1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999) 7 * Copyright (C) 1999 SuSE GmbH Nuernberg 8 * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org) 9 * 10 * Cache and TLB management 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/seq_file.h> 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <asm/pdc.h> 23 #include <asm/cache.h> 24 #include <asm/cacheflush.h> 25 #include <asm/tlbflush.h> 26 #include <asm/page.h> 27 #include <asm/processor.h> 28 #include <asm/sections.h> 29 #include <asm/shmparam.h> 30 #include <asm/mmu_context.h> 31 32 int split_tlb __ro_after_init; 33 int dcache_stride __ro_after_init; 34 int icache_stride __ro_after_init; 35 EXPORT_SYMBOL(dcache_stride); 36 37 void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr); 38 EXPORT_SYMBOL(flush_dcache_page_asm); 39 void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr); 40 void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr); 41 42 /* Internal implementation in arch/parisc/kernel/pacache.S */ 43 void flush_data_cache_local(void *); /* flushes local data-cache only */ 44 void flush_instruction_cache_local(void); /* flushes local code-cache only */ 45 46 /* On some machines (i.e., ones with the Merced bus), there can be 47 * only a single PxTLB broadcast at a time; this must be guaranteed 48 * by software. We need a spinlock around all TLB flushes to ensure 49 * this. 50 */ 51 DEFINE_SPINLOCK(pa_tlb_flush_lock); 52 53 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 54 int pa_serialize_tlb_flushes __ro_after_init; 55 #endif 56 57 struct pdc_cache_info cache_info __ro_after_init; 58 #ifndef CONFIG_PA20 59 static struct pdc_btlb_info btlb_info __ro_after_init; 60 #endif 61 62 DEFINE_STATIC_KEY_TRUE(parisc_has_cache); 63 DEFINE_STATIC_KEY_TRUE(parisc_has_dcache); 64 DEFINE_STATIC_KEY_TRUE(parisc_has_icache); 65 66 static void cache_flush_local_cpu(void *dummy) 67 { 68 if (static_branch_likely(&parisc_has_icache)) 69 flush_instruction_cache_local(); 70 if (static_branch_likely(&parisc_has_dcache)) 71 flush_data_cache_local(NULL); 72 } 73 74 void flush_cache_all_local(void) 75 { 76 cache_flush_local_cpu(NULL); 77 } 78 79 void flush_cache_all(void) 80 { 81 if (static_branch_likely(&parisc_has_cache)) 82 on_each_cpu(cache_flush_local_cpu, NULL, 1); 83 } 84 85 static inline void flush_data_cache(void) 86 { 87 if (static_branch_likely(&parisc_has_dcache)) 88 on_each_cpu(flush_data_cache_local, NULL, 1); 89 } 90 91 92 /* Kernel virtual address of pfn. */ 93 #define pfn_va(pfn) __va(PFN_PHYS(pfn)) 94 95 void 96 __update_cache(pte_t pte) 97 { 98 unsigned long pfn = pte_pfn(pte); 99 struct page *page; 100 101 /* We don't have pte special. As a result, we can be called with 102 an invalid pfn and we don't need to flush the kernel dcache page. 103 This occurs with FireGL card in C8000. */ 104 if (!pfn_valid(pfn)) 105 return; 106 107 page = pfn_to_page(pfn); 108 if (page_mapping_file(page) && 109 test_bit(PG_dcache_dirty, &page->flags)) { 110 flush_kernel_dcache_page_addr(pfn_va(pfn)); 111 clear_bit(PG_dcache_dirty, &page->flags); 112 } else if (parisc_requires_coherency()) 113 flush_kernel_dcache_page_addr(pfn_va(pfn)); 114 } 115 116 void 117 show_cache_info(struct seq_file *m) 118 { 119 char buf[32]; 120 121 seq_printf(m, "I-cache\t\t: %ld KB\n", 122 cache_info.ic_size/1024 ); 123 if (cache_info.dc_loop != 1) 124 snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop); 125 seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n", 126 cache_info.dc_size/1024, 127 (cache_info.dc_conf.cc_wt ? "WT":"WB"), 128 (cache_info.dc_conf.cc_sh ? ", shared I/D":""), 129 ((cache_info.dc_loop == 1) ? "direct mapped" : buf), 130 cache_info.dc_conf.cc_alias 131 ); 132 seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n", 133 cache_info.it_size, 134 cache_info.dt_size, 135 cache_info.dt_conf.tc_sh ? " - shared with ITLB":"" 136 ); 137 138 #ifndef CONFIG_PA20 139 /* BTLB - Block TLB */ 140 if (btlb_info.max_size==0) { 141 seq_printf(m, "BTLB\t\t: not supported\n" ); 142 } else { 143 seq_printf(m, 144 "BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n" 145 "BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n" 146 "BTLB var-entr.