1 /*
2  * OpenRISC Linux
3  *
4  * Linux architectural port borrowing liberally from similar works of
5  * others.  All original copyrights apply as per the original source
6  * declaration.
7  *
8  * OpenRISC implementation:
9  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11  * et al.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  */
18 
19 /* or32 pgtable.h - macros and functions to manipulate page tables
20  *
21  * Based on:
22  * include/asm-cris/pgtable.h
23  */
24 
25 #ifndef __ASM_OPENRISC_PGTABLE_H
26 #define __ASM_OPENRISC_PGTABLE_H
27 
28 #define __ARCH_USE_5LEVEL_HACK
29 #include <asm-generic/pgtable-nopmd.h>
30 
31 #ifndef __ASSEMBLY__
32 #include <asm/mmu.h>
33 #include <asm/fixmap.h>
34 
35 /*
36  * The Linux memory management assumes a three-level page table setup. On
37  * or32, we use that, but "fold" the mid level into the top-level page
38  * table. Since the MMU TLB is software loaded through an interrupt, it
39  * supports any page table structure, so we could have used a three-level
40  * setup, but for the amounts of memory we normally use, a two-level is
41  * probably more efficient.
42  *
43  * This file contains the functions and defines necessary to modify and use
44  * the or32 page table tree.
45  */
46 
47 extern void paging_init(void);
48 
49 /* Certain architectures need to do special things when pte's
50  * within a page table are directly modified.  Thus, the following
51  * hook is made available.
52  */
53 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
54 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
55 /*
56  * (pmds are folded into pgds so this doesn't get actually called,
57  * but the define is needed for a generic inline function.)
58  */
59 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
60 
61 #define PGDIR_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
62 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
63 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
64 
65 /*
66  * entries per page directory level: we use a two-level, so
67  * we don't really have any PMD directory physically.
68  * pointers are 4 bytes so we can use the page size and
69  * divide it by 4 (shift by 2).
70  */
71 #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
72 
73 #define PTRS_PER_PGD	(1UL << (32-PGDIR_SHIFT))
74 
75 /* calculate how many PGD entries a user-level program can use
76  * the first mappable virtual address is 0
77  * (TASK_SIZE is the maximum virtual address space)
78  */
79 
80 #define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
81 #define FIRST_USER_ADDRESS      0UL
82 
83 /*
84  * Kernels own virtual memory area.
85  */
86 
87 /*
88  * The size and location of the vmalloc area are chosen so that modules
89  * placed in this area aren't more than a 28-bit signed offset from any
90  * kernel functions that they may need.  This greatly simplifies handling
91  * of the relocations for l.j and l.jal instructions as we don't need to
92  * introduce any trampolines for reaching "distant" code.
93  *
94  * 64 MB of vmalloc area is comparable to what's available on other arches.
95  */
96 
97 #define VMALLOC_START	(PAGE_OFFSET-0x04000000)
98 #define VMALLOC_END	(PAGE_OFFSET)
99 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
100 
101 /* Define some higher level generic page attributes.
102  *
103  * If you change _PAGE_CI definition be sure to change it in
104  * io.h for ioremap_nocache() too.
105  */
106 
107 /*
108  * An OR32 PTE looks like this:
109  *
110  * |  31 ... 10 |  9  |  8 ... 6  |  5  |  4  |  3  |  2  |  1  |  0  |
111  *  Phys pg.num    L     PP Index    D     A    WOM   WBC   CI    CC
112  *
113  *  L  : link
114  *  PPI: Page protection index
115  *  D  : Dirty
116  *  A  : Accessed
117  *  WOM: Weakly ordered memory
118  *  WBC: Write-back cache
119  *  CI : Cache inhibit
120  *  CC : Cache coherent
121  *
122  * The protection bits below should correspond to the layout of the actual
123  * PTE as per above
124  */
125 
126 #define _PAGE_CC       0x001 /* software: pte contains a translation */
127 #define _PAGE_CI       0x002 /* cache inhibit          */
128 #define _PAGE_WBC      0x004 /* write back cache       */
129 #define _PAGE_WOM      0x008 /* weakly ordered memory  */
130 
131 #define _PAGE_A        0x010 /* accessed               */
132 #define _PAGE_D        0x020 /* dirty                  */
133 #define _PAGE_URE      0x040 /* user read enable       */
134 #define _PAGE_UWE      0x080 /* user write enable      */
135 
136 #define _PAGE_SRE      0x100 /* superuser read enable  */
137 #define _PAGE_SWE      0x200 /* superuser write enable */
138 #define _PAGE_EXEC     0x400 /* software: page is executable */
139 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
140 
141 /* 0x001 is cache coherency bit, which should always be set to
142  *       1 - for SMP (when we support it)
143  *       0 - otherwise
144  *
145  * we just reuse this bit in software for _PAGE_PRESENT and
146  * force it to 0 when loading it into TLB.
