1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * OpenRISC Linux 4 * 5 * Linux architectural port borrowing liberally from similar works of 6 * others. All original copyrights apply as per the original source 7 * declaration. 8 * 9 * OpenRISC implementation: 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> 12 * et al. 13 */ 14 15 /* or32 pgtable.h - macros and functions to manipulate page tables 16 * 17 * Based on: 18 * include/asm-cris/pgtable.h 19 */ 20 21 #ifndef __ASM_OPENRISC_PGTABLE_H 22 #define __ASM_OPENRISC_PGTABLE_H 23 24 #define __ARCH_USE_5LEVEL_HACK 25 #include <asm-generic/pgtable-nopmd.h> 26 27 #ifndef __ASSEMBLY__ 28 #include <asm/mmu.h> 29 #include <asm/fixmap.h> 30 31 /* 32 * The Linux memory management assumes a three-level page table setup. On 33 * or32, we use that, but "fold" the mid level into the top-level page 34 * table. Since the MMU TLB is software loaded through an interrupt, it 35 * supports any page table structure, so we could have used a three-level 36 * setup, but for the amounts of memory we normally use, a two-level is 37 * probably more efficient. 38 * 39 * This file contains the functions and defines necessary to modify and use 40 * the or32 page table tree. 41 */ 42 43 extern void paging_init(void); 44 45 /* Certain architectures need to do special things when pte's 46 * within a page table are directly modified. Thus, the following 47 * hook is made available. 48 */ 49 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) 50 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) 51 /* 52 * (pmds are folded into pgds so this doesn't get actually called, 53 * but the define is needed for a generic inline function.) 54 */ 55 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 56 57 #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) 58 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 59 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 60 61 /* 62 * entries per page directory level: we use a two-level, so 63 * we don't really have any PMD directory physically. 64 * pointers are 4 bytes so we can use the page size and 65 * divide it by 4 (shift by 2). 66 */ 67 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) 68 69 #define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT)) 70 71 /* calculate how many PGD entries a user-level program can use 72 * the first mappable virtual address is 0 73 * (TASK_SIZE is the maximum virtual address space) 74 */ 75 76 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 77 #define FIRST_USER_ADDRESS 0UL 78 79 /* 80 * Kernels own virtual memory area. 81 */ 82 83 /* 84 * The size and location of the vmalloc area are chosen so that modules 85 * placed in this area aren't more than a 28-bit signed offset from any 86 * kernel functions that they may need. This greatly simplifies handling 87 * of the relocations for l.j and l.jal instructions as we don't need to 88 * introduce any trampolines for reaching "distant" code. 89 * 90 * 64 MB of vmalloc area is comparable to what's available on other arches. 91 */ 92 93 #define VMALLOC_START (PAGE_OFFSET-0x04000000UL) 94 #define VMALLOC_END (PAGE_OFFSET) 95 #define VMALLOC_VMADDR(x) ((unsigned long)(x)) 96 97 /* Define some higher level generic page attributes. 98 * 99 * If you change _PAGE_CI definition be sure to change it in 100 * io.h for ioremap_nocache() too. 101 */ 102 103 /* 104 * An OR32 PTE looks like this: 105 * 106 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 | 107 * Phys pg.num L PP Index D A WOM WBC CI CC 108 * 109 * L : link 110 * PPI: Page protection index 111 * D : Dirty 112 * A : Accessed 113 * WOM: Weakly ordered memory 114 * WBC: Write-back cache 115 * CI : Cache inhibit 116 * CC : Cache coherent 117 * 118 * The protection bits below should correspond to the layout of the actual 119 * PTE as per above 120 */ 121 122 #define _PAGE_CC 0x001 /* software: pte contains a translation */ 123 #define _PAGE_CI 0x002 /* cache inhibit */ 124 #define _PAGE_WBC 0x004 /* write back cache */ 125 #define _PAGE_WOM 0x008 /* weakly ordered memory */ 126 127 #define _PAGE_A 0x010 /* accessed */ 128 #define _PAGE_D 0x020 /* dirty */ 129 #define _PAGE_URE 0x040 /* user read enable */ 130 #define _PAGE_UWE 0x080 /* user write enable */ 131 132 #define _PAGE_SRE 0x100 /* superuser read enable */ 133 #define _PAGE_SWE 0x200 /* superuser write enable */ 134 #define _PAGE_EXEC 0x400 /* software: page is executable */ 135 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */ 136 137 /* 0x001 is cache coherency bit, which should always be set to 138 * 1 - for SMP (when we support it) 139 * 0 - otherwise 140 * 141 * we just reuse this bit in software for _PAGE_PRESENT and 142 * force it to 0 when loading it into TLB. 143 */ 144 #define _PAGE_PRESENT _PAGE_CC 145 #define _PAGE_USER _PAGE_URE 146 #define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE) 147 #define _PAGE_DIRTY _PAGE_D 148 #define _PAGE_ACCESSED _PAGE_A 149 #define _PAGE_NO_CACHE _PAGE_CI 150 #define _PAGE_SHARED _PAGE_U_SHARED 151 #define _PAGE_READ (_PAGE_URE | _PAGE_SRE) 152 153 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 154 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 155 #define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED) 156 #define _KERNPG_TABLE \ 157 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY) 158 159 #define PAGE_NONE __pgprot(_PAGE_ALL) 160 #define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) 161 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) 162 #define PAGE_SHARED \ 163 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ 164 | _PAGE_SHARED) 165 #define PAGE_SHARED_X \ 166 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ 167 | _PAGE_SHARED | _PAGE_EXEC) 168 #define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) 169 #define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) 170 171 #define PAGE_KERNEL \ 172 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ 173 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) 174 #define PAGE_KERNEL_RO \ 175 __pgprot(_PAGE_ALL | _PAGE_SRE \ 176 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) 177 #define PAGE_KERNEL_NOCACHE \ 178 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ 179 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI) 180 181 #define __P000 PAGE_NONE 182 #define __P001 PAGE_READONLY_X 183 #define __P010 PAGE_COPY 184 #define __P011 PAGE_COPY_X 185 #define __P100 PAGE_READONLY 186 #define __P101 PAGE_READONLY_X 187 #define __P110 PAGE_COPY 188 #define __P111 PAGE_COPY_X 189 190 #define __S000 PAGE_NONE 191 #define __S001 PAGE_READONLY_X 192 #define __S010 PAGE_SHARED 193 #define __S011 PAGE_SHARED_X 194 #define __S100 PAGE_READONLY 195 #define __S101 PAGE_READONLY_X 196 #define __S110 PAGE_SHARED 197 #define __S111 PAGE_SHARED_X 198 199 /* zero page used for uninitialized stuff */ 200 extern unsigned long empty_zero_page[2048]; 201 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 202 203 /* number of bits that fit into a memory pointer */ 204 #define BITS_PER_PTR (8*sizeof(unsigned long)) 205 206 /* to align the pointer to a pointer address */ 207 #define PTR_MASK (~(sizeof(void *)-1)) 208 209 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ 210 /* 64-bit machines, beware! SRB. */ 211 #define SIZEOF_PTR_LOG2 2 212 213 /* to find an entry in a page-table */ 214 #define PAGE_PTR(address) \ 215 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) 216 217 /* to set the page-dir */ 218 #define SET_PAGE_DIR(tsk, pgdir) 219 220 #define pte_none(x) (!pte_val(x)) 221 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 222 #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0) 223 224 #define pmd_none(x) (!pmd_val(x)) 225 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE) 226 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 227 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) 228 229 /* 230 * The following only work if pte_present() is true. 231 * Undefined behaviour if not.. 232 */ 233 234 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 235 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 236 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 237 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 238 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 239 static inline int pte_special(pte_t pte) { return 0; } 240 static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 241 242 static inline pte_t pte_wrprotect(pte_t pte) 243 { 244 pte_val(pte) &= ~(_PAGE_WRITE); 245 return pte; 246 } 247 248 static inline pte_t pte_rdprotect(pte_t pte) 249 { 250 pte_val(pte) &= ~(_PAGE_READ); 251 return pte; 252 } 253 254 static inline pte_t pte_exprotect(pte_t pte) 255 { 256 pte_val(pte) &= ~(_PAGE_EXEC); 257 return pte; 258 } 259 260 static inline pte_t pte_mkclean(pte_t pte) 261 { 262 pte_val(pte) &= ~(_PAGE_DIRTY); 263 return pte; 264 } 265 266 static inline pte_t pte_mkold(pte_t pte) 267 { 268 pte_val(pte) &= ~(_PAGE_ACCESSED); 269 return pte; 270 } 271 272 static inline pte_t pte_mkwrite(pte_t pte) 273 { 274 pte_val(pte) |= _PAGE_WRITE; 275 return pte; 276 } 277 278 static inline pte_t pte_mkread(pte_t pte) 279 { 280 pte_val(pte) |= _PAGE_READ; 281 return pte; 282 } 283 284 static inline pte_t pte_mkexec(pte_t pte) 285 { 286 pte_val(pte) |= _PAGE_EXEC; 287 return pte; 288 } 289 290 static inline pte_t pte_mkdirty(pte_t pte) 291 { 292 pte_val(pte) |= _PAGE_DIRTY; 293 return pte; 294 } 295 296 static inline pte_t pte_mkyoung(pte_t pte) 297 { 298 pte_val(pte) |= _PAGE_ACCESSED; 299 return pte; 300 } 301 302 /* 303 * Conversion functions: convert a page and protection to a page entry, 304 * and a page entry and page directory to