xref: /openbmc/linux/arch/parisc/kernel/drivers.c (revision 9a29ad52)
1 /*
2  * drivers.c
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Copyright (c) 1999 The Puffin Group
10  * Copyright (c) 2001 Matthew Wilcox for Hewlett Packard
11  * Copyright (c) 2001 Helge Deller <deller@gmx.de>
12  * Copyright (c) 2001,2002 Ryan Bradetich
13  * Copyright (c) 2004-2005 Thibaut VARENE <varenet@parisc-linux.org>
14  *
15  * The file handles registering devices and drivers, then matching them.
16  * It's the closest we get to a dating agency.
17  *
18  * If you're thinking about modifying this file, here are some gotchas to
19  * bear in mind:
20  *  - 715/Mirage device paths have a dummy device between Lasi and its children
21  *  - The EISA adapter may show up as a sibling or child of Wax
22  *  - Dino has an optionally functional serial port.  If firmware enables it,
23  *    it shows up as a child of Dino.  If firmware disables it, the buswalk
24  *    finds it and it shows up as a child of Cujo
25  *  - Dino has both parisc and pci devices as children
26  *  - parisc devices are discovered in a random order, including children
27  *    before parents in some cases.
28  */
29 
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/pci.h>
34 #include <linux/spinlock.h>
35 #include <linux/string.h>
36 #include <linux/export.h>
37 #include <asm/hardware.h>
38 #include <asm/io.h>
39 #include <asm/pdc.h>
40 #include <asm/parisc-device.h>
41 
42 /* See comments in include/asm-parisc/pci.h */
43 const struct dma_map_ops *hppa_dma_ops __read_mostly;
44 EXPORT_SYMBOL(hppa_dma_ops);
45 
46 static struct device root = {
47 	.init_name = "parisc",
48 };
49 
50 static inline int check_dev(struct device *dev)
51 {
52 	if (dev->bus == &parisc_bus_type) {
53 		struct parisc_device *pdev;
54 		pdev = to_parisc_device(dev);
55 		return pdev->id.hw_type != HPHW_FAULTY;
56 	}
57 	return 1;
58 }
59 
60 static struct device *
61 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath);
62 
63 struct recurse_struct {
64 	void * obj;
65 	int (*fn)(struct device *, void *);
66 };
67 
68 static int descend_children(struct device * dev, void * data)
69 {
70 	struct recurse_struct * recurse_data = (struct recurse_struct *)data;
71 
72 	if (recurse_data->fn(dev, recurse_data->obj))
73 		return 1;
74 	else
75 		return device_for_each_child(dev, recurse_data, descend_children);
76 }
77 
78 /**
79  *	for_each_padev - Iterate over all devices in the tree
80  *	@fn:	Function to call for each device.
81  *	@data:	Data to pass to the called function.
82  *
83  *	This performs a depth-first traversal of the tree, calling the
84  *	function passed for each node.  It calls the function for parents
85  *	before children.
86  */
87 
88 static int for_each_padev(int (*fn)(struct device *, void *), void * data)
89 {
90 	struct recurse_struct recurse_data = {
91 		.obj	= data,
92 		.fn	= fn,
93 	};
94 	return device_for_each_child(&root, &recurse_data, descend_children);
95 }
96 
97 /**
98  * match_device - Report whether this driver can handle this device
99  * @driver: the PA-RISC driver to try
100  * @dev: the PA-RISC device to try
101  */
102 static int match_device(struct parisc_driver *driver, struct parisc_device *dev)
103 {
104 	const struct parisc_device_id *ids;
105 
106 	for (ids = driver->id_table; ids->sversion; ids++) {
107 		if ((ids->sversion != SVERSION_ANY_ID) &&
108 		    (ids->sversion != dev->id.sversion))
109 			continue;
110 
111 		if ((ids->hw_type != HWTYPE_ANY_ID) &&
112 		    (ids->hw_type != dev->id.hw_type))
113 			continue;
114 
115 		if ((ids->hversion != HVERSION_ANY_ID) &&
116 		    (ids->hversion != dev->id.hversion))
117 			continue;
118 
119 		return 1;
120 	}
121 	return 0;
122 }
123 
124 static int parisc_driver_probe(struct device *dev)
125 {
126 	int rc;
127 	struct parisc_device *pa_dev = to_parisc_device(dev);
128 	struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
129 
130 	rc = pa_drv->probe(pa_dev);
131 
132 	if (!rc)
133 		pa_dev->driver = pa_drv;
134 
135 	return rc;
136 }
137 
138 static int __exit parisc_driver_remove(struct device *dev)
139 {
140 	struct parisc_device *pa_dev = to_parisc_device(dev);
141 	struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
142 	if (pa_drv->remove)
143 		pa_drv->remove(pa_dev);
144 
145 	return 0;
146 }
147 
148 
149 /**
150  * register_parisc_driver - Register this driver if it can handle a device
151  * @driver: the PA-RISC driver to try
152  */
153 int register_parisc_driver(struct parisc_driver *driver)
154 {
155 	/* FIXME: we need this because apparently the sti
156 	 * driver can be registered twice */
157 	if (driver->drv.name) {
158 		pr_warn("BUG: skipping previously registered driver %s\n",
159 			driver->name);
160 		return 1;
161 	}
162 
163 	if (!driver->probe) {
164 		pr_warn("BUG: driver %s has no probe routine\n", driver->name);
165 		return 1;
166 	}
167 
168 	driver->drv.bus = &parisc_bus_type;
169 
170 	/* We install our own probe and remove routines */
171 	WARN_ON(driver->drv.probe != NULL);
172 	WARN_ON(driver->drv.remove != NULL);
173 
174 	driver->drv.name = driver->name;
175 
176 	return driver_register(&driver->drv);
177 }
178 EXPORT_SYMBOL(register_parisc_driver);
179 
180 
181 struct match_count {
182 	struct parisc_driver * driver;
183 	int count;
184 };
185 
186 static int match_and_count(struct device * dev, void * data)
187 {
188 	struct match_count * m = data;
189 	struct parisc_device * pdev = to_parisc_device(dev);
190 
191 	if (check_dev(dev)) {
192 		if (match_device(m->driver, pdev))
193 			m->count++;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * count_parisc_driver - count # of devices this driver would match
200  * @driver: the PA-RISC driver to try
201  *
202  * Use by IOMMU support to "guess" the right size IOPdir.