\t: %d instruction, %d data (%d combined)\n", 147 btlb_info.max_size, (int)4096, 148 btlb_info.max_size>>8, 149 btlb_info.fixed_range_info.num_i, 150 btlb_info.fixed_range_info.num_d, 151 btlb_info.fixed_range_info.num_comb, 152 btlb_info.variable_range_info.num_i, 153 btlb_info.variable_range_info.num_d, 154 btlb_info.variable_range_info.num_comb 155 ); 156 } 157 #endif 158 } 159 160 void __init 161 parisc_cache_init(void) 162 { 163 if (pdc_cache_info(&cache_info) < 0) 164 panic("parisc_cache_init: pdc_cache_info failed"); 165 166 #if 0 167 printk("ic_size %lx dc_size %lx it_size %lx\n", 168 cache_info.ic_size, 169 cache_info.dc_size, 170 cache_info.it_size); 171 172 printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", 173 cache_info.dc_base, 174 cache_info.dc_stride, 175 cache_info.dc_count, 176 cache_info.dc_loop); 177 178 printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n", 179 *(unsigned long *) (&cache_info.dc_conf), 180 cache_info.dc_conf.cc_alias, 181 cache_info.dc_conf.cc_block, 182 cache_info.dc_conf.cc_line, 183 cache_info.dc_conf.cc_shift); 184 printk(" wt %d sh %d cst %d hv %d\n", 185 cache_info.dc_conf.cc_wt, 186 cache_info.dc_conf.cc_sh, 187 cache_info.dc_conf.cc_cst, 188 cache_info.dc_conf.cc_hv); 189 190 printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", 191 cache_info.ic_base, 192 cache_info.ic_stride, 193 cache_info.ic_count, 194 cache_info.ic_loop); 195 196 printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n", 197 cache_info.it_sp_base, 198 cache_info.it_sp_stride, 199 cache_info.it_sp_count, 200 cache_info.it_loop, 201 cache_info.it_off_base, 202 cache_info.it_off_stride, 203 cache_info.it_off_count); 204 205 printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n", 206 cache_info.dt_sp_base, 207 cache_info.dt_sp_stride, 208 cache_info.dt_sp_count, 209 cache_info.dt_loop, 210 cache_info.dt_off_base, 211 cache_info.dt_off_stride, 212 cache_info.dt_off_count); 213 214 printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n", 215 *(unsigned long *) (&cache_info.ic_conf), 216 cache_info.ic_conf.cc_alias, 217 cache_info.ic_conf.cc_block, 218 cache_info.ic_conf.cc_line, 219 cache_info.ic_conf.cc_shift); 220 printk(" wt %d sh %d cst %d hv %d\n", 221 cache_info.ic_conf.cc_wt, 222 cache_info.ic_conf.cc_sh, 223 cache_info.ic_conf.cc_cst, 224 cache_info.ic_conf.cc_hv); 225 226 printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n", 227 cache_info.dt_conf.tc_sh, 228 cache_info.dt_conf.tc_page, 229 cache_info.dt_conf.tc_cst, 230 cache_info.dt_conf.tc_aid, 231 cache_info.dt_conf.tc_sr); 232 233 printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n", 234 cache_info.it_conf.tc_sh, 235 cache_info.it_conf.tc_page, 236 cache_info.it_conf.tc_cst, 237 cache_info.it_conf.tc_aid, 238 cache_info.it_conf.tc_sr); 239 #endif 240 241 split_tlb = 0; 242 if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) { 243 if (cache_info.dt_conf.tc_sh == 2) 244 printk(KERN_WARNING "Unexpected TLB configuration. " 245 "Will flush I/D separately (could be optimized).