147  */
148 #define _PAGE_PRESENT  _PAGE_CC
149 #define _PAGE_USER     _PAGE_URE
150 #define _PAGE_WRITE    (_PAGE_UWE | _PAGE_SWE)
151 #define _PAGE_DIRTY    _PAGE_D
152 #define _PAGE_ACCESSED _PAGE_A
153 #define _PAGE_NO_CACHE _PAGE_CI
154 #define _PAGE_SHARED   _PAGE_U_SHARED
155 #define _PAGE_READ     (_PAGE_URE | _PAGE_SRE)
156 
157 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
158 #define _PAGE_BASE     (_PAGE_PRESENT | _PAGE_ACCESSED)
159 #define _PAGE_ALL      (_PAGE_PRESENT | _PAGE_ACCESSED)
160 #define _KERNPG_TABLE \
161 	(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
162 
163 #define PAGE_NONE       __pgprot(_PAGE_ALL)
164 #define PAGE_READONLY   __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
165 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
166 #define PAGE_SHARED \
167 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168 		 | _PAGE_SHARED)
169 #define PAGE_SHARED_X \
170 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
171 		 | _PAGE_SHARED | _PAGE_EXEC)
172 #define PAGE_COPY       __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
173 #define PAGE_COPY_X     __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
174 
175 #define PAGE_KERNEL \
176 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
177 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
178 #define PAGE_KERNEL_RO \
179 	__pgprot(_PAGE_ALL | _PAGE_SRE \
180 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
181 #define PAGE_KERNEL_NOCACHE \
182 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
183 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
184 
185 #define __P000	PAGE_NONE
186 #define __P001	PAGE_READONLY_X
187 #define __P010	PAGE_COPY
188 #define __P011	PAGE_COPY_X
189 #define __P100	PAGE_READONLY
190 #define __P101	PAGE_READONLY_X
191 #define __P110	PAGE_COPY
192 #define __P111	PAGE_COPY_X
193 
194 #define __S000	PAGE_NONE
195 #define __S001	PAGE_READONLY_X
196 #define __S010	PAGE_SHARED
197 #define __S011	PAGE_SHARED_X
198 #define __S100	PAGE_READONLY
199 #define __S101	PAGE_READONLY_X
200 #define __S110	PAGE_SHARED
201 #define __S111	PAGE_SHARED_X
202 
203 /* zero page used for uninitialized stuff */
204 extern unsigned long empty_zero_page[2048];
205 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
206 
207 /* number of bits that fit into a memory pointer */
208 #define BITS_PER_PTR			(8*sizeof(unsigned long))
209 
210 /* to align the pointer to a pointer address */
211 #define PTR_MASK			(~(sizeof(void *)-1))
212 
213 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
214 /* 64-bit machines, beware!  SRB. */
215 #define SIZEOF_PTR_LOG2			2
216 
217 /* to find an entry in a page-table */
218 #define PAGE_PTR(address) \
219 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
220 
221 /* to set the page-dir */
222 #define SET_PAGE_DIR(tsk, pgdir)
223 
224 #define pte_none(x)	(!pte_val(x))
225 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
226 #define pte_clear(mm, addr, xp)	do { pte_val(*(xp)) = 0; } while (0)
227 
228 #define pmd_none(x)	(!pmd_val(x))
229 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
230 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
231 #define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)
232 
233 /*
234  * The following only work if pte_present() is true.
235  * Undefined behaviour if not..
236  */
237 
238 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_READ; }
239 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
240 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
241 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
242 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
243 static inline int pte_special(pte_t pte) { return 0; }
244 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
245 
246 static inline pte_t pte_wrprotect(pte_t pte)
247 {
248 	pte_val(pte) &= ~(_PAGE_WRITE);
249 	return pte;
250 }
251 
252 static inline pte_t pte_rdprotect(pte_t pte)
253 {
254 	pte_val(pte) &= ~(_PAGE_READ);
255 	return pte;
256 }
257 
258 static inline pte_t pte_exprotect(pte_t pte)
259 {
260 	pte_val(pte) &= ~(_PAGE_EXEC);
261 	return pte;
262 }
263 
264 static inline pte_t pte_mkclean(pte_t pte)
265 {
266 	pte_val(pte) &= ~(_PAGE_DIRTY);
267 	return pte;
268 }
269 
270 static inline pte_t pte_mkold(pte_t pte)
271 {
272 	pte_val(pte) &= ~(_PAGE_ACCESSED);
273 	return pte;
274 }
275 
276 static inline pte_t pte_mkwrite(pte_t pte)
277 {
278 	pte_val(pte) |= _PAGE_WRITE;
279 	return pte;
280 }
281 
282 static inline pte_t pte_mkread(pte_t pte)
283 {
284 	pte_val(pte) |= _PAGE_READ;
285 	return pte;
286 }
287 
288 static inline pte_t pte_mkexec(pte_t pte)
289 {
290 	pte_val(pte) |= _PAGE_EXEC;
291 	return pte;
292 }
293 
294 static inline pte_t pte_mkdirty(pte_t pte)
295 {
296 	pte_val(pte) |= _PAGE_DIRTY;
297 	return pte;
298 }
299 
300 static inline pte_t pte_mkyoung(pte_t pte)
301 {
302 	pte_val(pte) |= _PAGE_ACCESSED;
303 	return pte;
304 }
305 
306 /*
307  * Conversion functions: convert a page and protection to a page entry,
308  * and a page entry and page directory to the page they refer to.
