1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999) 7 * Copyright (C) 1999 SuSE GmbH Nuernberg 8 * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org) 9 * 10 * Cache and TLB management 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/seq_file.h> 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <asm/pdc.h> 22 #include <asm/cache.h> 23 #include <asm/cacheflush.h> 24 #include <asm/tlbflush.h> 25 #include <asm/page.h> 26 #include <asm/pgalloc.h> 27 #include <asm/processor.h> 28 #include <asm/sections.h> 29 #include <asm/shmparam.h> 30 31 int split_tlb __read_mostly; 32 int dcache_stride __read_mostly; 33 int icache_stride __read_mostly; 34 EXPORT_SYMBOL(dcache_stride); 35 36 void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr); 37 EXPORT_SYMBOL(flush_dcache_page_asm); 38 void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr); 39 40 41 /* On some machines (e.g. ones with the Merced bus), there can be 42 * only a single PxTLB broadcast at a time; this must be guaranteed 43 * by software. We put a spinlock around all TLB flushes to 44 * ensure this. 45 */ 46 DEFINE_SPINLOCK(pa_tlb_lock); 47 48 struct pdc_cache_info cache_info __read_mostly; 49 #ifndef CONFIG_PA20 50 static struct pdc_btlb_info btlb_info __read_mostly; 51 #endif 52 53 #ifdef CONFIG_SMP 54 void 55 flush_data_cache(void) 56 { 57 on_each_cpu(flush_data_cache_local, NULL, 1); 58 } 59 void 60 flush_instruction_cache(void) 61 { 62 on_each_cpu(flush_instruction_cache_local, NULL, 1); 63 } 64 #endif 65 66 void 67 flush_cache_all_local(void) 68 { 69 flush_instruction_cache_local(NULL); 70 flush_data_cache_local(NULL); 71 } 72 EXPORT_SYMBOL(flush_cache_all_local); 73 74 /* Virtual address of pfn. */ 75 #define pfn_va(pfn) __va(PFN_PHYS(pfn)) 76 77 void 78 update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 79 { 80 unsigned long pfn = pte_pfn(*ptep); 81 struct page *page; 82 83 /* We don't have pte special. As a result, we can be called with 84 an invalid pfn and we don't need to flush the kernel dcache page. 85 This occurs with FireGL card in C8000. */ 86 if (!pfn_valid(pfn)) 87 return; 88 89 page = pfn_to_page(pfn); 90 if (page_mapping(page) && test_bit(PG_dcache_dirty, &page->flags)) { 91 flush_kernel_dcache_page_addr(pfn_va(pfn)); 92 clear_bit(PG_dcache_dirty, &page->flags); 93 } else if (parisc_requires_coherency()) 94 flush_kernel_dcache_page_addr(pfn_va(pfn)); 95 } 96 97 void 98 show_cache_info(struct seq_file *m) 99 { 100 char buf[32]; 101 102 seq_printf(m, "I-cache\t\t: %ld KB\n", 103 cache_info.ic_size/1024 ); 104 if (cache_info.dc_loop != 1) 105 snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop); 106 seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s)\n", 107 cache_info.dc_size/1024, 108 (cache_info.dc_conf.cc_wt ? "WT":"WB"), 109 (cache_info.dc_conf.cc_sh ? ", shared I/D":""), 110 ((cache_info.dc_loop == 1) ? "direct mapped" : buf)); 111 seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n", 112 cache_info.it_size, 113 cache_info.dt_size, 114 cache_info.dt_conf.tc_sh ? " - shared with ITLB":"" 115 ); 116 117 #ifndef CONFIG_PA20 118 /* BTLB - Block TLB */ 119 if (btlb_info.max_size==0) { 120 seq_printf(m, "BTLB\t\t: not supported\n" ); 121 } else { 122 seq_printf(m, 123 "BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n" 124 "BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n" 125 "BTLB var-entr.