\n"); 246 247 split_tlb = 1; 248 } 249 250 /* "New and Improved" version from Jim Hull 251 * (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift)) 252 * The following CAFL_STRIDE is an optimized version, see 253 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html 254 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html 255 */ 256 #define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift)) 257 dcache_stride = CAFL_STRIDE(cache_info.dc_conf); 258 icache_stride = CAFL_STRIDE(cache_info.ic_conf); 259 #undef CAFL_STRIDE 260 261 #ifndef CONFIG_PA20 262 if (pdc_btlb_info(&btlb_info) < 0) { 263 memset(&btlb_info, 0, sizeof btlb_info); 264 } 265 #endif 266 267 if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) == 268 PDC_MODEL_NVA_UNSUPPORTED) { 269 printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n"); 270 #if 0 271 panic("SMP kernel required to avoid non-equivalent aliasing"); 272 #endif 273 } 274 } 275 276 void disable_sr_hashing(void) 277 { 278 int srhash_type, retval; 279 unsigned long space_bits; 280 281 switch (boot_cpu_data.cpu_type) { 282 case pcx: /* We shouldn't get this far. setup.c should prevent it. */ 283 BUG(); 284 return; 285 286 case pcxs: 287 case pcxt: 288 case pcxt_: 289 srhash_type = SRHASH_PCXST; 290 break; 291 292 case pcxl: 293 srhash_type = SRHASH_PCXL; 294 break; 295 296 case pcxl2: /* pcxl2 doesn't support space register hashing */ 297 return; 298 299 default: /* Currently all PA2.0 machines use the same ins. sequence */ 300 srhash_type = SRHASH_PA20; 301 break; 302 } 303 304 disable_sr_hashing_asm(srhash_type); 305 306 retval = pdc_spaceid_bits(&space_bits); 307 /* If this procedure isn't implemented, don't panic. */ 308 if (retval < 0 && retval != PDC_BAD_OPTION) 309 panic("pdc_spaceid_bits call failed.\n"); 310 if (space_bits != 0) 311 panic("SpaceID hashing is still on!\n"); 312 } 313 314 static inline void 315 __flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, 316 unsigned long physaddr) 317 { 318 if (!static_branch_likely(&parisc_has_cache)) 319 return; 320 preempt_disable(); 321 flush_dcache_page_asm(physaddr, vmaddr); 322 if (vma->vm_flags & VM_EXEC) 323 flush_icache_page_asm(physaddr, vmaddr); 324 preempt_enable(); 325 } 326 327 static void flush_user_cache_page(struct vm_area_struct *vma, unsigned long vmaddr) 328 { 329 unsigned long flags, space, pgd, prot; 330 #ifdef CONFIG_TLB_PTLOCK 331 unsigned long pgd_lock; 332 #endif 333 334 vmaddr &= PAGE_MASK; 335 336 preempt_disable(); 337 338 /* Set context for flush */ 339 local_irq_save(flags); 340 prot = mfctl(8); 341 space = mfsp(SR_USER); 342 pgd = mfctl(25); 343 #ifdef CONFIG_TLB_PTLOCK 344 pgd_lock = mfctl(28); 345 #endif 346 switch_mm_irqs_off(NULL, vma->vm_mm, NULL); 347 local_irq_restore(flags); 348 349 flush_user_dcache_range_asm(vmaddr, vmaddr + PAGE_SIZE); 350 if (vma->vm_flags & VM_EXEC) 351 flush_user_icache_range_asm(vmaddr, vmaddr + PAGE_SIZE); 352 flush_tlb_page(vma, vmaddr); 353 354 /* Restore previous context */ 355 local_irq_save(flags); 356 #ifdef CONFIG_TLB_PTLOCK 357 mtctl(pgd_lock, 28); 358 #endif 359 mtctl(pgd, 25); 360 mtsp(space, SR_USER); 361 mtctl(prot, 8); 362 local_irq_restore(flags); 363 364 preempt_enable(); 365 } 366 367 static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr) 368 { 369 pte_t *ptep = NULL; 370 pgd_t *pgd = mm->pgd; 371 p4d_t *p4d; 372 pud_t *pud; 373 pmd_t *pmd; 374 375 if (!pgd_none(*pgd)) { 376 p4d = p4d_offset(pgd, addr); 377 if (!p4d_none(*p4d)) { 378 pud = pud_offset(p4d, addr); 379 if (!pud_none(*pud)) { 380 pmd = pmd_offset(pud, addr); 381 if (!pmd_none(*pmd)) 382 ptep = pte_offset_map(pmd, addr); 383 } 384 } 385 } 386 return ptep; 387 } 388 389 static inline bool pte_needs_flush(pte_t pte) 390 { 391 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)) 392 == (_PAGE_PRESENT | _PAGE_ACCESSED); 393 } 394 395 void flush_dcache_page(struct page *page) 396 { 397 struct address_space *mapping = page_mapping_file(page); 398 struct vm_area_struct *mpnt; 399 unsigned long offset; 400 unsigned long addr, old_addr = 0; 401 unsigned long count = 0; 402 unsigned long flags; 403 pgoff_t pgoff; 404 405 if (mapping && !mapping_mapped(mapping)) { 406 set_bit(PG_dcache_dirty, &page->flags); 407 return; 408 } 409 410 flush_kernel_dcache_page_addr(page_address(page)); 411 412 if (!mapping) 413 return; 414 415 pgoff = page->index; 416 417 /* 418 * We have carefully arranged in arch_get_unmapped_area() that 419 * *any* mappings of a file are always congruently mapped (whether 420 * declared as MAP_PRIVATE or MAP_SHARED), so we only need 421 * to flush one address here for them all to become coherent 422 * on machines that support equivalent aliasing 423 */ 424 flush_dcache_mmap_lock_irqsave(mapping, flags); 425 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) { 426 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; 427 addr = mpnt->vm_start + offset; 428 if (parisc_requires_coherency()) { 429 bool needs_flush = false; 430 pte_t *ptep; 431 432 ptep = get_ptep(mpnt->vm_mm, addr); 433 if (ptep) { 434 needs_flush = pte_needs_flush(*ptep); 435 pte_unmap(ptep); 436 } 437 if (needs_flush) 438 flush_user_cache_page(mpnt, addr); 439 } else { 440 /* 441 * The TLB is the engine of coherence on parisc: 442 * The CPU is entitled to speculate any page 443 * with a TLB mapping, so here we kill the 444 * mapping then flush the page along a special 445 * flush only alias mapping. This guarantees that 446 * the page is no-longer in the cache for any 447 * process and nor may it be speculatively read 448 * in (until the user or kernel specifically 449 * accesses it, of course) 450 */ 451 flush_tlb_page(mpnt, addr); 452 if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1)) 453 != (addr & (SHM_COLOUR - 1))) { 454 __flush_cache_page(mpnt, addr, page_to_phys(page)); 455 /* 456 * Software is allowed to have any number 457 * of private mappings to a page. 458 */ 459 if (!(mpnt->vm_flags & VM_SHARED)) 460 continue; 461 if (old_addr) 462 pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n", 463 old_addr, addr, mpnt->vm_file); 464 old_addr = addr; 465 } 466 } 467 WARN_ON(++count == 4096); 468 } 469 flush_dcache_mmap_unlock_irqrestore(mapping, flags); 470 } 471 EXPORT_SYMBOL(flush_dcache_page); 472 473 /* Defined in arch/parisc/kernel/pacache.S */ 474 EXPORT_SYMBOL(flush_kernel_dcache_range_asm); 475 EXPORT_SYMBOL(flush_kernel_icache_range_asm); 476 477 #define FLUSH_THRESHOLD 0x80000 /* 0.5MB */ 478 static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD; 479 480 #define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */ 481 static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL; 482 483 void __init parisc_setup_cache_timing(void) 484 { 485 unsigned long rangetime, alltime; 486 unsigned long size; 487 unsigned long threshold, threshold2; 488 489 alltime = mfctl(16); 490 flush_data_cache(); 491 alltime = mfctl(16) - alltime; 492 493 size = (unsigned long)(_end - _text); 494 rangetime = mfctl(16); 495 flush_kernel_dcache_range((unsigned long)_text, size); 496 rangetime = mfctl(16) - rangetime; 497 498 printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n", 499 alltime, size, rangetime); 500 501 threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime)); 502 pr_info("Calculated flush threshold is %lu KiB\n", 503 threshold/1024); 504 505 /* 506 * The threshold computed above isn't very reliable. The following 507 * heuristic works reasonably well on c8000/rp3440. 