203  * Formula is something like memsize/(num_iommu * entry_size).
204  */
205 int __init count_parisc_driver(struct parisc_driver *driver)
206 {
207 	struct match_count m = {
208 		.driver	= driver,
209 		.count	= 0,
210 	};
211 
212 	for_each_padev(match_and_count, &m);
213 
214 	return m.count;
215 }
216 
217 
218 
219 /**
220  * unregister_parisc_driver - Unregister this driver from the list of drivers
221  * @driver: the PA-RISC driver to unregister
222  */
223 int unregister_parisc_driver(struct parisc_driver *driver)
224 {
225 	driver_unregister(&driver->drv);
226 	return 0;
227 }
228 EXPORT_SYMBOL(unregister_parisc_driver);
229 
230 struct find_data {
231 	unsigned long hpa;
232 	struct parisc_device * dev;
233 };
234 
235 static int find_device(struct device * dev, void * data)
236 {
237 	struct parisc_device * pdev = to_parisc_device(dev);
238 	struct find_data * d = (struct find_data*)data;
239 
240 	if (check_dev(dev)) {
241 		if (pdev->hpa.start == d->hpa) {
242 			d->dev = pdev;
243 			return 1;
244 		}
245 	}
246 	return 0;
247 }
248 
249 static struct parisc_device *find_device_by_addr(unsigned long hpa)
250 {
251 	struct find_data d = {
252 		.hpa	= hpa,
253 	};
254 	int ret;
255 
256 	ret = for_each_padev(find_device, &d);
257 	return ret ? d.dev : NULL;
258 }
259 
260 /**
261  * find_pa_parent_type - Find a parent of a specific type
262  * @dev: The device to start searching from
263  * @type: The device type to search for.
264  *
265  * Walks up the device tree looking for a device of the specified type.
266  * If it finds it, it returns it.  If not, it returns NULL.
267  */
268 const struct parisc_device *
269 find_pa_parent_type(const struct parisc_device *padev, int type)
270 {
271 	const struct device *dev = &padev->dev;
272 	while (dev != &root) {
273 		struct parisc_device *candidate = to_parisc_device(dev);
274 		if (candidate->id.hw_type == type)
275 			return candidate;
276 		dev = dev->parent;
277 	}
278 
279 	return NULL;
280 }
281 
282 /*
283  * get_node_path fills in @path with the firmware path to the device.
284  * Note that if @node is a parisc device, we don't fill in the 'mod' field.
285  * This is because both callers pass the parent and fill in the mod
286  * themselves.  If @node is a PCI device, we do fill it in, even though this
287  * is inconsistent.
288  */
289 static void get_node_path(struct device *dev, struct hardware_path *path)
290 {
291 	int i = 5;
292 	memset(&path->bc, -1, 6);
293 
294 	if (dev_is_pci(dev)) {
295 		unsigned int devfn = to_pci_dev(dev)->devfn;
296 		path->mod = PCI_FUNC(devfn);
297 		path->bc[i--] = PCI_SLOT(devfn);
298 		dev = dev->parent;
299 	}
300 
301 	while (dev != &root) {
302 		if (dev_is_pci(dev)) {
303 			unsigned int devfn = to_pci_dev(dev)->devfn;
304 			path->bc[i--] = PCI_SLOT(devfn) | (PCI_FUNC(devfn)<< 5);
305 		} else if (dev->bus == &parisc_bus_type) {
306 			path->bc[i--] = to_parisc_device(dev)->hw_path;
307 		}
308 		dev = dev->parent;
309 	}
310 }
311 
312 static char *print_hwpath(struct hardware_path *path, char *output)
313 {
314 	int i;
315 	for (i = 0; i < 6; i++) {
316 		if (path->bc[i] == -1)
317 			continue;
318 		output += sprintf(output, "%u/", (unsigned char) path->bc[i]);
319 	}
320 	output += sprintf(output, "%u", (unsigned char) path->mod);
321 	return output;
322 }
323 
324 /**
325  * print_pa_hwpath - Returns hardware path for PA devices
326  * dev: The device to return the path for
327  * output: Pointer to a previously-allocated array to place the path in.
