xref: /openbmc/linux/arch/openrisc/kernel/process.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OpenRISC process.c
4  *
5  * Linux architectural port borrowing liberally from similar works of
6  * others.  All original copyrights apply as per the original source
7  * declaration.
8  *
9  * Modifications for the OpenRISC architecture:
10  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12  *
13  * This file handles the architecture-dependent parts of process handling...
14  */
15 
16 #define __KERNEL_SYSCALLS__
17 #include <stdarg.h>
18 
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/debug.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/ptrace.h>
30 #include <linux/slab.h>
31 #include <linux/elfcore.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/init_task.h>
35 #include <linux/mqueue.h>
36 #include <linux/fs.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/processor.h>
41 #include <asm/spr_defs.h>
42 
43 #include <linux/smp.h>
44 
45 /*
46  * Pointer to Current thread info structure.
47  *
48  * Used at user space -> kernel transitions.
49  */
50 struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
51 
52 void machine_restart(void)
53 {
54 	printk(KERN_INFO "*** MACHINE RESTART ***\n");
55 	__asm__("l.nop 1");
56 }
57 
58 /*
59  * Similar to machine_power_off, but don't shut off power.  Add code
60  * here to freeze the system for e.g. post-mortem debug purpose when
61  * possible.  This halt has nothing to do with the idle halt.
62  */
63 void machine_halt(void)
64 {
65 	printk(KERN_INFO "*** MACHINE HALT ***\n");
66 	__asm__("l.nop 1");
67 }
68 
69 /* If or when software power-off is implemented, add code here.  */
70 void machine_power_off(void)
71 {
72 	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
73 	__asm__("l.nop 1");
74 }
75 
76 /*
77  * Send the doze signal to the cpu if available.
78  * Make sure, that all interrupts are enabled
79  */
80 void arch_cpu_idle(void)
81 {
82 	local_irq_enable();
83 	if (mfspr(SPR_UPR) & SPR_UPR_PMP)
84 		mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
85 }
86 
87 void (*pm_power_off) (void) = machine_power_off;
88 EXPORT_SYMBOL(pm_power_off);
89 
90 /*
91  * When a process does an "exec", machine state like FPU and debug
92  * registers need to be reset.  This is a hook function for that.
93  * Currently we don't have any such state to reset, so this is empty.
94  */
95 void flush_thread(void)
96 {
97 }
98 
99 void show_regs(struct pt_regs *regs)
100 {
101 	extern void show_registers(struct pt_regs *regs);
102 
103 	show_regs_print_info(KERN_DEFAULT);
104 	/* __PHX__ cleanup this mess */
105 	show_registers(regs);
106 }
107 
108 void release_thread(struct task_struct *dead_task)
109 {
110 }
111 
112 /*
113  * Copy the thread-specific (arch specific) info from the current
114  * process to the new one p
115  */
116 extern asmlinkage void ret_from_fork(void);
117 
118 /*
119  * copy_thread
120  * @clone_flags: flags
121  * @usp: user stack pointer or fn for kernel thread
122  * @arg: arg to fn for kernel thread; always NULL for userspace thread
123  * @p: the newly created task
124  * @tls: the Thread Local Storage pointer for the new process
125  *
126  * At the top of a newly initialized kernel stack are two stacked pt_reg
127  * structures.  The first (topmost) is the userspace context of the thread.
128  * The second is the kernelspace context of the thread.
129  *
130  * A kernel thread will not be returning to userspace, so the topmost pt_regs
131  * struct can be uninitialized; it _does_ need to exist, though, because
132  * a kernel thread can become a userspace thread by doing a kernel_execve, in
133  * which case the topmost context will be initialized and used for 'returning'
134  * to userspace.
135  *
136  * The second pt_reg struct needs to be initialized to 'return' to
137  * ret_from_fork.  A kernel thread will need to set r20 to the address of
138  * a function to call into (with arg in r22); userspace threads need to set
139  * r20 to NULL in which case ret_from_fork will just continue a return to
140  * userspace.