508 */ 509 threshold2 = cache_info.dc_size * num_online_cpus(); 510 parisc_cache_flush_threshold = threshold2; 511 printk(KERN_INFO "Cache flush threshold set to %lu KiB\n", 512 parisc_cache_flush_threshold/1024); 513 514 /* calculate TLB flush threshold */ 515 516 /* On SMP machines, skip the TLB measure of kernel text which 517 * has been mapped as huge pages. */ 518 if (num_online_cpus() > 1 && !parisc_requires_coherency()) { 519 threshold = max(cache_info.it_size, cache_info.dt_size); 520 threshold *= PAGE_SIZE; 521 threshold /= num_online_cpus(); 522 goto set_tlb_threshold; 523 } 524 525 size = (unsigned long)_end - (unsigned long)_text; 526 rangetime = mfctl(16); 527 flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end); 528 rangetime = mfctl(16) - rangetime; 529 530 alltime = mfctl(16); 531 flush_tlb_all(); 532 alltime = mfctl(16) - alltime; 533 534 printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n", 535 alltime, size, rangetime); 536 537 threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime); 538 printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n", 539 threshold/1024); 540 541 set_tlb_threshold: 542 if (threshold > FLUSH_TLB_THRESHOLD) 543 parisc_tlb_flush_threshold = threshold; 544 else 545 parisc_tlb_flush_threshold = FLUSH_TLB_THRESHOLD; 546 547 printk(KERN_INFO "TLB flush threshold set to %lu KiB\n", 548 parisc_tlb_flush_threshold/1024); 549 } 550 551 extern void purge_kernel_dcache_page_asm(unsigned long); 552 extern void clear_user_page_asm(void *, unsigned long); 553 extern void copy_user_page_asm(void *, void *, unsigned long); 554 555 void flush_kernel_dcache_page_addr(const void *addr) 556 { 557 unsigned long flags; 558 559 flush_kernel_dcache_page_asm(addr); 560 purge_tlb_start(flags); 561 pdtlb(SR_KERNEL, addr); 562 purge_tlb_end(flags); 563 } 564 EXPORT_SYMBOL(flush_kernel_dcache_page_addr); 565 566 static void flush_cache_page_if_present(struct vm_area_struct *vma, 567 unsigned long vmaddr, unsigned long pfn) 568 { 569 bool needs_flush = false; 570 pte_t *ptep; 571 572 /* 573 * The pte check is racy and sometimes the flush will trigger 574 * a non-access TLB miss. Hopefully, the page has already been 575 * flushed. 576 */ 577 ptep = get_ptep(vma->vm_mm, vmaddr); 578 if (ptep) { 579 needs_flush = pte_needs_flush(*ptep); 580 pte_unmap(ptep); 581 } 582 if (needs_flush) 583 flush_cache_page(vma, vmaddr, pfn); 584 } 585 586 void copy_user_highpage(struct page *to, struct page *from, 587 unsigned long vaddr, struct vm_area_struct *vma) 588 { 589 void *kto, *kfrom; 590 591 kfrom = kmap_local_page(from); 592 kto = kmap_local_page(to); 593 flush_cache_page_if_present(vma, vaddr, page_to_pfn(from)); 594 copy_page_asm(kto, kfrom); 595 kunmap_local(kto); 596 kunmap_local(kfrom); 597 } 598 599 void copy_to_user_page(struct vm_area_struct *vma, struct page *page, 600 unsigned long user_vaddr, void *dst, void *src, int len) 601 { 602 flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page)); 603 memcpy(dst, src, len); 604 flush_kernel_dcache_range_asm((unsigned long)dst, (unsigned long)dst + len); 605 } 606 607 void copy_from_user_page(struct vm_area_struct *vma, struct page *page, 608 unsigned long user_vaddr, void *dst, void *src, int len) 609 { 610 flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page)); 611 memcpy(dst, src, len); 612 } 613 614 /* __flush_tlb_range() 615 * 616 * returns 1 if all TLBs were flushed. 617 */ 618 int __flush_tlb_range(unsigned long sid, unsigned long start, 619 unsigned long end) 620 { 621 unsigned long flags; 622 623 if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) && 624 end - start >= parisc_tlb_flush_threshold) { 625 flush_tlb_all(); 626 return 1; 627 } 628 629 /* Purge TLB entries for small ranges using the pdtlb and 630 pitlb instructions. These instructions execute locally 631 but cause a purge request to be broadcast to other TLBs. */ 632 while (start < end) { 633 purge_tlb_start(flags); 634 mtsp(sid, SR_TEMP1); 635 pdtlb(SR_TEMP1, start); 636 pitlb(SR_TEMP1, start); 637 purge_tlb_end(flags); 638 start += PAGE_SIZE; 639 } 640 return 0; 641 } 642 643 static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end) 644 { 645 unsigned long addr, pfn; 646 pte_t *ptep; 647 648 for (addr = start; addr < end; addr += PAGE_SIZE) { 649 bool needs_flush = false; 650 /* 651 * The vma can contain pages that aren't present. Although 652 * the pte search is expensive, we need the pte to find the 653 * page pfn and to check whether the page should be flushed. 