328  *
329  * This function fills in the output array with a human-readable path
330  * to a PA device.  This string is compatible with that used by PDC, and
331  * may be printed on the outside of the box.
332  */
333 char *print_pa_hwpath(struct parisc_device *dev, char *output)
334 {
335 	struct hardware_path path;
336 
337 	get_node_path(dev->dev.parent, &path);
338 	path.mod = dev->hw_path;
339 	return print_hwpath(&path, output);
340 }
341 EXPORT_SYMBOL(print_pa_hwpath);
342 
343 #if defined(CONFIG_PCI) || defined(CONFIG_ISA)
344 /**
345  * get_pci_node_path - Determines the hardware path for a PCI device
346  * @pdev: The device to return the path for
347  * @path: Pointer to a previously-allocated array to place the path in.
348  *
349  * This function fills in the hardware_path structure with the route to
350  * the specified PCI device.  This structure is suitable for passing to
351  * PDC calls.
352  */
353 void get_pci_node_path(struct pci_dev *pdev, struct hardware_path *path)
354 {
355 	get_node_path(&pdev->dev, path);
356 }
357 EXPORT_SYMBOL(get_pci_node_path);
358 
359 /**
360  * print_pci_hwpath - Returns hardware path for PCI devices
361  * dev: The device to return the path for
362  * output: Pointer to a previously-allocated array to place the path in.
363  *
364  * This function fills in the output array with a human-readable path
365  * to a PCI device.  This string is compatible with that used by PDC, and
366  * may be printed on the outside of the box.
367  */
368 char *print_pci_hwpath(struct pci_dev *dev, char *output)
369 {
370 	struct hardware_path path;
371 
372 	get_pci_node_path(dev, &path);
373 	return print_hwpath(&path, output);
374 }
375 EXPORT_SYMBOL(print_pci_hwpath);
376 
377 #endif /* defined(CONFIG_PCI) || defined(CONFIG_ISA) */
378 
379 static void setup_bus_id(struct parisc_device *padev)
380 {
381 	struct hardware_path path;
382 	char name[28];
383 	char *output = name;
384 	int i;
385 
386 	get_node_path(padev->dev.parent, &path);
387 
388 	for (i = 0; i < 6; i++) {
389 		if (path.bc[i] == -1)
390 			continue;
391 		output += sprintf(output, "%u:", (unsigned char) path.bc[i]);
392 	}
393 	sprintf(output, "%u", (unsigned char) padev->hw_path);
394 	dev_set_name(&padev->dev, name);
395 }
396 
397 struct parisc_device * __init create_tree_node(char id, struct device *parent)
398 {
399 	struct parisc_device *dev = kzalloc(sizeof(*dev), GFP_KERNEL);
400 	if (!dev)
401 		return NULL;
402 
403 	dev->hw_path = id;
404 	dev->id.hw_type = HPHW_FAULTY;
405 
406 	dev->dev.parent = parent;
407 	setup_bus_id(dev);
408 
409 	dev->dev.bus = &parisc_bus_type;
410 	dev->dma_mask = 0xffffffffUL;	/* PARISC devices are 32-bit */
411 
412 	/* make the generic dma mask a pointer to the parisc one */
413 	dev->dev.dma_mask = &dev->dma_mask;
414 	dev->dev.coherent_dma_mask = dev->dma_mask;
415 	if (device_register(&dev->dev)) {
416 		kfree(dev);
417 		return NULL;
418 	}
419 
420 	return dev;
421 }
422 
423 struct match_id_data {
424 	char id;
425 	struct parisc_device * dev;
426 };
427 
428 static int match_by_id(struct device * dev, void * data)
429 {
430 	struct parisc_device * pdev = to_parisc_device(dev);
431 	struct match_id_data * d = data;
432 
433 	if (pdev->hw_path == d->id) {
434 		d->dev = pdev;
435 		return 1;
436 	}
437 	return 0;
438 }
439 
440 /**
441  * alloc_tree_node - returns a device entry in the iotree
442  * @parent: the parent node in the tree
443  * @id: the element of the module path for this entry
444  *
445  * Checks all the children of @parent for a matching @id.  If none
446  * found, it allocates a new device and returns it.