\t: %d instruction, %d data (%d combined)\n", 126 btlb_info.max_size, (int)4096, 127 btlb_info.max_size>>8, 128 btlb_info.fixed_range_info.num_i, 129 btlb_info.fixed_range_info.num_d, 130 btlb_info.fixed_range_info.num_comb, 131 btlb_info.variable_range_info.num_i, 132 btlb_info.variable_range_info.num_d, 133 btlb_info.variable_range_info.num_comb 134 ); 135 } 136 #endif 137 } 138 139 void __init 140 parisc_cache_init(void) 141 { 142 if (pdc_cache_info(&cache_info) < 0) 143 panic("parisc_cache_init: pdc_cache_info failed"); 144 145 #if 0 146 printk("ic_size %lx dc_size %lx it_size %lx\n", 147 cache_info.ic_size, 148 cache_info.dc_size, 149 cache_info.it_size); 150 151 printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", 152 cache_info.dc_base, 153 cache_info.dc_stride, 154 cache_info.dc_count, 155 cache_info.dc_loop); 156 157 printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n", 158 *(unsigned long *) (&cache_info.dc_conf), 159 cache_info.dc_conf.cc_alias, 160 cache_info.dc_conf.cc_block, 161 cache_info.dc_conf.cc_line, 162 cache_info.dc_conf.cc_shift); 163 printk(" wt %d sh %d cst %d hv %d\n", 164 cache_info.dc_conf.cc_wt, 165 cache_info.dc_conf.cc_sh, 166 cache_info.dc_conf.cc_cst, 167 cache_info.dc_conf.cc_hv); 168 169 printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", 170 cache_info.ic_base, 171 cache_info.ic_stride, 172 cache_info.ic_count, 173 cache_info.ic_loop); 174 175 printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n", 176 *(unsigned long *) (&cache_info.ic_conf), 177 cache_info.ic_conf.cc_alias, 178 cache_info.ic_conf.cc_block, 179 cache_info.ic_conf.cc_line, 180 cache_info.ic_conf.cc_shift); 181 printk(" wt %d sh %d cst %d hv %d\n", 182 cache_info.ic_conf.cc_wt, 183 cache_info.ic_conf.cc_sh, 184 cache_info.ic_conf.cc_cst, 185 cache_info.ic_conf.cc_hv); 186 187 printk("D-TLB conf: sh %d page %d cst %d aid %d pad1 %d\n", 188 cache_info.dt_conf.tc_sh, 189 cache_info.dt_conf.tc_page, 190 cache_info.dt_conf.tc_cst, 191 cache_info.dt_conf.tc_aid, 192 cache_info.dt_conf.tc_pad1); 193 194 printk("I-TLB conf: sh %d page %d cst %d aid %d pad1 %d\n", 195 cache_info.it_conf.tc_sh, 196 cache_info.it_conf.tc_page, 197 cache_info.it_conf.tc_cst, 198 cache_info.it_conf.tc_aid, 199 cache_info.it_conf.tc_pad1); 200 #endif 201 202 split_tlb = 0; 203 if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) { 204 if (cache_info.dt_conf.tc_sh == 2) 205 printk(KERN_WARNING "Unexpected TLB configuration. " 206 "Will flush I/D separately (could be optimized).\n"); 207 208 split_tlb = 1; 209 } 210 211 /* "New and Improved" version from Jim Hull 212 * (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift)) 213 * The following CAFL_STRIDE is an optimized version, see 214 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html 215 * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html 216 */ 217 #define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift)) 218 dcache_stride = CAFL_STRIDE(cache_info.dc_conf); 219 icache_stride = CAFL_STRIDE(cache_info.ic_conf); 