1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _PARISC_PGTABLE_H 3 #define _PARISC_PGTABLE_H 4 5 #include <asm/page.h> 6 7 #if CONFIG_PGTABLE_LEVELS == 3 8 #include <asm-generic/pgtable-nopud.h> 9 #elif CONFIG_PGTABLE_LEVELS == 2 10 #include <asm-generic/pgtable-nopmd.h> 11 #endif 12 13 #include <asm/fixmap.h> 14 15 #ifndef __ASSEMBLY__ 16 /* 17 * we simulate an x86-style page table for the linux mm code 18 */ 19 20 #include <linux/bitops.h> 21 #include <linux/spinlock.h> 22 #include <linux/mm_types.h> 23 #include <asm/processor.h> 24 #include <asm/cache.h> 25 26 /* 27 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 28 * memory. For the return value to be meaningful, ADDR must be >= 29 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 30 * require a hash-, or multi-level tree-lookup or something of that 31 * sort) but it guarantees to return TRUE only if accessing the page 32 * at that address does not cause an error. Note that there may be 33 * addresses for which kern_addr_valid() returns FALSE even though an 34 * access would not cause an error (e.g., this is typically true for 35 * memory mapped I/O regions. 36 * 37 * XXX Need to implement this for parisc. 38 */ 39 #define kern_addr_valid(addr) (1) 40 41 /* This is for the serialization of PxTLB broadcasts. At least on the N class 42 * systems, only one PxTLB inter processor broadcast can be active at any one 43 * time on the Merced bus. */ 44 extern spinlock_t pa_tlb_flush_lock; 45 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 46 extern int pa_serialize_tlb_flushes; 47 #else 48 #define pa_serialize_tlb_flushes (0) 49 #endif 50 51 #define purge_tlb_start(flags) do { \ 52 if (pa_serialize_tlb_flushes) \ 53 spin_lock_irqsave(&pa_tlb_flush_lock, flags); \ 54 else \ 55 local_irq_save(flags); \ 56 } while (0) 57 #define purge_tlb_end(flags) do { \ 58 if (pa_serialize_tlb_flushes) \ 59 spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \ 60 else \ 61 local_irq_restore(flags); \ 62 } while (0) 63 64 /* Purge data and instruction TLB entries. The TLB purge instructions 65 * are slow on SMP machines since the purge must be broadcast to all CPUs. 66 */ 67 68 static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr) 69 { 70 unsigned long flags; 71 72 purge_tlb_start(flags); 73 mtsp(mm->context, 1); 74 pdtlb(addr); 75 pitlb(addr); 76 purge_tlb_end(flags); 77 } 78 79 /* Certain architectures need to do special things when PTEs 80 * within a page table are directly modified. Thus, the following 81 * hook is made available. 82 */ 83 #define set_pte(pteptr, pteval) \ 84 do { \ 85 *(pteptr) = (pteval); \ 86 barrier(); \ 87 } while(0) 88 89 #define set_pte_at(mm, addr, pteptr, pteval) \ 90 do { \ 91 *(pteptr) = (pteval); \ 92 purge_tlb_entries(mm, addr); \ 93 } while (0) 94 95 #endif /* !__ASSEMBLY__ */ 96 97 #define pte_ERROR(e) \ 98 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 99 #if CONFIG_PGTABLE_LEVELS == 3 100 #define pmd_ERROR(e) \ 101 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) 102 #endif 103 #define pgd_ERROR(e) \ 104 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) 105 106 /* This is the size of the initially mapped kernel memory */ 107 #if defined(CONFIG_64BIT) 108 #define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */ 109 #else 110 #define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */ 111 #endif 112 #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) 113 114 #if CONFIG_PGTABLE_LEVELS == 3 115 #define PMD_TABLE_ORDER 1 116 #define PGD_ORDER 0 117 #else 118 #define PGD_ORDER 1 119 #endif 120 121 /* Definitions for 3rd level (we use PLD here for Page Lower directory 122 * because PTE_SHIFT is used lower down to mean shift that has to be 123 * done to get usable bits out of the PTE) */ 124 #define PLD_SHIFT PAGE_SHIFT 125 #define PLD_SIZE PAGE_SIZE 126 #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) 127 #define PTRS_PER_PTE (1UL << BITS_PER_PTE) 128 129 /* Definitions for 2nd level */ 130 #if CONFIG_PGTABLE_LEVELS == 3 131 #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) 132 #define PMD_SIZE (1UL << PMD_SHIFT) 133 #define PMD_MASK (~(PMD_SIZE-1)) 134 #define BITS_PER_PMD (PAGE_SHIFT + PMD_TABLE_ORDER - BITS_PER_PMD_ENTRY) 135 #define PTRS_PER_PMD (1UL << BITS_PER_PMD) 136 #else 137 #define BITS_PER_PMD 0 138 #endif 139 140 /* Definitions for 1st level */ 141 #define PGDIR_SHIFT (PLD_SHIFT + BITS_PER_PTE + BITS_PER_PMD) 142 #if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG 143 #define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) 144 #else 145 #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) 146 #endif 147 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 148 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 149 #define PTRS_PER_PGD (1UL << BITS_PER_PGD) 150 #define USER_PTRS_PER_PGD PTRS_PER_PGD 151 152 #ifdef CONFIG_64BIT 153 #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) 154 #define MAX_ADDRESS (1UL << MAX_ADDRBITS) 155 #define SPACEID_SHIFT (MAX_ADDRBITS - 32) 156 #else 157 #define MAX_ADDRBITS (BITS_PER_LONG) 158 #define MAX_ADDRESS (1UL << MAX_ADDRBITS) 159 #define SPACEID_SHIFT 0 160 #endif 161 162 /* This calculates the number of initial pages we need for the initial 163 * page tables */ 164 #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) 165 # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) 166 #else 167 # define PT_INITIAL (1) /* all initial PTEs fit into one page */ 168 #endif 169 170 /* 171 * pgd entries used up by user/kernel: 172 */ 173 174 /* NB: The tlb miss handlers make certain assumptions about the order */ 175 /* of the following bits, so be careful (One example, bits 25-31 */ 176 /* are moved together in one instruction). */ 