447  */
448 static struct parisc_device * __init alloc_tree_node(
449 			struct device *parent, char id)
450 {
451 	struct match_id_data d = {
452 		.id = id,
453 	};
454 	if (device_for_each_child(parent, &d, match_by_id))
455 		return d.dev;
456 	else
457 		return create_tree_node(id, parent);
458 }
459 
460 static struct parisc_device *create_parisc_device(struct hardware_path *modpath)
461 {
462 	int i;
463 	struct device *parent = &root;
464 	for (i = 0; i < 6; i++) {
465 		if (modpath->bc[i] == -1)
466 			continue;
467 		parent = &alloc_tree_node(parent, modpath->bc[i])->dev;
468 	}
469 	return alloc_tree_node(parent, modpath->mod);
470 }
471 
472 struct parisc_device * __init
473 alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path)
474 {
475 	int status;
476 	unsigned long bytecnt;
477 	u8 iodc_data[32];
478 	struct parisc_device *dev;
479 	const char *name;
480 
481 	/* Check to make sure this device has not already been added - Ryan */
482 	if (find_device_by_addr(hpa) != NULL)
483 		return NULL;
484 
485 	status = pdc_iodc_read(&bytecnt, hpa, 0, &iodc_data, 32);
486 	if (status != PDC_OK)
487 		return NULL;
488 
489 	dev = create_parisc_device(mod_path);
490 	if (dev->id.hw_type != HPHW_FAULTY) {
491 		pr_err("Two devices have hardware path [%s].  IODC data for second device: %7phN\n"
492 		       "Rearranging GSC cards sometimes helps\n",
493 			parisc_pathname(dev), iodc_data);
494 		return NULL;
495 	}
496 
497 	dev->id.hw_type = iodc_data[3] & 0x1f;
498 	dev->id.hversion = (iodc_data[0] << 4) | ((iodc_data[1] & 0xf0) >> 4);
499 	dev->id.hversion_rev = iodc_data[1] & 0x0f;
500 	dev->id.sversion = ((iodc_data[4] & 0x0f) << 16) |
501 			(iodc_data[5] << 8) | iodc_data[6];
502 	dev->hpa.name = parisc_pathname(dev);
503 	dev->hpa.start = hpa;
504 	/* This is awkward.  The STI spec says that gfx devices may occupy
505 	 * 32MB or 64MB.  Unfortunately, we don't know how to tell whether
506 	 * it's the former or the latter.  Assumptions either way can hurt us.
507 	 */
508 	if (hpa == 0xf4000000 || hpa == 0xf8000000) {
509 		dev->hpa.end = hpa + 0x03ffffff;
510 	} else if (hpa == 0xf6000000 || hpa == 0xfa000000) {
511 		dev->hpa.end = hpa + 0x01ffffff;
512 	} else {
513 		dev->hpa.end = hpa + 0xfff;
514 	}
515 	dev->hpa.flags = IORESOURCE_MEM;
516 	name = parisc_hardware_description(&dev->id);
517 	if (name) {
518 		strlcpy(dev->name, name, sizeof(dev->name));
519 	}
520 
521 	/* Silently fail things like mouse ports which are subsumed within
522 	 * the keyboard controller
523 	 */
524 	if ((hpa & 0xfff) == 0 && insert_resource(&iomem_resource, &dev->hpa))
525 		pr_warn("Unable to claim HPA %lx for device %s\n", hpa, name);
526 
527 	return dev;
528 }
529 
530 static int parisc_generic_match(struct device *dev, struct device_driver *drv)
531 {
532 	return match_device(to_parisc_driver(drv), to_parisc_device(dev));
533 }
534 
535 static ssize_t make_modalias(struct device *dev, char *buf)
536 {
537 	const struct parisc_device *padev = to_parisc_device(dev);
538 	const struct parisc_device_id *id = &padev->id;
539 
540 	return sprintf(buf, "parisc:t%02Xhv%04Xrev%02Xsv%08X\n",
541 		(u8)id->hw_type, (u16)id->hversion, (u8)id->hversion_rev,
542 		(u32)id->sversion);
543 }
544 
545 static int parisc_uevent(struct device *dev, struct kobj_uevent_env *env)
546 {
547 	const struct parisc_device *padev;
548 	char modalias[40];
549 
550 	if (!dev)
551 		return -ENODEV;
552 
553 	padev = to_parisc_device(dev);
554 	if (!padev)
555 		return -ENODEV;
556 
557 	if (add_uevent_var(env, "PARISC_NAME=%s", padev->name))
558 		return -ENOMEM;
559 
560 	make_modalias(dev, modalias);
561 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
562 		return -ENOMEM;
563 
564 	return 0;
565 }
566 
567 #define pa_dev_attr(name, field, format_string)				\
568 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf)		\
569 {									\
570 	struct parisc_device *padev = to_parisc_device(dev);		\
571 	return sprintf(buf, format_string, padev->field);		\
572 }									\
573 static DEVICE_ATTR_RO(name);
574 
575 #define pa_dev_attr_id(field, format) pa_dev_attr(field, id.field, format)
576 
577 pa_dev_attr(irq, irq, "%u\n");
578 pa_dev_attr_id(hw_type, "0x%02x\n");
579 pa_dev_attr(rev, id.hversion_rev, "0x%x\n");
580 pa_dev_attr_id(hversion, "0x%03x\n");
581 pa_dev_attr_id(sversion, "0x%05x\n");
582 
583 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
584 {
585 	return make_modalias(dev, buf);
586 }
587 static DEVICE_ATTR_RO(modalias);
588 
589 static struct attribute *parisc_device_attrs[] = {
590 	&dev_attr_irq.attr,
591 	&dev_attr_hw_type.attr,
592 	&dev_attr_rev.attr,
593 	&dev_attr_hversion.attr,
594 	&dev_attr_sversion.attr,
595 	&dev_attr_modalias.attr,
596 	NULL,
597 };
598 ATTRIBUTE_GROUPS(parisc_device);
599 
600 struct bus_type parisc_bus_type = {
601 	.name = "parisc",
602 	.match = parisc_generic_match,
603 	.uevent = parisc_uevent,
604 	.dev_groups = parisc_device_groups,
605 	.probe = parisc_driver_probe,
606 	.remove = __exit_p(parisc_driver_remove),
607 };
608 
609 /**
610  * register_parisc_device - Locate a driver to manage this device.