220 #undef CAFL_STRIDE 221 222 #ifndef CONFIG_PA20 223 if (pdc_btlb_info(&btlb_info) < 0) { 224 memset(&btlb_info, 0, sizeof btlb_info); 225 } 226 #endif 227 228 if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) == 229 PDC_MODEL_NVA_UNSUPPORTED) { 230 printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n"); 231 #if 0 232 panic("SMP kernel required to avoid non-equivalent aliasing"); 233 #endif 234 } 235 } 236 237 void disable_sr_hashing(void) 238 { 239 int srhash_type, retval; 240 unsigned long space_bits; 241 242 switch (boot_cpu_data.cpu_type) { 243 case pcx: /* We shouldn't get this far. setup.c should prevent it. */ 244 BUG(); 245 return; 246 247 case pcxs: 248 case pcxt: 249 case pcxt_: 250 srhash_type = SRHASH_PCXST; 251 break; 252 253 case pcxl: 254 srhash_type = SRHASH_PCXL; 255 break; 256 257 case pcxl2: /* pcxl2 doesn't support space register hashing */ 258 return; 259 260 default: /* Currently all PA2.0 machines use the same ins. sequence */ 261 srhash_type = SRHASH_PA20; 262 break; 263 } 264 265 disable_sr_hashing_asm(srhash_type); 266 267 retval = pdc_spaceid_bits(&space_bits); 268 /* If this procedure isn't implemented, don't panic. */ 269 if (retval < 0 && retval != PDC_BAD_OPTION) 270 panic("pdc_spaceid_bits call failed.\n"); 271 if (space_bits != 0) 272 panic("SpaceID hashing is still on!\n"); 273 } 274 275 static inline void 276 __flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, 277 unsigned long physaddr) 278 { 279 preempt_disable(); 280 flush_dcache_page_asm(physaddr, vmaddr); 281 if (vma->vm_flags & VM_EXEC) 282 flush_icache_page_asm(physaddr, vmaddr); 283 preempt_enable(); 284 } 285 286 void flush_dcache_page(struct page *page) 287 { 288 struct address_space *mapping = page_mapping(page); 289 struct vm_area_struct *mpnt; 290 unsigned long offset; 291 unsigned long addr, old_addr = 0; 292 pgoff_t pgoff; 293 294 if (mapping && !mapping_mapped(mapping)) { 295 set_bit(PG_dcache_dirty, &page->flags); 296 return; 297 } 298 299 flush_kernel_dcache_page(page); 300 301 if (!mapping) 302 return; 303 304 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 305 306 /* We have carefully arranged in arch_get_unmapped_area() that 307 * *any* mappings of a file are always congruently mapped (whether 308 * declared as MAP_PRIVATE or MAP_SHARED), so we only need 309 * to flush one address here for them all to become coherent */ 310 311 flush_dcache_mmap_lock(mapping); 312 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) { 313 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; 314 addr = mpnt->vm_start + offset; 315 316 /* The TLB is the engine of coherence on parisc: The 317 * CPU is entitled to speculate any page with a TLB 318 * mapping, so here we kill the mapping then flush the 319 * page along a special flush only alias mapping. 