177 178 #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ 179 #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ 180 #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ 181 #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ 182 #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ 183 #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ 184 #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ 185 #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ 186 #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ 187 #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ 188 #define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */ 189 #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ 190 191 /* N.B. The bits are defined in terms of a 32 bit word above, so the */ 192 /* following macro is ok for both 32 and 64 bit. */ 193 194 #define xlate_pabit(x) (31 - x) 195 196 /* this defines the shift to the usable bits in the PTE it is set so 197 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set 198 * to zero */ 199 #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) 200 201 /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ 202 #define PFN_PTE_SHIFT 12 203 204 #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) 205 #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) 206 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 207 #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) 208 #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) 209 #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) 210 #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) 211 #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) 212 #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) 213 #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) 214 #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) 215 #define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT)) 216 #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) 217 218 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 219 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 220 #define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) 221 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC) 222 #define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE) 223 #define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE) 224 225 /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds 226 * are page-aligned, we don't care about the PAGE_OFFSET bits, except 227 * for a few meta-information bits, so we shift the address to be 228 * able to effectively address 40/42/44-bits of physical address space 229 * depending on 4k/16k/64k PAGE_SIZE */ 230 #define _PxD_PRESENT_BIT 31 231 #define _PxD_VALID_BIT 30 232 233 #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) 234 #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) 235 #define PxD_FLAG_MASK (0xf) 236 #define PxD_FLAG_SHIFT (4) 237 #define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT) 238 239 #ifndef __ASSEMBLY__ 240 241 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER) 242 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE) 243 /* Others seem to make this executable, I don't know if that's correct 244 or not. The stack is mapped this way though so this is necessary 245 in the short term - dhd@linuxcare.com, 2000-08-08 */ 246 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ) 247 #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE) 248 #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC) 249 #define PAGE_COPY PAGE_EXECREAD 250 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 251 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 252 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) 253 #define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX) 254 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) 255 #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) 256 #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ) 257 258 259 /* 260 * We could have an execute only page using "gateway - promote to priv 261 * level 3", but that is kind of silly. So, the way things are defined 262 * now, we must always have read permission for pages with execute 263 * permission. For the fun of it we'll go ahead and support write only 264 * pages. 265 */ 266 267 /*xwr*/ 268 #define __P000 PAGE_NONE 269 #define __P001 PAGE_READONLY 270 #define __P010 __P000 /* copy on write */ 271 #define __P011 __P001 /* copy on write */ 272 #define __P100 PAGE_EXECREAD 273 #define __P101 PAGE_EXECREAD 274 #define __P110 __P100 /* copy on write */ 275 #define __P111 __P101 /* copy on write */ 276 277 #define __S000 PAGE_NONE 278 #define __S001 PAGE_READONLY 279 #define __S010 PAGE_WRITEONLY 280 #define __S011 PAGE_SHARED 281 #define __S100 PAGE_EXECREAD 282 #define __S101 PAGE_EXECREAD 283 #define __S110 PAGE_RWX 284 #define __S111 PAGE_RWX 285 286 287 extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ 288 289 /* initial page tables for 0-8MB for kernel */ 290 291 extern pte_t pg0[]; 292 293 /* zero page used for uninitialized stuff */ 294 295 extern unsigned long *empty_zero_page; 296 297 /* 298 * ZERO_PAGE is a global shared page that is always zero: used 299 * for zero-mapped memory areas etc.. 300 */ 301 302 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 303 304 #define pte_none(x) (pte_val(x) == 0) 305 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 306 #define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0)) 307 308 #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) 309 #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 310 #define pud_flag(x) (pud_val(x) & PxD_FLAG_MASK) 311 #define pud_address(x) ((unsigned long)(pud_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 312 #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) 313 #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 314 315 #define pmd_none(x) (!pmd_val(x)) 316 #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) 317 #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) 318 static inline void pmd_clear(pmd_t *pmd) { 319 set_pmd(pmd, __pmd(0)); 320 } 321 322 323 324 #if CONFIG_PGTABLE_LEVELS == 3 325 #define pud_pgtable(pud) ((pmd_t *) __va(pud_address(pud))) 326 #define pud_page(pud) virt_to_page((void *)pud_pgtable(pud)) 327 328 /* For 64 bit we have three level tables */ 329 330 #define pud_none(x) (!pud_val(x)) 331 #define pud_bad(x) (!