611  * @dev: The parisc device.
612  *
613  * Search the driver list for a driver that is willing to manage
614  * this device.
615  */
616 int __init register_parisc_device(struct parisc_device *dev)
617 {
618 	if (!dev)
619 		return 0;
620 
621 	if (dev->driver)
622 		return 1;
623 
624 	return 0;
625 }
626 
627 /**
628  * match_pci_device - Matches a pci device against a given hardware path
629  * entry.
630  * @dev: the generic device (known to be contained by a pci_dev).
631  * @index: the current BC index
632  * @modpath: the hardware path.
633  * @return: true if the device matches the hardware path.
634  */
635 static int match_pci_device(struct device *dev, int index,
636 		struct hardware_path *modpath)
637 {
638 	struct pci_dev *pdev = to_pci_dev(dev);
639 	int id;
640 
641 	if (index == 5) {
642 		/* we are at the end of the path, and on the actual device */
643 		unsigned int devfn = pdev->devfn;
644 		return ((modpath->bc[5] == PCI_SLOT(devfn)) &&
645 					(modpath->mod == PCI_FUNC(devfn)));
646 	}
647 
648 	/* index might be out of bounds for bc[] */
649 	if (index >= 6)
650 		return 0;
651 
652 	id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5);
653 	return (modpath->bc[index] == id);
654 }
655 
656 /**
657  * match_parisc_device - Matches a parisc device against a given hardware
658  * path entry.
659  * @dev: the generic device (known to be contained by a parisc_device).
660  * @index: the current BC index
661  * @modpath: the hardware path.
662  * @return: true if the device matches the hardware path.
663  */
664 static int match_parisc_device(struct device *dev, int index,
665 		struct hardware_path *modpath)
666 {
667 	struct parisc_device *curr = to_parisc_device(dev);
668 	char id = (index == 6) ? modpath->mod : modpath->bc[index];
669 
670 	return (curr->hw_path == id);
671 }
672 
673 struct parse_tree_data {
674 	int index;
675 	struct hardware_path * modpath;
676 	struct device * dev;
677 };
678 
679 static int check_parent(struct device * dev, void * data)
680 {
681 	struct parse_tree_data * d = data;
682 
683 	if (check_dev(dev)) {
684 		if (dev->bus == &parisc_bus_type) {
685 			if (match_parisc_device(dev, d->index, d->modpath))
686 				d->dev = dev;
687 		} else if (dev_is_pci(dev)) {
688 			if (match_pci_device(dev, d->index, d->modpath))
689 				d->dev = dev;
690 		} else if (dev->bus == NULL) {
691 			/* we are on a bus bridge */
692 			struct device *new = parse_tree_node(dev, d->index, d->modpath);
693 			if (new)
694 				d->dev = new;
695 		}
696 	}
697 	return d->dev != NULL;
698 }
699 
700 /**
701  * parse_tree_node - returns a device entry in the iotree
702  * @parent: the parent node in the tree
703  * @index: the current BC index
704  * @modpath: the hardware_path struct to match a device against
705  * @return: The corresponding device if found, NULL otherwise.
706  *
707  * Checks all the children of @parent for a matching @id.  If none
708  * found, it returns NULL.
709  */
710 static struct device *
711 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath)
712 {
713 	struct parse_tree_data d = {
714 		.index          = index,
715 		.modpath        = modpath,
716 	};
717 
718 	struct recurse_struct recurse_data = {
719 		.obj	= &d,
720 		.fn	= check_parent,
721 	};
722 
723 	if (device_for_each_child(parent, &recurse_data, descend_children))
724 		/* nothing */;
725 
726 	return d.dev;
727 }
728 
729 /**
730  * hwpath_to_device - Finds the generic device corresponding to a given hardware path.
