1 /*
2  * OpenRISC Linux
3  *
4  * Linux architectural port borrowing liberally from similar works of
5  * others.  All original copyrights apply as per the original source
6  * declaration.
7  *
8  * OpenRISC implementation:
9  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11  * et al.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  */
18 
19 /* or32 pgtable.h - macros and functions to manipulate page tables
20  *
21  * Based on:
22  * include/asm-cris/pgtable.h
23  */
24 
25 #ifndef __ASM_OPENRISC_PGTABLE_H
26 #define __ASM_OPENRISC_PGTABLE_H
27 
28 #include <asm-generic/pgtable-nopmd.h>
29 
30 #ifndef __ASSEMBLY__
31 #include <asm/mmu.h>
32 #include <asm/fixmap.h>
33 
34 /*
35  * The Linux memory management assumes a three-level page table setup. On
36  * or32, we use that, but "fold" the mid level into the top-level page
37  * table. Since the MMU TLB is software loaded through an interrupt, it
38  * supports any page table structure, so we could have used a three-level
39  * setup, but for the amounts of memory we normally use, a two-level is
40  * probably more efficient.
41  *
42  * This file contains the functions and defines necessary to modify and use
43  * the or32 page table tree.
44  */
45 
46 extern void paging_init(void);
47 
48 /* Certain architectures need to do special things when pte's
49  * within a page table are directly modified.  Thus, the following
50  * hook is made available.
51  */
52 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
53 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
54 /*
55  * (pmds are folded into pgds so this doesn't get actually called,
56  * but the define is needed for a generic inline function.)
57  */
58 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
59 
60 #define PGDIR_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
61 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
62 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
63 
64 /*
65  * entries per page directory level: we use a two-level, so
66  * we don't really have any PMD directory physically.
67  * pointers are 4 bytes so we can use the page size and
68  * divide it by 4 (shift by 2).
69  */
70 #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
71 
72 #define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-2))
73 
74 /* calculate how many PGD entries a user-level program can use
75  * the first mappable virtual address is 0
76  * (TASK_SIZE is the maximum virtual address space)
77  */
78 
79 #define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
80 #define FIRST_USER_ADDRESS      0UL
81 
82 /*
83  * Kernels own virtual memory area.
84  */
85 
86 /*
87  * The size and location of the vmalloc area are chosen so that modules
88  * placed in this area aren't more than a 28-bit signed offset from any
89  * kernel functions that they may need.  This greatly simplifies handling
90  * of the relocations for l.j and l.jal instructions as we don't need to
91  * introduce any trampolines for reaching "distant" code.
92  *
93  * 64 MB of vmalloc area is comparable to what's available on other arches.
94  */
95 
96 #define VMALLOC_START	(PAGE_OFFSET-0x04000000)
97 #define VMALLOC_END	(PAGE_OFFSET)
98 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
99 
100 /* Define some higher level generic page attributes.
101  *
102  * If you change _PAGE_CI definition be sure to change it in
103  * io.h for ioremap_nocache() too.
104  */
105 
106 /*
107  * An OR32 PTE looks like this:
108  *
109  * |  31 ... 10 |  9  |  8 ... 6  |  5  |  4  |  3  |  2  |  1  |  0  |
110  *  Phys pg.num    L     PP Index    D     A    WOM   WBC   CI    CC
111  *
112  *  L  : link
113  *  PPI: Page protection index
114  *  D  : Dirty
115  *  A  : Accessed
116  *  WOM: Weakly ordered memory
117  *  WBC: Write-back cache
118  *  CI : Cache inhibit
119  *  CC : Cache coherent
120  *
121  * The protection bits below should correspond to the layout of the actual
122  * PTE as per above
123  */
124 
125 #define _PAGE_CC       0x001 /* software: pte contains a translation */
126 #define _PAGE_CI       0x002 /* cache inhibit          */
127 #define _PAGE_WBC      0x004 /* write back cache       */
128 #define _PAGE_WOM      0x008 /* weakly ordered memory  */
129 
130 #define _PAGE_A        0x010 /* accessed               */
131 #define _PAGE_D        0x020 /* dirty                  */
132 #define _PAGE_URE      0x040 /* user read enable       */
133 #define _PAGE_UWE      0x080 /* user write enable      */
134 
135 #define _PAGE_SRE      0x100 /* superuser read enable  */
136 #define _PAGE_SWE      0x200 /* superuser write enable */
137 #define _PAGE_EXEC     0x400 /* software: page is executable */
138 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
139 
140 /* 0x001 is cache coherency bit, which should always be set to
141  *       1 - for SMP (when we support it)
142  *       0 - otherwise
143  *
144  * we just reuse this bit in software for _PAGE_PRESENT and
145  * force it to 0 when loading it into TLB.