the page they refer to. 305 */ 306 307 /* What actually goes as arguments to the various functions is less than 308 * obvious, but a rule of thumb is that struct page's goes as struct page *, 309 * really physical DRAM addresses are unsigned long's, and DRAM "virtual" 310 * addresses (the 0xc0xxxxxx's) goes as void *'s. 311 */ 312 313 static inline pte_t __mk_pte(void *page, pgprot_t pgprot) 314 { 315 pte_t pte; 316 /* the PTE needs a physical address */ 317 pte_val(pte) = __pa(page) | pgprot_val(pgprot); 318 return pte; 319 } 320 321 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) 322 323 #define mk_pte_phys(physpage, pgprot) \ 324 ({ \ 325 pte_t __pte; \ 326 \ 327 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ 328 __pte; \ 329 }) 330 331 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 332 { 333 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 334 return pte; 335 } 336 337 338 /* 339 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval 340 * __pte_page(pte_val) refers to the "virtual" DRAM interval 341 * pte_pagenr refers to the page-number counted starting from the virtual 342 * DRAM start 343 */ 344 345 static inline unsigned long __pte_page(pte_t pte) 346 { 347 /* the PTE contains a physical address */ 348 return (unsigned long)__va(pte_val(pte) & PAGE_MASK); 349 } 350 351 #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) 352 353 /* permanent address of a page */ 354 355 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) 356 #define pte_page(pte) (mem_map+pte_pagenr(pte)) 357 358 /* 359 * only the pte's themselves need to point to physical DRAM (see above) 360 * the pagetable links are purely handled within the kernel SW and thus 361 * don't need the __pa and __va transformations. 362 */ 363 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep) 364 { 365 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep; 366 } 367 368 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 369 #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 370 371 /* to find an entry in a page-table-directory. */ 372 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 373 374 #define __pgd_offset(address) pgd_index(address) 375 376 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 377 378 /* to find an entry in a kernel page-table-directory */ 379 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 380 381 #define __pmd_offset(address) \ 382 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 383 384 /* 385 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 386 * 387 * this macro returns the index of the entry in the pte page which would 388 * control the given virtual address 389 */ 390 #define __pte_offset(address) \ 391 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 392 #define pte_offset_kernel(dir, address) \ 393 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address)) 394 #define pte_offset_map(dir, address) \ 395 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 396 #define pte_offset_map_nested(dir, address) \ 397 pte_offset_map(dir, address) 398 399 #define pte_unmap(pte) do { } while (0) 400 #define pte_unmap_nested(pte) do { } while (0) 401 #define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT) 402 #define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) 403 404 #define pte_ERROR(e) \ 405 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \ 406 __FILE__, __LINE__, &(e), pte_val(e)) 407 #define pgd_ERROR(e) \ 408 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \ 409 __FILE__, __LINE__, &(e), pgd_val(e)) 410 411 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ 412 413 struct vm_area_struct; 414 415 static inline void update_tlb(struct vm_area_struct *vma, 416 unsigned long address, pte_t *pte) 417 { 418 } 419 420 extern void update_cache(struct vm_area_struct *vma, 421 unsigned long address, pte_t *pte); 422 423 static inline void update_mmu_cache(struct vm_area_struct *vma, 424 unsigned long address, pte_t *pte) 425 { 426 update_tlb(vma, address, pte); 427 update_cache(vma, address, pte); 428 } 429 430 /* __PHX__ FIXME, SWAP, this probably doesn't work */ 431 432 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ 433 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ 434 435 #define __swp_type(x) (((x).val >> 5) & 0x7f) 436 #define __swp_offset(x) ((x).val >> 12) 437 #define __swp_entry(type, offset) \ 438 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) 439 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 440 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 441 442 #define kern_addr_valid(addr) (1) 443 444 #include <asm-generic/pgtable.h> 445 446 /* 447 * No page table caches to initialise 448 */ 449 #define pgtable_cache_init() do { } while (0) 450 451 typedef pte_t *pte_addr_t; 452 453 #endif /* __ASSEMBLY__ */ 454 #endif /* __ASM_OPENRISC_PGTABLE_H */ 455