(pud_flag(x) & PxD_FLAG_VALID)) 332 #define pud_present(x) (pud_flag(x) & PxD_FLAG_PRESENT) 333 static inline void pud_clear(pud_t *pud) { 334 set_pud(pud, __pud(0)); 335 } 336 #endif 337 338 /* 339 * The following only work if pte_present() is true. 340 * Undefined behaviour if not.. 341 */ 342 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 343 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 344 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 345 346 static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 347 static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 348 static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } 349 static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 350 static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 351 static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } 352 353 /* 354 * Huge pte definitions. 355 */ 356 #ifdef CONFIG_HUGETLB_PAGE 357 #define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE) 358 #define pte_mkhuge(pte) (__pte(pte_val(pte) | \ 359 (parisc_requires_coherency() ? 0 : _PAGE_HUGE))) 360 #else 361 #define pte_huge(pte) (0) 362 #define pte_mkhuge(pte) (pte) 363 #endif 364 365 366 /* 367 * Conversion functions: convert a page and protection to a page entry, 368 * and a page entry and page directory to the page they refer to. 369 */ 370 #define __mk_pte(addr,pgprot) \ 371 ({ \ 372 pte_t __pte; \ 373 \ 374 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ 375 \ 376 __pte; \ 377 }) 378 379 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 380 381 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 382 { 383 pte_t pte; 384 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); 385 return pte; 386 } 387 388 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 389 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 390 391 /* Permanent address of a page. On parisc we don't have highmem. */ 392 393 #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) 394 395 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 396 397 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 398 { 399 return ((unsigned long) __va(pmd_address(pmd))); 400 } 401 402 #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) 403 #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) 404 405 /* Find an entry in the second-level page table.. */ 406 407 extern void paging_init (void); 408 409 /* Used for deferring calls to flush_dcache_page() */ 410 411 #define PG_dcache_dirty PG_arch_1 412 413 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 414 415 /* Encode and de-code a swap entry */ 416 417 #define __swp_type(x) ((x).val & 0x1f) 418 #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ 419 (((x).val >> 8) & ~0x7) ) 420 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ 421 ((offset & 0x7) << 6) | \ 422 ((offset & ~0x7) << 8) }) 423 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 424 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 425 426 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 427 { 428 pte_t pte; 429 430 if (!pte_young(*ptep)) 431 return 0; 432 433 pte = *ptep; 434 if (!pte_young(pte)) { 435 return 0; 436 } 437 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 438 return 1; 439 } 440 441 struct mm_struct; 442 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 443 { 444 pte_t old_pte; 445 446 old_pte = *ptep; 447 set_pte_at(mm, addr, ptep, __pte(0)); 448 449 return old_pte; 450 } 451 452 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 453 { 454 set_pte_at(mm, addr, ptep, pte_wrprotect(*ptep)); 455 } 456 457 #define pte_same(A,B) (pte_val(A) == pte_val(B)) 458 459 struct seq_file; 460 extern void arch_report_meminfo(struct seq_file *m); 461 462 #endif /* !__ASSEMBLY__ */ 463 464 465 /* TLB page size encoding - see table 3-1 in parisc20.pdf */ 466 #define _PAGE_SIZE_ENCODING_4K 0 467 #define _PAGE_SIZE_ENCODING_16K 1 468 #define _PAGE_SIZE_ENCODING_64K 2 469 #define _PAGE_SIZE_ENCODING_256K 3 470 #define _PAGE_SIZE_ENCODING_1M 4 471 #define _PAGE_SIZE_ENCODING_4M 5 472 #define _PAGE_SIZE_ENCODING_16M 6 473 #define _PAGE_SIZE_ENCODING_64M 7 474 475 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 476 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K 477 #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) 478 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K 479 #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) 480 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K 481 #endif 482 483 484 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) 485 486 /* We provide our own get_unmapped_area to provide cache coherency */ 487 488 #define HAVE_ARCH_UNMAPPED_AREA 489 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 490 491 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 492 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 493 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 494 #define __HAVE_ARCH_PTE_SAME 495 496 #endif /* _PARISC_PGTABLE_H */ 497