; 280 } 281 282 /** 283 * find_pa_parent_type - Find a parent of a specific type 284 * @dev: The device to start searching from 285 * @type: The device type to search for. 286 * 287 * Walks up the device tree looking for a device of the specified type. 288 * If it finds it, it returns it. If not, it returns NULL. 289 */ 290 const struct parisc_device * 291 find_pa_parent_type(const struct parisc_device *padev, int type) 292 { 293 const struct device *dev = &padev->dev; 294 while (dev != &root) { 295 struct parisc_device *candidate = to_parisc_device(dev); 296 if (candidate->id.hw_type == type) 297 return candidate; 298 dev = dev->parent; 299 } 300 301 return NULL; 302 } 303 304 /* 305 * get_node_path fills in @path with the firmware path to the device. 306 * Note that if @node is a parisc device, we don't fill in the 'mod' field. 307 * This is because both callers pass the parent and fill in the mod 308 * themselves. If @node is a PCI device, we do fill it in, even though this 309 * is inconsistent. 310 */ 311 static void get_node_path(struct device *dev, struct hardware_path *path) 312 { 313 int i = 5; 314 memset(&path->bc, -1, 6); 315 316 if (dev_is_pci(dev)) { 317 unsigned int devfn = to_pci_dev(dev)->devfn; 318 path->mod = PCI_FUNC(devfn); 319 path->bc[i--] = PCI_SLOT(devfn); 320 dev = dev->parent; 321 } 322 323 while (dev != &root) { 324 if (dev_is_pci(dev)) { 325 unsigned int devfn = to_pci_dev(dev)->devfn; 326 path->bc[i--] = PCI_SLOT(devfn) | (PCI_FUNC(devfn)<< 5); 327 } else if (dev->bus == &parisc_bus_type) { 328 path->bc[i--] = to_parisc_device(dev)->hw_path; 329 } 330 dev = dev->parent; 331 } 332 } 333 334 static char *print_hwpath(struct hardware_path *path, char *output) 335 { 336 int i; 337 for (i = 0; i < 6; i++) { 338 if (path->bc[i] == -1) 339 continue; 340 output += sprintf(output, "%u/", (unsigned char) path->bc[i]); 341 } 342 output += sprintf(output, "%u", (unsigned char) path->mod); 343 return output; 344 } 345 346 /** 347 * print_pa_hwpath - Returns hardware path for PA devices 348 * dev: The device to return the path for 349 * output: Pointer to a previously-allocated array to place the path in. 350 * 351 * This function fills in the output array with a human-readable path 352 * to a PA device. This string is compatible with that used by PDC, and 353 * may be printed on the outside of the box. 354 */ 355 char *print_pa_hwpath(struct parisc_device *dev, char *output) 356 { 357 struct hardware_path path; 358 359 get_node_path(dev->dev.parent, &path); 360 path.mod = dev->hw_path; 361 return print_hwpath(&path, output); 362 } 363 EXPORT_SYMBOL(print_pa_hwpath); 364 365 #if defined(CONFIG_PCI) || defined(CONFIG_ISA) 366 /** 367 * get_pci_node_path - Determines the hardware path for a PCI device 368 * @pdev: The device to return the path for 369 * @path: Pointer to a previously-allocated array to place the path in. 370 * 371 * This function fills in the hardware_path structure with the route to 372 * the specified PCI device. This structure is suitable for passing to 373 * PDC calls. 