309  */
310 
311 /* What actually goes as arguments to the various functions is less than
312  * obvious, but a rule of thumb is that struct page's goes as struct page *,
313  * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
314  * addresses (the 0xc0xxxxxx's) goes as void *'s.
315  */
316 
317 static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
318 {
319 	pte_t pte;
320 	/* the PTE needs a physical address */
321 	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
322 	return pte;
323 }
324 
325 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
326 
327 #define mk_pte_phys(physpage, pgprot) \
328 ({                                                                      \
329 	pte_t __pte;                                                    \
330 									\
331 	pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
332 	__pte;                                                          \
333 })
334 
335 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
336 {
337 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
338 	return pte;
339 }
340 
341 
342 /*
343  * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
344  * __pte_page(pte_val) refers to the "virtual" DRAM interval
345  * pte_pagenr refers to the page-number counted starting from the virtual
346  * DRAM start
347  */
348 
349 static inline unsigned long __pte_page(pte_t pte)
350 {
351 	/* the PTE contains a physical address */
352 	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
353 }
354 
355 #define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
356 
357 /* permanent address of a page */
358 
359 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
360 #define pte_page(pte)		(mem_map+pte_pagenr(pte))
361 
362 /*
363  * only the pte's themselves need to point to physical DRAM (see above)
364  * the pagetable links are purely handled within the kernel SW and thus
365  * don't need the __pa and __va transformations.
366  */
367 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
368 {
369 	pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
370 }
371 
372 #define pmd_page(pmd)		(pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
373 #define pmd_page_kernel(pmd)    ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
374 
375 /* to find an entry in a page-table-directory. */
376 #define pgd_index(address)      ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
377 
378 #define __pgd_offset(address)   pgd_index(address)
379 
380 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
381 
382 /* to find an entry in a kernel page-table-directory */
383 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
384 
385 #define __pmd_offset(address) \
386 	(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
387 
388 /*
389  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
390  *
391  * this macro returns the index of the entry in the pte page which would
392  * control the given virtual address
393  */
394 #define __pte_offset(address)                   \
395 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
396 #define pte_offset_kernel(dir, address)         \
397 	((pte_t *) pmd_page_kernel(*(dir)) +  __pte_offset(address))
398 #define pte_offset_map(dir, address)	        \
399 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
400 #define pte_offset_map_nested(dir, address)     \
401 	pte_offset_map(dir, address)
402 
403 #define pte_unmap(pte)          do { } while (0)
404 #define pte_unmap_nested(pte)   do { } while (0)
405 #define pte_pfn(x)		((unsigned long)(((x).pte)) >> PAGE_SHIFT)
406 #define pfn_pte(pfn, prot)  __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
407 
408 #define pte_ERROR(e) \
409 	printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
410 	       __FILE__, __LINE__, &(e), pte_val(e))
411 #define pgd_ERROR(e) \
412 	printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
413 	       __FILE__, __LINE__, &(e), pgd_val(e))
414 
415 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
416 
417 /*
418  * or32 doesn't have any external MMU info: the kernel page
419  * tables contain all the necessary information.
420  *
421  * Actually I am not sure on what this could be used for.
422  */
423 static inline void update_mmu_cache(struct vm_area_struct *vma,
424 	unsigned long address, pte_t *pte)
425 {
426 }
427 
428 /* __PHX__ FIXME, SWAP, this probably doesn't work */
429 
430 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
431 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
432 
433 #define __swp_type(x)			(((x).val >> 5) & 0x7f)
434 #define __swp_offset(x)			((x).val >> 12)
435 #define __swp_entry(type, offset) \
436 	((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
437 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
438 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
439 
440 #define kern_addr_valid(addr)           (1)
441 
442 #include <asm-generic/pgtable.h>
443 
444 /*
445  * No page table caches to initialise
446  */
447 #define pgtable_cache_init()		do { } while (0)
448 
449 typedef pte_t *pte_addr_t;
450 
451 #endif /* __ASSEMBLY__ */
452 #endif /* __ASM_OPENRISC_PGTABLE_H */
453