146  */
147 #define _PAGE_PRESENT  _PAGE_CC
148 #define _PAGE_USER     _PAGE_URE
149 #define _PAGE_WRITE    (_PAGE_UWE | _PAGE_SWE)
150 #define _PAGE_DIRTY    _PAGE_D
151 #define _PAGE_ACCESSED _PAGE_A
152 #define _PAGE_NO_CACHE _PAGE_CI
153 #define _PAGE_SHARED   _PAGE_U_SHARED
154 #define _PAGE_READ     (_PAGE_URE | _PAGE_SRE)
155 
156 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
157 #define _PAGE_BASE     (_PAGE_PRESENT | _PAGE_ACCESSED)
158 #define _PAGE_ALL      (_PAGE_PRESENT | _PAGE_ACCESSED)
159 #define _KERNPG_TABLE \
160 	(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
161 
162 #define PAGE_NONE       __pgprot(_PAGE_ALL)
163 #define PAGE_READONLY   __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
164 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
165 #define PAGE_SHARED \
166 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
167 		 | _PAGE_SHARED)
168 #define PAGE_SHARED_X \
169 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
170 		 | _PAGE_SHARED | _PAGE_EXEC)
171 #define PAGE_COPY       __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
172 #define PAGE_COPY_X     __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
173 
174 #define PAGE_KERNEL \
175 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
176 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
177 #define PAGE_KERNEL_RO \
178 	__pgprot(_PAGE_ALL | _PAGE_SRE \
179 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
180 #define PAGE_KERNEL_NOCACHE \
181 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
182 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
183 
184 #define __P000	PAGE_NONE
185 #define __P001	PAGE_READONLY_X
186 #define __P010	PAGE_COPY
187 #define __P011	PAGE_COPY_X
188 #define __P100	PAGE_READONLY
189 #define __P101	PAGE_READONLY_X
190 #define __P110	PAGE_COPY
191 #define __P111	PAGE_COPY_X
192 
193 #define __S000	PAGE_NONE
194 #define __S001	PAGE_READONLY_X
195 #define __S010	PAGE_SHARED
196 #define __S011	PAGE_SHARED_X
197 #define __S100	PAGE_READONLY
198 #define __S101	PAGE_READONLY_X
199 #define __S110	PAGE_SHARED
200 #define __S111	PAGE_SHARED_X
201 
202 /* zero page used for uninitialized stuff */
203 extern unsigned long empty_zero_page[2048];
204 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
205 
206 /* number of bits that fit into a memory pointer */
207 #define BITS_PER_PTR			(8*sizeof(unsigned long))
208 
209 /* to align the pointer to a pointer address */
210 #define PTR_MASK			(~(sizeof(void *)-1))
211 
212 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
213 /* 64-bit machines, beware!  SRB. */
214 #define SIZEOF_PTR_LOG2			2
215 
216 /* to find an entry in a page-table */
217 #define PAGE_PTR(address) \
218 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
219 
220 /* to set the page-dir */
221 #define SET_PAGE_DIR(tsk, pgdir)
222 
223 #define pte_none(x)	(!pte_val(x))
224 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
225 #define pte_clear(mm, addr, xp)	do { pte_val(*(xp)) = 0; } while (0)
226 
227 #define pmd_none(x)	(!pmd_val(x))
228 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
229 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
230 #define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)
231 
232 /*
233  * The following only work if pte_present() is true.
234  * Undefined behaviour if not..
235  */
236 
237 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_READ; }
238 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
239 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
240 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
241 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
242 static inline int pte_special(pte_t pte) { return 0; }
243 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
244 
245 static inline pte_t pte_wrprotect(pte_t pte)
246 {
247 	pte_val(pte) &= ~(_PAGE_WRITE);
248 	return pte;
249 }
250 
251 static inline pte_t pte_rdprotect(pte_t pte)
252 {
253 	pte_val(pte) &= ~(_PAGE_READ);
254 	return pte;
255 }
256 
257 static inline pte_t pte_exprotect(pte_t pte)
258 {
259 	pte_val(pte) &= ~(_PAGE_EXEC);
260 	return pte;
261 }
262 
263 static inline pte_t pte_mkclean(pte_t pte)
264 {
265 	pte_val(pte) &= ~(_PAGE_DIRTY);
266 	return pte;
267 }
268 
269 static inline pte_t pte_mkold(pte_t pte)
270 {
271 	pte_val(pte) &= ~(_PAGE_ACCESSED);
272 	return pte;
273 }
274 
275 static inline pte_t pte_mkwrite(pte_t pte)
276 {
277 	pte_val(pte) |= _PAGE_WRITE;
278 	return pte;
279 }
280 
281 static inline pte_t pte_mkread(pte_t pte)
282 {
283 	pte_val(pte) |= _PAGE_READ;
284 	return pte;
285 }
286 
287 static inline pte_t pte_mkexec(pte_t pte)
288 {
289 	pte_val(pte) |= _PAGE_EXEC;
290 	return pte;
291 }
292 
293 static inline pte_t pte_mkdirty(pte_t pte)
294 {
295 	pte_val(pte) |= _PAGE_DIRTY;
296 	return pte;
297 }
298 
299 static inline pte_t pte_mkyoung(pte_t pte)
300 {
301 	pte_val(pte) |= _PAGE_ACCESSED;
302 	return pte;
303 }
304 
305 /*
306  * Conversion functions: convert a page and protection to a page entry,
307  * and a page entry and page directory to the page they refer to.