374 */ 375 void get_pci_node_path(struct pci_dev *pdev, struct hardware_path *path) 376 { 377 get_node_path(&pdev->dev, path); 378 } 379 EXPORT_SYMBOL(get_pci_node_path); 380 381 /** 382 * print_pci_hwpath - Returns hardware path for PCI devices 383 * dev: The device to return the path for 384 * output: Pointer to a previously-allocated array to place the path in. 385 * 386 * This function fills in the output array with a human-readable path 387 * to a PCI device. This string is compatible with that used by PDC, and 388 * may be printed on the outside of the box. 389 */ 390 char *print_pci_hwpath(struct pci_dev *dev, char *output) 391 { 392 struct hardware_path path; 393 394 get_pci_node_path(dev, &path); 395 return print_hwpath(&path, output); 396 } 397 EXPORT_SYMBOL(print_pci_hwpath); 398 399 #endif /* defined(CONFIG_PCI) || defined(CONFIG_ISA) */ 400 401 static void setup_bus_id(struct parisc_device *padev) 402 { 403 struct hardware_path path; 404 char name[28]; 405 char *output = name; 406 int i; 407 408 get_node_path(padev->dev.parent, &path); 409 410 for (i = 0; i < 6; i++) { 411 if (path.bc[i] == -1) 412 continue; 413 output += sprintf(output, "%u:", (unsigned char) path.bc[i]); 414 } 415 sprintf(output, "%u", (unsigned char) padev->hw_path); 416 dev_set_name(&padev->dev, name); 417 } 418 419 struct parisc_device * __init create_tree_node(char id, struct device *parent) 420 { 421 struct parisc_device *dev = kzalloc(sizeof(*dev), GFP_KERNEL); 422 if (!dev) 423 return NULL; 424 425 dev->hw_path = id; 426 dev->id.hw_type = HPHW_FAULTY; 427 428 dev->dev.parent = parent; 429 setup_bus_id(dev); 430 431 dev->dev.bus = &parisc_bus_type; 432 dev->dma_mask = 0xffffffffUL; /* PARISC devices are 32-bit */ 433 434 /* make the generic dma mask a pointer to the parisc one */ 435 dev->dev.dma_mask = &dev->dma_mask; 436 dev->dev.coherent_dma_mask = dev->dma_mask; 437 if (device_register(&dev->dev)) { 438 kfree(dev); 439 return NULL; 440 } 441 442 return dev; 443 } 444 445 struct match_id_data { 446 char id; 447 struct parisc_device * dev; 448 }; 449 450 static int match_by_id(struct device * dev, void * data) 451 { 452 struct parisc_device * pdev = to_parisc_device(dev); 453 struct match_id_data * d = data; 454 455 if (pdev->hw_path == d->id) { 456 d->dev = pdev; 457 return 1; 458 } 459 return 0; 460 } 461 462 /** 463 * alloc_tree_node - returns a device entry in the iotree 464 * @parent: the parent node in the tree 465 * @id: the element of the module path for this entry 466 * 467 * Checks all the children of @parent for a matching @id. If none 468 * found, it allocates a new device and returns it. 469 */ 470 static struct parisc_device * __init alloc_tree_node( 471 struct device *parent, char id) 472 { 473 struct match_id_data d = { 474 .id = id, 475 }; 476 if (device_for_each_child(parent, &d, match_by_id)) 477 return d.dev; 478 else 479 return create_tree_node(id, parent); 480 } 481 482 static struct parisc_device *create_parisc_device(struct hardware_path *modpath) 483 { 484 int i; 485 struct device *parent = &root; 486 for (i = 0; i < 6; i++) { 487 if (modpath->bc[i] == -1) 488 continue; 489 parent = &alloc_tree_node(parent, modpath->bc[i])->dev; 490 } 491 return alloc_tree_node(parent, modpath->mod); 492 } 493 494 struct parisc_device * __init 495 alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path) 496 { 497 int status; 498 unsigned long bytecnt; 499 u8 iodc_data[32]; 500 struct parisc_device *dev; 501 const char *name; 502 503 /* Check to make sure this device has not already been added - Ryan */ 504 if (find_device_by_addr(hpa) != NULL) 505 return NULL; 506 507 status = pdc_iodc_read(&bytecnt, hpa, 0, &iodc_data, 32); 508 if (status != PDC_OK) 509 return NULL; 510 511 dev = create_parisc_device(mod_path); 512 if (dev->id.hw_type != HPHW_FAULTY) { 513 pr_err("Two devices have hardware path [%s]. IODC data for second device: %7phN\n" 514 "Rearranging GSC cards sometimes helps\n", 515 parisc_pathname(dev), iodc_data); 516 return NULL; 517 } 518 519 dev->id.hw_type = iodc_data[3] & 0x1f; 520 