141  *
142  * A kernel thread 'fn' may return; this is effectively what happens when
143  * kernel_execve is called.  In that case, the userspace pt_regs must have
144  * been initialized (which kernel_execve takes care of, see start_thread
145  * below); ret_from_fork will then continue its execution causing the
146  * 'kernel thread' to return to userspace as a userspace thread.
147  */
148 
149 int
150 copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long arg,
151 	    struct task_struct *p, unsigned long tls)
152 {
153 	struct pt_regs *userregs;
154 	struct pt_regs *kregs;
155 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
156 	unsigned long top_of_kernel_stack;
157 
158 	top_of_kernel_stack = sp;
159 
160 	/* Locate userspace context on stack... */
161 	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
162 	sp -= sizeof(struct pt_regs);
163 	userregs = (struct pt_regs *) sp;
164 
165 	/* ...and kernel context */
166 	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
167 	sp -= sizeof(struct pt_regs);
168 	kregs = (struct pt_regs *)sp;
169 
170 	if (unlikely(p->flags & PF_KTHREAD)) {
171 		memset(kregs, 0, sizeof(struct pt_regs));
172 		kregs->gpr[20] = usp; /* fn, kernel thread */
173 		kregs->gpr[22] = arg;
174 	} else {
175 		*userregs = *current_pt_regs();
176 
177 		if (usp)
178 			userregs->sp = usp;
179 
180 		/*
181 		 * For CLONE_SETTLS set "tp" (r10) to the TLS pointer.
182 		 */
183 		if (clone_flags & CLONE_SETTLS)
184 			userregs->gpr[10] = tls;
185 
186 		userregs->gpr[11] = 0;	/* Result from fork() */
187 
188 		kregs->gpr[20] = 0;	/* Userspace thread */
189 	}
190 
191 	/*
192 	 * _switch wants the kernel stack page in pt_regs->sp so that it
193 	 * can restore it to thread_info->ksp... see _switch for details.
194 	 */
195 	kregs->sp = top_of_kernel_stack;
196 	kregs->gpr[9] = (unsigned long)ret_from_fork;
197 
198 	task_thread_info(p)->ksp = (unsigned long)kregs;
199 
200 	return 0;
201 }
202 
203 /*
204  * Set up a thread for executing a new program
205  */
206 void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
207 {
208 	unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
209 
210 	memset(regs, 0, sizeof(struct pt_regs));
211 
212 	regs->pc = pc;
213 	regs->sr = sr;
214 	regs->sp = sp;
215 }
216 
217 extern struct thread_info *_switch(struct thread_info *old_ti,
218 				   struct thread_info *new_ti);
219 extern int lwa_flag;
220 
221 struct task_struct *__switch_to(struct task_struct *old,
222 				struct task_struct *new)
223 {
224 	struct task_struct *last;
225 	struct thread_info *new_ti, *old_ti;
226 	unsigned long flags;
227 
228 	local_irq_save(flags);
229 
230 	/* current_set is an array of saved current pointers
231 	 * (one for each cpu). we need them at user->kernel transition,
232 	 * while we save them at kernel->user transition
233 	 */
234 	new_ti = new->stack;
235 	old_ti = old->stack;
236 
237 	lwa_flag = 0;
238 
239 	current_thread_info_set[smp_processor_id()] = new_ti;
240 	last = (_switch(old_ti, new_ti))->task;
241 
242 	local_irq_restore(flags);
243 
244 	return last;
245 }
246 
247 /*
248  * Write out registers in core dump format, as defined by the
249  * struct user_regs_struct
250  */
251 void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
252 {
253 	dest[0] = 0; /* r0 */
254 	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
255 	dest[32] = regs->pc;
256 	dest[33] = regs->sr;
257 	dest[34] = 0;
258 	dest[35] = 0;
259 }
260 
261 unsigned long get_wchan(struct task_struct *p)
262 {
263 	/* TODO */
264 
265 	return 0;
266 }
267