308  */
309 
310 /* What actually goes as arguments to the various functions is less than
311  * obvious, but a rule of thumb is that struct page's goes as struct page *,
312  * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
313  * addresses (the 0xc0xxxxxx's) goes as void *'s.
314  */
315 
316 static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
317 {
318 	pte_t pte;
319 	/* the PTE needs a physical address */
320 	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
321 	return pte;
322 }
323 
324 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
325 
326 #define mk_pte_phys(physpage, pgprot) \
327 ({                                                                      \
328 	pte_t __pte;                                                    \
329 									\
330 	pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
331 	__pte;                                                          \
332 })
333 
334 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
335 {
336 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
337 	return pte;
338 }
339 
340 
341 /*
342  * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
343  * __pte_page(pte_val) refers to the "virtual" DRAM interval
344  * pte_pagenr refers to the page-number counted starting from the virtual
345  * DRAM start
346  */
347 
348 static inline unsigned long __pte_page(pte_t pte)
349 {
350 	/* the PTE contains a physical address */
351 	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
352 }
353 
354 #define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
355 
356 /* permanent address of a page */
357 
358 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
359 #define pte_page(pte)		(mem_map+pte_pagenr(pte))
360 
361 /*
362  * only the pte's themselves need to point to physical DRAM (see above)
363  * the pagetable links are purely handled within the kernel SW and thus
364  * don't need the __pa and __va transformations.
365  */
366 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
367 {
368 	pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
369 }
370 
371 #define pmd_page(pmd)		(pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
372 #define pmd_page_kernel(pmd)    ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
373 
374 /* to find an entry in a page-table-directory. */
375 #define pgd_index(address)      ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
376 
377 #define __pgd_offset(address)   pgd_index(address)
378 
379 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
380 
381 /* to find an entry in a kernel page-table-directory */
382 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
383 
384 #define __pmd_offset(address) \
385 	(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
386 
387 /*
388  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
389  *
390  * this macro returns the index of the entry in the pte page which would
391  * control the given virtual address
392  */
393 #define __pte_offset(address)                   \
394 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
395 #define pte_offset_kernel(dir, address)         \
396 	((pte_t *) pmd_page_kernel(*(dir)) +  __pte_offset(address))
397 #define pte_offset_map(dir, address)	        \
398 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
399 #define pte_offset_map_nested(dir, address)     \
400 	pte_offset_map(dir, address)
401 
402 #define pte_unmap(pte)          do { } while (0)
403 #define pte_unmap_nested(pte)   do { } while (0)
404 #define pte_pfn(x)		((unsigned long)(((x).pte)) >> PAGE_SHIFT)
405 #define pfn_pte(pfn, prot)  __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
406 
407 #define pte_ERROR(e) \
408 	printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
409 	       __FILE__, __LINE__, &(e), pte_val(e))
410 #define pgd_ERROR(e) \
411 	printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
412 	       __FILE__, __LINE__, &(e), pgd_val(e))
413 
414 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
415 
416 /*
417  * or32 doesn't have any external MMU info: the kernel page
418  * tables contain all the necessary information.
419  *
420  * Actually I am not sure on what this could be used for.
421  */
422 static inline void update_mmu_cache(struct vm_area_struct *vma,
423 	unsigned long address, pte_t *pte)
424 {
425 }
426 
427 /* __PHX__ FIXME, SWAP, this probably doesn't work */
428 
429 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
430 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
431 
432 #define __swp_type(x)			(((x).val >> 5) & 0x7f)
433 #define __swp_offset(x)			((x).val >> 12)
434 #define __swp_entry(type, offset) \
435 	((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
436 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
437 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
438 
439 #define kern_addr_valid(addr)           (1)
440 
441 #include <asm-generic/pgtable.h>
442 
443 /*
444  * No page table caches to initialise
445  */
446 #define pgtable_cache_init()		do { } while (0)
447 
448 typedef pte_t *pte_addr_t;
449 
450 #endif /* __ASSEMBLY__ */
451 #endif /* __ASM_OPENRISC_PGTABLE_H */
452