731  * @modpath: the hardware path.
732  * @return: The target device, NULL if not found.
733  */
734 struct device *hwpath_to_device(struct hardware_path *modpath)
735 {
736 	int i;
737 	struct device *parent = &root;
738 	for (i = 0; i < 6; i++) {
739 		if (modpath->bc[i] == -1)
740 			continue;
741 		parent = parse_tree_node(parent, i, modpath);
742 		if (!parent)
743 			return NULL;
744 	}
745 	if (dev_is_pci(parent)) /* pci devices already parse MOD */
746 		return parent;
747 	else
748 		return parse_tree_node(parent, 6, modpath);
749 }
750 EXPORT_SYMBOL(hwpath_to_device);
751 
752 /**
753  * device_to_hwpath - Populates the hwpath corresponding to the given device.
754  * @param dev the target device
755  * @param path pointer to a previously allocated hwpath struct to be filled in
756  */
757 void device_to_hwpath(struct device *dev, struct hardware_path *path)
758 {
759 	struct parisc_device *padev;
760 	if (dev->bus == &parisc_bus_type) {
761 		padev = to_parisc_device(dev);
762 		get_node_path(dev->parent, path);
763 		path->mod = padev->hw_path;
764 	} else if (dev_is_pci(dev)) {
765 		get_node_path(dev, path);
766 	}
767 }
768 EXPORT_SYMBOL(device_to_hwpath);
769 
770 #define BC_PORT_MASK 0x8
771 #define BC_LOWER_PORT 0x8
772 
773 #define BUS_CONVERTER(dev) \
774         ((dev->id.hw_type == HPHW_IOA) || (dev->id.hw_type == HPHW_BCPORT))
775 
776 #define IS_LOWER_PORT(dev) \
777         ((gsc_readl(dev->hpa.start + offsetof(struct bc_module, io_status)) \
778                 & BC_PORT_MASK) == BC_LOWER_PORT)
779 
780 #define MAX_NATIVE_DEVICES 64
781 #define NATIVE_DEVICE_OFFSET 0x1000
782 
783 #define FLEX_MASK 	F_EXTEND(0xfffc0000)
784 #define IO_IO_LOW	offsetof(struct bc_module, io_io_low)
785 #define IO_IO_HIGH	offsetof(struct bc_module, io_io_high)
786 #define READ_IO_IO_LOW(dev)  (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_LOW)
787 #define READ_IO_IO_HIGH(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_HIGH)
788 
789 static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
790                             struct device *parent);
791 
792 static void walk_lower_bus(struct parisc_device *dev)
793 {
794 	unsigned long io_io_low, io_io_high;
795 
796 	if (!BUS_CONVERTER(dev) || IS_LOWER_PORT(dev))
797 		return;
798 
799 	if (dev->id.hw_type == HPHW_IOA) {
800 		io_io_low = (unsigned long)(signed int)(READ_IO_IO_LOW(dev) << 16);
801 		io_io_high = io_io_low + MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET;
802 	} else {
803 		io_io_low = (READ_IO_IO_LOW(dev) + ~FLEX_MASK) & FLEX_MASK;
804 		io_io_high = (READ_IO_IO_HIGH(dev)+ ~FLEX_MASK) & FLEX_MASK;
805 	}
806 
807 	walk_native_bus(io_io_low, io_io_high, &dev->dev);
808 }
809 
810 /**
811  * walk_native_bus -- Probe a bus for devices
812  * @io_io_low: Base address of this bus.
813  * @io_io_high: Last address of this bus.
814  * @parent: The parent bus device.
815  *
816  * A native bus (eg Runway or GSC) may have up to 64 devices on it,
817  * spaced at intervals of 0x1000 bytes.  PDC may not inform us of these
818  * devices, so we have to probe for them.  Unfortunately, we may find
819  * devices which are not physically connected (such as extra serial &
820  * keyboard ports).  This problem is not yet solved.
821  */
822 static void __init walk_native_bus(unsigned long io_io_low,
823 	unsigned long io_io_high, struct device *parent)
824 {
825 	int i, devices_found = 0;
826 	unsigned long hpa = io_io_low;
827 	struct hardware_path path;
828 
829 	get_node_path(parent, &path);
830 	do {
831 		for(i = 0; i < MAX_NATIVE_DEVICES; i++, hpa += NATIVE_DEVICE_OFFSET) {
832 			struct parisc_device *dev;
833 
834 			/* Was the device already added by Firmware? */
835 			dev = find_device_by_addr(hpa);
836 			if (!dev) {
837 				path.mod = i;
838 				dev = alloc_pa_dev(hpa, &path);
839 				if (!dev)
840 					continue;
841 
842 				register_parisc_device(dev);
843 				devices_found++;
844 			}
845 			walk_lower_bus(dev);
846 		}
847 	} while(!devices_found && hpa < io_io_high);
848 }
849 
850 #define CENTRAL_BUS_ADDR F_EXTEND(0xfff80000)
851 
852 /**
853  * walk_central_bus - Find devices attached to the central bus
854  *
855  * PDC doesn't tell us about all devices in the system.  This routine
856  * finds devices connected to the central bus.