320 * This guarantees that the page is no-longer in the 321 * cache for any process and nor may it be 322 * speculatively read in (until the user or kernel 323 * specifically accesses it, of course) */ 324 325 flush_tlb_page(mpnt, addr); 326 if (old_addr == 0 || (old_addr & (SHMLBA - 1)) != (addr & (SHMLBA - 1))) { 327 __flush_cache_page(mpnt, addr, page_to_phys(page)); 328 if (old_addr) 329 printk(KERN_ERR "INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %s\n", old_addr, addr, mpnt->vm_file ? (char *)mpnt->vm_file->f_path.dentry->d_name.name : "(null)"); 330 old_addr = addr; 331 } 332 } 333 flush_dcache_mmap_unlock(mapping); 334 } 335 EXPORT_SYMBOL(flush_dcache_page); 336 337 /* Defined in arch/parisc/kernel/pacache.S */ 338 EXPORT_SYMBOL(flush_kernel_dcache_range_asm); 339 EXPORT_SYMBOL(flush_kernel_dcache_page_asm); 340 EXPORT_SYMBOL(flush_data_cache_local); 341 EXPORT_SYMBOL(flush_kernel_icache_range_asm); 342 343 #define FLUSH_THRESHOLD 0x80000 /* 0.5MB */ 344 int parisc_cache_flush_threshold __read_mostly = FLUSH_THRESHOLD; 345 346 void __init parisc_setup_cache_timing(void) 347 { 348 unsigned long rangetime, alltime; 349 unsigned long size; 350 351 alltime = mfctl(16); 352 flush_data_cache(); 353 alltime = mfctl(16) - alltime; 354 355 size = (unsigned long)(_end - _text); 356 rangetime = mfctl(16); 357 flush_kernel_dcache_range((unsigned long)_text, size); 358 rangetime = mfctl(16) - rangetime; 359 360 printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n", 361 alltime, size, rangetime); 362 363 /* Racy, but if we see an intermediate value, it's ok too... */ 364 parisc_cache_flush_threshold = size * alltime / rangetime; 365 366 parisc_cache_flush_threshold = (parisc_cache_flush_threshold + L1_CACHE_BYTES - 1) &~ (L1_CACHE_BYTES - 1); 367 if (!parisc_cache_flush_threshold) 368 parisc_cache_flush_threshold = FLUSH_THRESHOLD; 369 370 if (parisc_cache_flush_threshold > cache_info.dc_size) 371 parisc_cache_flush_threshold = cache_info.dc_size; 372 373 printk(KERN_INFO "Setting cache flush threshold to %x (%d CPUs online)\n", parisc_cache_flush_threshold, num_online_cpus()); 374 } 375 376 extern void purge_kernel_dcache_page_asm(unsigned long); 377 extern void clear_user_page_asm(void *, unsigned long); 378 extern void copy_user_page_asm(void *, void *, unsigned long); 379 380 void flush_kernel_dcache_page_addr(void *addr) 381 { 382 unsigned long flags; 383 384 flush_kernel_dcache_page_asm(addr); 385 purge_tlb_start(flags); 386 pdtlb_kernel(addr); 387 purge_tlb_end(flags); 388 } 389 EXPORT_SYMBOL(flush_kernel_dcache_page_addr); 390 391 void clear_user_page(void *vto, unsigned long vaddr, struct page *page) 392 { 393 clear_page_asm(vto); 394 if (!parisc_requires_coherency()) 395 flush_kernel_dcache_page_asm(vto); 396 } 397 EXPORT_SYMBOL(clear_user_page); 398 399 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, 400 struct page *pg) 401 { 402 /* Copy using kernel mapping. No coherency is needed 403 (all in kmap/kunmap) on machines that don't support 404 non-equivalent aliasing. However, the `from' page 405 needs to be flushed before it can be accessed through 406 the kernel mapping. */ 407 preempt_disable(); 408 flush_dcache_page_asm(__pa(vfrom), vaddr); 409 preempt_enable(); 410 copy_page_asm(vto, vfrom); 411 if (!parisc_requires_coherency()) 412 flush_kernel_dcache_page_asm(vto); 413 } 414 EXPORT_SYMBOL(copy_user_page); 415 416 #ifdef CONFIG_PA8X00 417 418 void kunmap_parisc(void *addr) 419 { 420 if (parisc_requires_coherency()) 421 flush_kernel_dcache_page_addr(addr); 422 } 423 EXPORT_SYMBOL(kunmap_parisc); 