dev->id.hversion = (iodc_data[0] << 4) | ((iodc_data[1] & 0xf0) >> 4); 521 dev->id.hversion_rev = iodc_data[1] & 0x0f; 522 dev->id.sversion = ((iodc_data[4] & 0x0f) << 16) | 523 (iodc_data[5] << 8) | iodc_data[6]; 524 dev->hpa.name = parisc_pathname(dev); 525 dev->hpa.start = hpa; 526 /* This is awkward. The STI spec says that gfx devices may occupy 527 * 32MB or 64MB. Unfortunately, we don't know how to tell whether 528 * it's the former or the latter. Assumptions either way can hurt us. 529 */ 530 if (hpa == 0xf4000000 || hpa == 0xf8000000) { 531 dev->hpa.end = hpa + 0x03ffffff; 532 } else if (hpa == 0xf6000000 || hpa == 0xfa000000) { 533 dev->hpa.end = hpa + 0x01ffffff; 534 } else { 535 dev->hpa.end = hpa + 0xfff; 536 } 537 dev->hpa.flags = IORESOURCE_MEM; 538 name = parisc_hardware_description(&dev->id); 539 if (name) { 540 strlcpy(dev->name, name, sizeof(dev->name)); 541 } 542 543 /* Silently fail things like mouse ports which are subsumed within 544 * the keyboard controller 545 */ 546 if ((hpa & 0xfff) == 0 && insert_resource(&iomem_resource, &dev->hpa)) 547 pr_warn("Unable to claim HPA %lx for device %s\n", hpa, name); 548 549 return dev; 550 } 551 552 static int parisc_generic_match(struct device *dev, struct device_driver *drv) 553 { 554 return match_device(to_parisc_driver(drv), to_parisc_device(dev)); 555 } 556 557 static ssize_t make_modalias(struct device *dev, char *buf) 558 { 559 const struct parisc_device *padev = to_parisc_device(dev); 560 const struct parisc_device_id *id = &padev->id; 561 562 return sprintf(buf, "parisc:t%02Xhv%04Xrev%02Xsv%08X\n", 563 (u8)id->hw_type, (u16)id->hversion, (u8)id->hversion_rev, 564 (u32)id->sversion); 565 } 566 567 static int parisc_uevent(struct device *dev, struct kobj_uevent_env *env) 568 { 569 const struct parisc_device *padev; 570 char modalias[40]; 571 572 if (!dev) 573 return -ENODEV; 574 575 padev = to_parisc_device(dev); 576 if (!padev) 577 return -ENODEV; 578 579 if (add_uevent_var(env, "PARISC_NAME=%s", padev->name)) 580 return -ENOMEM; 581 582 make_modalias(dev, modalias); 583 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 584 return -ENOMEM; 585 586 return 0; 587 } 588 589 #define pa_dev_attr(name, field, format_string) \ 590 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 591 { \ 592 struct parisc_device *padev = to_parisc_device(dev); \ 593 return sprintf(buf, format_string, padev->field); \ 594 } \ 595 static DEVICE_ATTR_RO(name); 596 597 #define pa_dev_attr_id(field, format) pa_dev_attr(field, id.field, format) 598 599 pa_dev_attr(irq, irq, "%u\n"); 600 pa_dev_attr_id(hw_type, "0x%02x\n"); 601 pa_dev_attr(rev, id.hversion_rev, "0x%x\n"); 602 pa_dev_attr_id(hversion, "0x%03x\n"); 603 pa_dev_attr_id(sversion, "0x%05x\n"); 604 605 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) 606 { 607 return make_modalias(dev, buf); 608 } 609 static DEVICE_ATTR_RO(modalias); 610 611 static struct attribute *parisc_device_attrs[] = { 612 &dev_attr_irq.attr, 613 &dev_attr_hw_type.attr, 614 &dev_attr_rev.attr, 615 &dev_attr_hversion.attr, 616 &dev_attr_sversion.attr, 617 &dev_attr_modalias.attr, 618 NULL, 619 }; 620 ATTRIBUTE_GROUPS(parisc_device); 621 622 struct bus_type parisc_bus_type = { 623 .name = "parisc", 624 .match = parisc_generic_match, 625 .uevent = parisc_uevent, 626 .dev_groups = parisc_device_groups, 627 .probe = parisc_driver_probe, 628 .remove = __exit_p(parisc_driver_remove), 629 }; 630 631 /** 632 * register_parisc_device - Locate a driver to manage this device. 633 * @dev: The parisc device. 