857  */
858 void __init walk_central_bus(void)
859 {
860 	walk_native_bus(CENTRAL_BUS_ADDR,
861 			CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET),
862 			&root);
863 }
864 
865 static void print_parisc_device(struct parisc_device *dev)
866 {
867 	char hw_path[64];
868 	static int count;
869 
870 	print_pa_hwpath(dev, hw_path);
871 	pr_info("%d. %s at 0x%px [%s] { %d, 0x%x, 0x%.3x, 0x%.5x }",
872 		++count, dev->name, (void*) dev->hpa.start, hw_path, dev->id.hw_type,
873 		dev->id.hversion_rev, dev->id.hversion, dev->id.sversion);
874 
875 	if (dev->num_addrs) {
876 		int k;
877 		pr_cont(", additional addresses: ");
878 		for (k = 0; k < dev->num_addrs; k++)
879 			pr_cont("0x%lx ", dev->addr[k]);
880 	}
881 	pr_cont("\n");
882 }
883 
884 /**
885  * init_parisc_bus - Some preparation to be done before inventory
886  */
887 void __init init_parisc_bus(void)
888 {
889 	if (bus_register(&parisc_bus_type))
890 		panic("Could not register PA-RISC bus type\n");
891 	if (device_register(&root))
892 		panic("Could not register PA-RISC root device\n");
893 	get_device(&root);
894 }
895 
896 static __init void qemu_header(void)
897 {
898 	int num;
899 	unsigned long *p;
900 
901 	pr_info("--- cut here ---\n");
902 	pr_info("/* AUTO-GENERATED HEADER FILE FOR SEABIOS FIRMWARE */\n");
903 	pr_cont("/* generated with Linux kernel */\n");
904 	pr_cont("/* search for PARISC_QEMU_MACHINE_HEADER in Linux */\n\n");
905 
906 	pr_info("#define PARISC_MODEL \"%s\"\n\n",
907 			boot_cpu_data.pdc.sys_model_name);
908 
909 	pr_info("#define PARISC_PDC_MODEL 0x%lx, 0x%lx, 0x%lx, "
910 		"0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx\n\n",
911 	#define p ((unsigned long *)&boot_cpu_data.pdc.model)
912 		p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]);
913 	#undef p
914 
915 	pr_info("#define PARISC_PDC_VERSION 0x%04lx\n\n",
916 			boot_cpu_data.pdc.versions);
917 
918 	pr_info("#define PARISC_PDC_CPUID 0x%04lx\n\n",
919 			boot_cpu_data.pdc.cpuid);
920 
921 	pr_info("#define PARISC_PDC_CAPABILITIES 0x%04lx\n\n",
922 			boot_cpu_data.pdc.capabilities);
923 
924 	pr_info("#define PARISC_PDC_ENTRY_ORG 0x%04lx\n\n",
925 #ifdef CONFIG_64BIT
926 		(unsigned long)(PAGE0->mem_pdc_hi) << 32 |
927 #endif
928 		(unsigned long)PAGE0->mem_pdc);
929 
930 	pr_info("#define PARISC_PDC_CACHE_INFO");
931 	p = (unsigned long *) &cache_info;
932 	for (num = 0; num < sizeof(cache_info); num += sizeof(unsigned long)) {
933 		if (((num % 5) == 0)) {
934 			pr_cont(" \\\n");
935 			pr_info("\t");
936 		}
937 		pr_cont("%s0x%04lx",
938 			num?", ":"", *p++);
939 	}
940 	pr_cont("\n\n");
941 }
942 
943 static __init int qemu_print_hpa(struct device *lin_dev, void *data)
944 {
945 	struct parisc_device *dev = to_parisc_device(lin_dev);
946 	unsigned long hpa = dev->hpa.start;
947 
948 	pr_cont("\t{\t.hpa = 0x%08lx,\\\n", hpa);
949 	pr_cont("\t\t.iodc = &iodc_data_hpa_%08lx,\\\n", hpa);
950 	pr_cont("\t\t.mod_info = &mod_info_hpa_%08lx,\\\n", hpa);
951 	pr_cont("\t\t.mod_path = &mod_path_hpa_%08lx,\\\n", hpa);
952 	pr_cont("\t\t.num_addr = HPA_%08lx_num_addr,\\\n", hpa);
953 	pr_cont("\t\t.add_addr = { HPA_%08lx_add_addr } },\\\n", hpa);
954 	return 0;
955 }
956 
957 
958 static __init void qemu_footer(void)
959 {
960 	pr_info("\n\n#define PARISC_DEVICE_LIST \\\n");
961 	for_each_padev(qemu_print_hpa, NULL);
962 	pr_cont("\t{ 0, }\n");
963 	pr_info("--- cut here ---\n");
964 }
965 
966 /* print iodc data of the various hpa modules for qemu inclusion */
967 static __init int qemu_print_iodc_data(struct device *lin_dev, void *data)