424 #endif 425 426 void purge_tlb_entries(struct mm_struct *mm, unsigned long addr) 427 { 428 unsigned long flags; 429 430 /* Note: purge_tlb_entries can be called at startup with 431 no context. */ 432 433 purge_tlb_start(flags); 434 mtsp(mm->context, 1); 435 pdtlb(addr); 436 pitlb(addr); 437 purge_tlb_end(flags); 438 } 439 EXPORT_SYMBOL(purge_tlb_entries); 440 441 void __flush_tlb_range(unsigned long sid, unsigned long start, 442 unsigned long end) 443 { 444 unsigned long npages; 445 446 npages = ((end - (start & PAGE_MASK)) + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 447 if (npages >= 512) /* 2MB of space: arbitrary, should be tuned */ 448 flush_tlb_all(); 449 else { 450 unsigned long flags; 451 452 purge_tlb_start(flags); 453 mtsp(sid, 1); 454 if (split_tlb) { 455 while (npages--) { 456 pdtlb(start); 457 pitlb(start); 458 start += PAGE_SIZE; 459 } 460 } else { 461 while (npages--) { 462 pdtlb(start); 463 start += PAGE_SIZE; 464 } 465 } 466 purge_tlb_end(flags); 467 } 468 } 469 470 static void cacheflush_h_tmp_function(void *dummy) 471 { 472 flush_cache_all_local(); 473 } 474 475 void flush_cache_all(void) 476 { 477 on_each_cpu(cacheflush_h_tmp_function, NULL, 1); 478 } 479 480 static inline unsigned long mm_total_size(struct mm_struct *mm) 481 { 482 struct vm_area_struct *vma; 483 unsigned long usize = 0; 484 485 for (vma = mm->mmap; vma; vma = vma->vm_next) 486 usize += vma->vm_end - vma->vm_start; 487 return usize; 488 } 489 490 static inline pte_t *get_ptep(pgd_t *pgd, unsigned long addr) 491 { 492 pte_t *ptep = NULL; 493 494 if (!pgd_none(*pgd)) { 495 pud_t *pud = pud_offset(pgd, addr); 496 if (!pud_none(*pud)) { 497 pmd_t *pmd = pmd_offset(pud, addr); 498 if (!pmd_none(*pmd)) 499 ptep = pte_offset_map(pmd, addr); 500 } 501 } 502 return ptep; 503 } 504 505 void flush_cache_mm(struct mm_struct *mm) 506 { 507 struct vm_area_struct *vma; 508 pgd_t *pgd; 509 510 /* Flushing the whole cache on each cpu takes forever on 511 rp3440, etc. So, avoid it if the mm isn't too big. */ 512 if (mm_total_size(mm) >= parisc_cache_flush_threshold) { 513 flush_cache_all(); 514 return; 515 } 516 517 if (mm->context == mfsp(3)) { 518 for (vma = mm->mmap; vma; vma = vma->vm_next) { 519 flush_user_dcache_range_asm(vma->vm_start, vma->vm_end); 520 if ((vma->vm_flags & VM_EXEC) == 0) 521 continue; 522 flush_user_icache_range_asm(vma->vm_start, vma->vm_end); 523 } 524 return; 525 } 526 527 pgd = mm->pgd; 528 for (vma = mm->mmap; vma; vma = vma->vm_next) { 529 unsigned long addr; 530 531 for (addr = vma->vm_start; addr < vma->vm_end; 532 addr += PAGE_SIZE) { 533 unsigned long pfn; 534 pte_t *ptep = get_ptep(pgd, addr); 535 if (!ptep) 536 continue; 537 pfn = pte_pfn(*ptep); 538 if (!pfn_valid(pfn)) 539 continue; 540 __flush_cache_page(vma, addr, PFN_PHYS(pfn)); 541 } 542 } 543 } 544 545 void 546 flush_user_dcache_range(unsigned long start, unsigned long end) 547 { 548 if ((end - start) < parisc_cache_flush_threshold) 549 flush_user_dcache_range_asm(start,end); 550 else 551 flush_data_cache(); 552 } 553 554 void 555 flush_user_icache_range(unsigned long start, unsigned long end) 556 { 557 if ((end - start) < parisc_cache_flush_threshold) 558 