634 * 635 * Search the driver list for a driver that is willing to manage 636 * this device. 637 */ 638 int __init register_parisc_device(struct parisc_device *dev) 639 { 640 if (!dev) 641 return 0; 642 643 if (dev->driver) 644 return 1; 645 646 return 0; 647 } 648 649 /** 650 * match_pci_device - Matches a pci device against a given hardware path 651 * entry. 652 * @dev: the generic device (known to be contained by a pci_dev). 653 * @index: the current BC index 654 * @modpath: the hardware path. 655 * @return: true if the device matches the hardware path. 656 */ 657 static int match_pci_device(struct device *dev, int index, 658 struct hardware_path *modpath) 659 { 660 struct pci_dev *pdev = to_pci_dev(dev); 661 int id; 662 663 if (index == 5) { 664 /* we are at the end of the path, and on the actual device */ 665 unsigned int devfn = pdev->devfn; 666 return ((modpath->bc[5] == PCI_SLOT(devfn)) && 667 (modpath->mod == PCI_FUNC(devfn))); 668 } 669 670 /* index might be out of bounds for bc[] */ 671 if (index >= 6) 672 return 0; 673 674 id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5); 675 return (modpath->bc[index] == id); 676 } 677 678 /** 679 * match_parisc_device - Matches a parisc device against a given hardware 680 * path entry. 681 * @dev: the generic device (known to be contained by a parisc_device). 682 * @index: the current BC index 683 * @modpath: the hardware path. 684 * @return: true if the device matches the hardware path. 685 */ 686 static int match_parisc_device(struct device *dev, int index, 687 struct hardware_path *modpath) 688 { 689 struct parisc_device *curr = to_parisc_device(dev); 690 char id = (index == 6) ? modpath->mod : modpath->bc[index]; 691 692 return (curr->hw_path == id); 693 } 694 695 struct parse_tree_data { 696 int index; 697 struct hardware_path * modpath; 698 struct device * dev; 699 }; 700 701 static int check_parent(struct device * dev, void * data) 702 { 703 struct parse_tree_data * d = data; 704 705 if (check_dev(dev)) { 706 if (dev->bus == &parisc_bus_type) { 707 if (match_parisc_device(dev, d->index, d->modpath)) 708 d->dev = dev; 709 } else if (dev_is_pci(dev)) { 710 if (match_pci_device(dev, d->index, d->modpath)) 711 d->dev = dev; 712 } else if (dev->bus == NULL) { 713 /* we are on a bus bridge */ 714 struct device *new = parse_tree_node(dev, d->index, d->modpath); 715 if (new) 716 d->dev = new; 717 } 718 } 719 return d->dev != NULL; 720 } 721 722 /** 723 * parse_tree_node - returns a device entry in the iotree 724 * @parent: the parent node in the tree 725 * @index: the current BC index 726 * @modpath: the hardware_path struct to match a device against 727 * @return: The corresponding device if found, NULL otherwise. 728 * 729 * Checks all the children of @parent for a matching @id. If none 730 * found, it returns NULL. 731 */ 732 static struct device * 733 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath) 734 { 735 struct parse_tree_data d = { 736 .index = index, 737 .modpath = modpath, 738 }; 739 740 struct recurse_struct recurse_data = { 741 .obj = &d, 742 .fn = check_parent, 743 }; 744 745 if (device_for_each_child(parent, &recurse_data, descend_children)) 746 /* nothing */; 747 748 return d.dev; 749 } 750 751 /** 752 * hwpath_to_device - Finds the generic device corresponding to a given hardware path. 753 * @modpath: the hardware path. 754 * @return: The target device, NULL if not found. 