968 {
969 	struct parisc_device *dev = to_parisc_device(lin_dev);
970 	unsigned long count;
971 	unsigned long hpa = dev->hpa.start;
972 	int status;
973 	struct pdc_iodc iodc_data;
974 
975 	int mod_index;
976 	struct pdc_system_map_mod_info pdc_mod_info;
977 	struct pdc_module_path mod_path;
978 
979 	status = pdc_iodc_read(&count, hpa, 0,
980 		&iodc_data, sizeof(iodc_data));
981 	if (status != PDC_OK) {
982 		pr_info("No IODC data for hpa 0x%08lx\n", hpa);
983 		return 0;
984 	}
985 
986 	pr_info("\n");
987 
988 	pr_info("#define HPA_%08lx_DESCRIPTION \"%s\"\n",
989 		hpa, parisc_hardware_description(&dev->id));
990 
991 	mod_index = 0;
992 	do {
993 		status = pdc_system_map_find_mods(&pdc_mod_info,
994 				&mod_path, mod_index++);
995 	} while (status == PDC_OK && pdc_mod_info.mod_addr != hpa);
996 
997 	pr_info("static struct pdc_system_map_mod_info"
998 		" mod_info_hpa_%08lx = {\n", hpa);
999 	#define DO(member) \
1000 		pr_cont("\t." #member " = 0x%x,\n", \
1001 			(unsigned int)pdc_mod_info.member)
1002 	DO(mod_addr);
1003 	DO(mod_pgs);
1004 	DO(add_addrs);
1005 	pr_cont("};\n");
1006 	#undef DO
1007 	pr_info("static struct pdc_module_path "
1008 		"mod_path_hpa_%08lx = {\n", hpa);
1009 	pr_cont("\t.path = { ");
1010 	pr_cont(".flags = 0x%x, ", mod_path.path.flags);
1011 	pr_cont(".bc = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }, ",
1012 		(unsigned char)mod_path.path.bc[0],
1013 		(unsigned char)mod_path.path.bc[1],
1014 		(unsigned char)mod_path.path.bc[2],
1015 		(unsigned char)mod_path.path.bc[3],
1016 		(unsigned char)mod_path.path.bc[4],
1017 		(unsigned char)mod_path.path.bc[5]);
1018 	pr_cont(".mod = 0x%x ", mod_path.path.mod);
1019 	pr_cont(" },\n");
1020 	pr_cont("\t.layers = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }\n",
1021 		mod_path.layers[0], mod_path.layers[1], mod_path.layers[2],
1022 		mod_path.layers[3], mod_path.layers[4], mod_path.layers[5]);
1023 	pr_cont("};\n");
1024 
1025 	pr_info("static struct pdc_iodc iodc_data_hpa_%08lx = {\n", hpa);
1026 	#define DO(member) \
1027 		pr_cont("\t." #member " = 0x%04lx,\n", \
1028 			(unsigned long)iodc_data.member)
1029 	DO(hversion_model);
1030 	DO(hversion);
1031 	DO(spa);
1032 	DO(type);
1033 	DO(sversion_rev);
1034 	DO(sversion_model);
1035 	DO(sversion_opt);
1036 	DO(rev);
1037 	DO(dep);
1038 	DO(features);
1039 	DO(checksum);
1040 	DO(length);
1041 	#undef DO
1042 	pr_cont("\t/* pad: 0x%04x, 0x%04x */\n",
1043 		iodc_data.pad[0], iodc_data.pad[1]);
1044 	pr_cont("};\n");
1045 
1046 	pr_info("#define HPA_%08lx_num_addr %d\n", hpa, dev->num_addrs);
1047 	pr_info("#define HPA_%08lx_add_addr ", hpa);
1048 	count = 0;
1049 	if (dev->num_addrs == 0)
1050 		pr_cont("0");
1051 	while (count < dev->num_addrs) {
1052 		pr_cont("0x%08lx, ", dev->addr[count]);
1053 		count++;
1054 	}
1055 	pr_cont("\n\n");
1056 
1057 	return 0;
1058 }
1059 
1060 
1061 
1062 static int print_one_device(struct device * dev, void * data)
1063 {
1064 	struct parisc_device * pdev = to_parisc_device(dev);
1065 
1066 	if (check_dev(dev))
1067 		print_parisc_device(pdev);
1068 	return 0;
1069 }
1070 
1071 /**
1072  * print_parisc_devices - Print out a list of devices found in this system
1073  */
1074 void __init print_parisc_devices(void)
1075 {
1076 	for_each_padev(print_one_device, NULL);
1077 	#define PARISC_QEMU_MACHINE_HEADER 0
1078 	if (PARISC_QEMU_MACHINE_HEADER) {
1079 		qemu_header();
1080 		for_each_padev(qemu_print_iodc_data, NULL);
1081 		qemu_footer();
1082 	}
1083 }
1084