654 */ 655 ptep = get_ptep(vma->vm_mm, addr); 656 if (ptep) { 657 needs_flush = pte_needs_flush(*ptep); 658 pfn = pte_pfn(*ptep); 659 pte_unmap(ptep); 660 } 661 if (needs_flush) { 662 if (parisc_requires_coherency()) { 663 flush_user_cache_page(vma, addr); 664 } else { 665 if (WARN_ON(!pfn_valid(pfn))) 666 return; 667 __flush_cache_page(vma, addr, PFN_PHYS(pfn)); 668 } 669 } 670 } 671 } 672 673 static inline unsigned long mm_total_size(struct mm_struct *mm) 674 { 675 struct vm_area_struct *vma; 676 unsigned long usize = 0; 677 VMA_ITERATOR(vmi, mm, 0); 678 679 for_each_vma(vmi, vma) { 680 if (usize >= parisc_cache_flush_threshold) 681 break; 682 usize += vma->vm_end - vma->vm_start; 683 } 684 return usize; 685 } 686 687 void flush_cache_mm(struct mm_struct *mm) 688 { 689 struct vm_area_struct *vma; 690 VMA_ITERATOR(vmi, mm, 0); 691 692 /* 693 * Flushing the whole cache on each cpu takes forever on 694 * rp3440, etc. So, avoid it if the mm isn't too big. 695 * 696 * Note that we must flush the entire cache on machines 697 * with aliasing caches to prevent random segmentation 698 * faults. 699 */ 700 if (!parisc_requires_coherency() 701 || mm_total_size(mm) >= parisc_cache_flush_threshold) { 702 if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) 703 return; 704 flush_tlb_all(); 705 flush_cache_all(); 706 return; 707 } 708 709 /* Flush mm */ 710 for_each_vma(vmi, vma) 711 flush_cache_pages(vma, vma->vm_start, vma->vm_end); 712 } 713 714 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 715 { 716 if (!parisc_requires_coherency() 717 || end - start >= parisc_cache_flush_threshold) { 718 if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) 719 return; 720 flush_tlb_range(vma, start, end); 721 flush_cache_all(); 722 return; 723 } 724 725 flush_cache_pages(vma, start, end); 726 } 727 728 void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn) 729 { 730 if (WARN_ON(!pfn_valid(pfn))) 731 return; 732 if (parisc_requires_coherency()) 733 flush_user_cache_page(vma, vmaddr); 734 else 735 __flush_cache_page(vma, vmaddr, PFN_PHYS(pfn)); 736 } 737 738 void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 739 { 740 if (!PageAnon(page)) 741 return; 742 743 if (parisc_requires_coherency()) { 744 if (vma->vm_flags & VM_SHARED) 745 flush_data_cache(); 746 else 747 flush_user_cache_page(vma, vmaddr); 748 return; 749 } 750 751 flush_tlb_page(vma, vmaddr); 752 preempt_disable(); 753 flush_dcache_page_asm(page_to_phys(page), vmaddr); 754 preempt_enable(); 755 } 756 757 void flush_kernel_vmap_range(void *vaddr, int size) 758 { 759 unsigned long start = (unsigned long)vaddr; 760 unsigned long end = start + size; 761 762 if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) && 763 (unsigned long)size >= parisc_cache_flush_threshold) { 764 flush_tlb_kernel_range(start, end); 765 flush_data_cache(); 766 return; 767 } 768 769 flush_kernel_dcache_range_asm(start, end); 770 flush_tlb_kernel_range(start, end); 771 } 772 EXPORT_SYMBOL(flush_kernel_vmap_range); 773 774 void invalidate_kernel_vmap_range(void *vaddr, int size) 775 { 776 unsigned long start = (unsigned long)vaddr; 777 unsigned long end = start + size; 778 779 /* Ensure DMA is complete */ 780 asm_syncdma(); 781 782 if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) && 783 (unsigned long)size >= parisc_cache_flush_threshold) { 784 flush_tlb_kernel_range(start, end); 785 flush_data_cache(); 786 return; 787 } 788 789 purge_kernel_dcache_range_asm(start, end); 790 flush_tlb_kernel_range(start, end); 791 } 792 EXPORT_SYMBOL(invalidate_kernel_vmap_range); 793