755 */ 756 struct device *hwpath_to_device(struct hardware_path *modpath) 757 { 758 int i; 759 struct device *parent = &root; 760 for (i = 0; i < 6; i++) { 761 if (modpath->bc[i] == -1) 762 continue; 763 parent = parse_tree_node(parent, i, modpath); 764 if (!parent) 765 return NULL; 766 } 767 if (dev_is_pci(parent)) /* pci devices already parse MOD */ 768 return parent; 769 else 770 return parse_tree_node(parent, 6, modpath); 771 } 772 EXPORT_SYMBOL(hwpath_to_device); 773 774 /** 775 * device_to_hwpath - Populates the hwpath corresponding to the given device. 776 * @param dev the target device 777 * @param path pointer to a previously allocated hwpath struct to be filled in 778 */ 779 void device_to_hwpath(struct device *dev, struct hardware_path *path) 780 { 781 struct parisc_device *padev; 782 if (dev->bus == &parisc_bus_type) { 783 padev = to_parisc_device(dev); 784 get_node_path(dev->parent, path); 785 path->mod = padev->hw_path; 786 } else if (dev_is_pci(dev)) { 787 get_node_path(dev, path); 788 } 789 } 790 EXPORT_SYMBOL(device_to_hwpath); 791 792 #define BC_PORT_MASK 0x8 793 #define BC_LOWER_PORT 0x8 794 795 #define BUS_CONVERTER(dev) \ 796 ((dev->id.hw_type == HPHW_IOA) || (dev->id.hw_type == HPHW_BCPORT)) 797 798 #define IS_LOWER_PORT(dev) \ 799 ((gsc_readl(dev->hpa.start + offsetof(struct bc_module, io_status)) \ 800 & BC_PORT_MASK) == BC_LOWER_PORT) 801 802 #define MAX_NATIVE_DEVICES 64 803 #define NATIVE_DEVICE_OFFSET 0x1000 804 805 #define FLEX_MASK F_EXTEND(0xfffc0000) 806 #define IO_IO_LOW offsetof(struct bc_module, io_io_low) 807 #define IO_IO_HIGH offsetof(struct bc_module, io_io_high) 808 #define READ_IO_IO_LOW(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_LOW) 809 #define READ_IO_IO_HIGH(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_HIGH) 810 811 static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high, 812 struct device *parent); 813 814 static void __init walk_lower_bus(struct parisc_device *dev) 815 { 816 unsigned long io_io_low, io_io_high; 817 818 if (!BUS_CONVERTER(dev) || IS_LOWER_PORT(dev)) 819 return; 820 821 if (dev->id.hw_type == HPHW_IOA) { 822 io_io_low = (unsigned long)(signed int)(READ_IO_IO_LOW(dev) << 16); 823 io_io_high = io_io_low + MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET; 824 } else { 825 io_io_low = (READ_IO_IO_LOW(dev) + ~FLEX_MASK) & FLEX_MASK; 826 io_io_high = (READ_IO_IO_HIGH(dev)+ ~FLEX_MASK) & FLEX_MASK; 827 } 828 829 walk_native_bus(io_io_low, io_io_high, &dev->dev); 830 } 831 832 /** 833 * walk_native_bus -- Probe a bus for devices 834 * @io_io_low: Base address of this bus. 835 * @io_io_high: Last address of this bus. 836 * @parent: The parent bus device. 837 * 838 * A native bus (eg Runway or GSC) may have up to 64 devices on it, 839 * spaced at intervals of 0x1000 bytes. PDC may not inform us of these 840 * devices, so we have to probe for them. Unfortunately, we may find 841 * devices which are not physically connected (such as extra serial & 842 * keyboard ports). This problem is not yet solved. 843 */ 844 static void __init walk_native_bus(unsigned long io_io_low, 845 unsigned long io_io_high, struct device *parent) 846 { 847 int i, devices_found = 0; 848 unsigned long hpa = io_io_low; 849 struct hardware_path path; 850 851 get_node_path(parent, &path); 852 do { 853 for(i = 0; i < MAX_NATIVE_DEVICES; i++, hpa += NATIVE_DEVICE_OFFSET) { 854 struct parisc_device *dev; 855 856 /* Was the device already added by Firmware? */ 857 dev = find_device_by_addr(hpa); 858 if (!dev) { 859 path.mod = i; 860 dev = alloc_pa_dev(hpa, &path); 861 if (!dev) 862 continue; 863 864 register_parisc_device(dev); 865 devices_found++; 866 } 867 walk_lower_bus(dev); 868 } 869 } while(!devices_found && hpa < io_io_high); 870 } 871 872 #define CENTRAL_BUS_ADDR F_EXTEND(0xfff80000) 873 874 /** 875 * walk_central_bus - Find devices attached to the central bus 876 * 877 * PDC doesn't tell us about all devices in the system. This routine 878 * finds devices connected to the central bus. 879 */ 880 void __init walk_central_bus(void) 881 { 882 walk_native_bus(CENTRAL_BUS_ADDR, 883 CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET), 884 &root); 885 } 886 887 static void print_parisc_device(struct parisc_device *dev) 888 { 889 char hw_path[64]; 890 static int count; 891 892 print_pa_hwpath(dev, hw_path); 893 pr_info("%d. %s at %pap [%s] { %d, 0x%x, 0x%.3x, 0x%.5x }", 894 ++count, dev->name, &(dev->hpa.start), hw_path, dev->id.hw_type, 895 dev->id.hversion_rev, dev->id.hversion, dev->id.sversion); 896 897 if (dev->num_addrs) { 898 int k; 899 pr_cont(", additional addresses: "); 900 for (k = 0; k < dev->num_addrs; k++) 901 pr_cont("0x%lx ", dev->addr[k]); 902 } 903 pr_cont("\n"); 904 } 905 906 /** 907 * init_parisc_bus - Some preparation to be done before inventory 908 */ 909 void __init init_parisc_bus(void) 910 { 911 if (bus_register(&parisc_bus_type)) 912 panic("Could not register PA-RISC bus type\n"); 913 if (device_register(&root)) 914 panic("Could not register PA-RISC root device\n"); 915 get_device(&root); 916 } 917 918 static __init void qemu_header(void) 919 { 920 int num; 921 unsigned long *p; 922 923 pr_info("--- cut here ---\n"); 924 pr_info("/* AUTO-GENERATED HEADER FILE FOR SEABIOS FIRMWARE */\n"); 925 pr_cont("/* generated with Linux kernel */\n"); 926 pr_cont("/* search for PARISC_QEMU_MACHINE_HEADER in Linux */\n\n"); 927 928 pr_info("#define PARISC_MODEL \"%s\"\n\n", 929 boot_cpu_data.pdc.sys_model_name); 930 931 pr_info("#define PARISC_PDC_MODEL 0x%lx, 0x%lx, 0x%lx, " 932 "0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx\n\n", 933 #define p ((unsigned long *)&boot_cpu_data.pdc.model) 934 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]); 935 #undef p 936 937 pr_info("#define PARISC_PDC_VERSION 0x%04lx\n\n", 938 boot_cpu_data.pdc.versions); 939 940 pr_info("#define PARISC_PDC_CPUID 0x%04lx\n\n", 941 boot_cpu_data.pdc.cpuid); 942 943 pr_info("#define PARISC_PDC_CAPABILITIES 0x%04lx\n\n", 944 boot_cpu_data.pdc.capabilities); 945 946 pr_info("#define PARISC_PDC_ENTRY_ORG 0x%04lx\n\n", 947 #ifdef CONFIG_64BIT 948 (unsigned long)(PAGE0->mem_pdc_hi) << 32 | 949 #endif 950 (unsigned long)PAGE0->mem_pdc); 951 952 pr_info("#define PARISC_PDC_CACHE_INFO"); 953 p = (unsigned long *) &cache_info; 954 for (num = 0; num < sizeof(cache_info); num += sizeof(unsigned long)) { 955 if (((num % 5) == 0)) { 956 pr_cont(" \\\n"); 957 pr_info("\t"); 958 } 959 pr_cont("%s0x%04lx", 960 num?", ":"", *p++); 961 } 962 pr_cont("\n\n"); 963 } 964 965 static __init int qemu_print_hpa(struct device *lin_dev, void *data) 966 { 967 struct parisc_device *dev = to_parisc_device(lin_dev); 968 unsigned long hpa = dev->hpa.start; 969 970 pr_cont("\t{\t.hpa = 0x%08lx,\\\n", hpa); 971 pr_cont("\t\t.iodc = &iodc_data_hpa_%08lx,\\\n", hpa); 972 pr_cont("\t\t.mod_info = &mod_info_hpa_%08lx,\\\n", hpa); 973 pr_cont("\t\t.mod_path = &mod_path_hpa_%08lx,\\\n", hpa); 974 pr_cont("\t\t.num_addr = HPA_%08lx_num_addr,\\\n", hpa); 975 pr_cont("\t\t.add_addr = { HPA_%08lx_add_addr } },\\\n", hpa); 976 return 0; 977 } 978 979 980 static __init void qemu_footer(void) 981 { 982 pr_info("\n\n#define PARISC_DEVICE_LIST \\\n"); 983 for_each_padev(qemu_print_hpa, NULL); 984 pr_cont("\t{ 0, }\n"); 985 pr_info("--- cut here ---\n"); 986 } 987 988 /* print iodc data of the various hpa modules for qemu inclusion */ 989 static __init int qemu_print_iodc_data(struct device *lin_dev, void *data) 990 { 991 struct parisc_device *dev = to_parisc_device(lin_dev); 992 unsigned long count; 993 unsigned long hpa = dev->hpa.start; 994 int status; 995 struct pdc_iodc iodc_data; 996 997 int mod_index; 998 struct pdc_system_map_mod_info pdc_mod_info; 999 struct pdc_module_path mod_path; 1000 1001 status = pdc_iodc_read(&count, hpa, 0, 1002 &iodc_data, sizeof(iodc_data)); 1003 if (status != PDC_OK) { 1004 pr_info("No IODC data for hpa 0x%08lx\n", hpa); 1005 return 0; 1006 } 1007 1008 pr_info("\n"); 1009 1010 pr_info("#define HPA_%08lx_DESCRIPTION \"%s\"\n", 1011 hpa, parisc_hardware_description(&dev->id)); 1012 1013 mod_index = 0; 1014 do { 1015 status = pdc_system_map_find_mods(&pdc_mod_info, 1016 &mod_path, mod_index++); 1017 } while (status == PDC_OK && pdc_mod_info.mod_addr != hpa); 1018 1019 pr_info("static struct pdc_system_map_mod_info" 1020 " mod_info_hpa_%08lx = {\n", hpa); 1021 #define DO(member) \ 1022 pr_cont("\t." #member " = 0x%x,\n", \ 1023 (unsigned int)pdc_mod_info.member) 1024 DO(mod_addr); 1025 DO(mod_pgs); 1026 DO(add_addrs); 1027 pr_cont("};\n"); 1028 #undef DO 1029 pr_info("static struct pdc_module_path " 1030 "mod_path_hpa_%08lx = {\n", hpa); 1031 pr_cont("\t.path = { "); 1032 pr_cont(".flags = 0x%x, ", mod_path.path.flags); 1033 pr_cont(".bc = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }, ", 1034 (unsigned char)mod_path.path.bc[0], 1035 (unsigned char)mod_path.path.bc[1], 1036 (unsigned char)mod_path.path.bc[2], 1037 (unsigned char)mod_path.path.bc[3], 1038 (unsigned char)mod_path.path.bc[4], 1039 (unsigned char)mod_path.path.bc[5]); 1040 pr_cont(".mod = 0x%x ", mod_path.path.mod); 1041 pr_cont(" },\n"); 1042 pr_cont("\t.layers = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }\n", 1043 mod_path.layers[0], mod_path.layers[1], mod_path.layers[2], 1044 mod_path.layers[3], mod_path.layers[4], mod_path.layers[5]); 1045 pr_cont("};\n"); 1046 1047 pr_info("static struct pdc_iodc iodc_data_hpa_%08lx = {\n", hpa); 1048 #define DO(member) \ 1049 pr_cont("\t." #member " = 0x%04lx,\n", \ 1050 (unsigned long)iodc_data.member) 1051 DO(hversion_model); 1052 DO(hversion); 1053 DO(spa); 1054 DO(type); 1055 DO(sversion_rev); 1056 DO(sversion_model); 1057 DO(sversion_opt); 1058 DO(rev); 1059 DO(dep); 1060 DO(features); 1061 DO(checksum); 1062 DO(length); 1063 #undef DO 1064 pr_cont("\t/* pad: 0x%04x, 0x%04x */\n", 1065 iodc_data.pad[0], iodc_data.pad[1]); 1066 pr_cont("};\n"); 1067 1068 pr_info("#define HPA_%08lx_num_addr %d\n", hpa, dev->num_addrs); 1069 pr_info("#define HPA_%08lx_add_addr ", hpa); 1070 count = 0; 1071 if (dev->num_addrs == 0) 1072 pr_cont("0"); 1073 while (count < dev->num_addrs) { 1074 pr_cont("0x%08lx, ", dev->addr[count]); 1075 count++; 1076 } 1077 pr_cont("\n\n"); 1078 1079 return 0; 1080 } 1081 1082 1083 1084 static int print_one_device(struct device * dev, void * data) 1085 { 1086 struct parisc_device * pdev = to_parisc_device(dev); 1087 1088 if (check_dev(dev)) 1089 print_parisc_device(pdev); 1090 return 0; 1091 } 1092 1093 /** 1094 * print_parisc_devices - Print out a list of devices found in this system 1095 */ 1096 void __init print_parisc_devices(void) 1097 { 1098 for_each_padev(print_one_device, NULL); 1099 #define PARISC_QEMU_MACHINE_HEADER 0 1100 if (PARISC_QEMU_MACHINE_HEADER) { 1101 qemu_header(); 1102 for_each_padev(qemu_print_iodc_data, NULL); 1103 qemu_footer(); 1104 } 1105 } 1106