flush_user_icache_range_asm(start,end); 559 else 560 flush_instruction_cache(); 561 } 562 563 void flush_cache_range(struct vm_area_struct *vma, 564 unsigned long start, unsigned long end) 565 { 566 unsigned long addr; 567 pgd_t *pgd; 568 569 BUG_ON(!vma->vm_mm->context); 570 571 if ((end - start) >= parisc_cache_flush_threshold) { 572 flush_cache_all(); 573 return; 574 } 575 576 if (vma->vm_mm->context == mfsp(3)) { 577 flush_user_dcache_range_asm(start, end); 578 if (vma->vm_flags & VM_EXEC) 579 flush_user_icache_range_asm(start, end); 580 return; 581 } 582 583 pgd = vma->vm_mm->pgd; 584 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 585 unsigned long pfn; 586 pte_t *ptep = get_ptep(pgd, addr); 587 if (!ptep) 588 continue; 589 pfn = pte_pfn(*ptep); 590 if (pfn_valid(pfn)) 591 __flush_cache_page(vma, addr, PFN_PHYS(pfn)); 592 } 593 } 594 595 void 596 flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn) 597 { 598 BUG_ON(!vma->vm_mm->context); 599 600 if (pfn_valid(pfn)) { 601 flush_tlb_page(vma, vmaddr); 602 __flush_cache_page(vma, vmaddr, PFN_PHYS(pfn)); 603 } 604 } 605 606 #ifdef CONFIG_PARISC_TMPALIAS 607 608 void clear_user_highpage(struct page *page, unsigned long vaddr) 609 { 610 void *vto; 611 unsigned long flags; 612 613 /* Clear using TMPALIAS region. The page doesn't need to 614 be flushed but the kernel mapping needs to be purged. */ 615 616 vto = kmap_atomic(page); 617 618 /* The PA-RISC 2.0 Architecture book states on page F-6: 619 "Before a write-capable translation is enabled, *all* 620 non-equivalently-aliased translations must be removed 621 from the page table and purged from the TLB. (Note 622 that the caches are not required to be flushed at this 623 time.) Before any non-equivalent aliased translation 624 is re-enabled, the virtual address range for the writeable 625 page (the entire page) must be flushed from the cache, 626 and the write-capable translation removed from the page 627 table and purged from the TLB." */ 628 629 purge_kernel_dcache_page_asm((unsigned long)vto); 630 purge_tlb_start(flags); 631 pdtlb_kernel(vto); 632 purge_tlb_end(flags); 633 preempt_disable(); 634 clear_user_page_asm(vto, vaddr); 635 preempt_enable(); 636 637 pagefault_enable(); /* kunmap_atomic(addr, KM_USER0); */ 638 } 639 640 void copy_user_highpage(struct page *to, struct page *from, 641 unsigned long vaddr, struct vm_area_struct *vma) 642 { 643 void *vfrom, *vto; 644 unsigned long flags; 645 646 /* Copy using TMPALIAS region. This has the advantage 647 that the `from' page doesn't need to be flushed. However, 648 the `to' page must be flushed in copy_user_page_asm since 649 it can be used to bring in executable code. */ 650 651 vfrom = kmap_atomic(from); 652 vto = kmap_atomic(to); 653 654 purge_kernel_dcache_page_asm((unsigned long)vto); 655 purge_tlb_start(flags); 656 pdtlb_kernel(vto); 657 pdtlb_kernel(vfrom); 658 purge_tlb_end(flags); 659 preempt_disable(); 660 copy_user_page_asm(vto, vfrom, vaddr); 661 flush_dcache_page_asm(__pa(vto), vaddr); 662 preempt_enable(); 663 664 pagefault_enable(); /* kunmap_atomic(addr, KM_USER1); */ 665 pagefault_enable(); /* kunmap_atomic(addr, KM_USER0); */ 666 } 667 668 #endif /* CONFIG_PARISC_TMPALIAS */ 669