xref: /openbmc/linux/arch/nios2/mm/dma-mapping.c (revision 7ed1c190)
1 /*
2  * Copyright (C) 2011 Tobias Klauser <tklauser@distanz.ch>
3  * Copyright (C) 2009 Wind River Systems Inc
4  *  Implemented by fredrik.markstrom@gmail.com and ivarholmqvist@gmail.com
5  *
6  * Based on DMA code from MIPS.
7  *
8  * This file is subject to the terms and conditions of the GNU General Public
9  * License.  See the file "COPYING" in the main directory of this archive
10  * for more details.
11  */
12 
13 #include <linux/types.h>
14 #include <linux/mm.h>
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/scatterlist.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/io.h>
20 #include <linux/cache.h>
21 #include <asm/cacheflush.h>
22 
23 static inline void __dma_sync_for_device(void *vaddr, size_t size,
24 			      enum dma_data_direction direction)
25 {
26 	switch (direction) {
27 	case DMA_FROM_DEVICE:
28 		invalidate_dcache_range((unsigned long)vaddr,
29 			(unsigned long)(vaddr + size));
30 		break;
31 	case DMA_TO_DEVICE:
32 		/*
33 		 * We just need to flush the caches here , but Nios2 flush
34 		 * instruction will do both writeback and invalidate.
35 		 */
36 	case DMA_BIDIRECTIONAL: /* flush and invalidate */
37 		flush_dcache_range((unsigned long)vaddr,
38 			(unsigned long)(vaddr + size));
39 		break;
40 	default:
41 		BUG();
42 	}
43 }
44 
45 static inline void __dma_sync_for_cpu(void *vaddr, size_t size,
46 			      enum dma_data_direction direction)
47 {
48 	switch (direction) {
49 	case DMA_BIDIRECTIONAL:
50 	case DMA_FROM_DEVICE:
51 		invalidate_dcache_range((unsigned long)vaddr,
52 			(unsigned long)(vaddr + size));
53 		break;
54 	case DMA_TO_DEVICE:
55 		break;
56 	default:
57 		BUG();
58 	}
59 }
60 
61 static void *nios2_dma_alloc(struct device *dev, size_t size,
62 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
63 {
64 	void *ret;
65 
66 	/* optimized page clearing */
67 	gfp |= __GFP_ZERO;
68 
69 	if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
70 		gfp |= GFP_DMA;
71 
72 	ret = (void *) __get_free_pages(gfp, get_order(size));
73 	if (ret != NULL) {
74 		*dma_handle = virt_to_phys(ret);
75 		flush_dcache_range((unsigned long) ret,
76 			(unsigned long) ret + size);
77 		ret = UNCAC_ADDR(ret);
78 	}
79 
80 	return ret;
81 }
82 
83 static void nios2_dma_free(struct device *dev, size_t size, void *vaddr,
84 		dma_addr_t dma_handle, unsigned long attrs)
85 {
86 	unsigned long addr = (unsigned long) CAC_ADDR((unsigned long) vaddr);
87 
88 	free_pages(addr, get_order(size));
89 }
90 
91 static int nios2_dma_map_sg(struct device *dev, struct scatterlist *sg,
92 		int nents, enum dma_data_direction direction,
93 		unsigned long attrs)
94 {
95 	int i;
96 
97 	for_each_sg(sg, sg, nents, i) {
98 		void *addr = sg_virt(sg);
99 
100 		if (!addr)
101 			continue;
102 
103 		sg->dma_address = sg_phys(sg);
104 
105 		if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
106 			continue;
107 
108 		__dma_sync_for_device(addr, sg->length, direction);
109 	}
110 
111 	return nents;
112 }
113 
114 static dma_addr_t nios2_dma_map_page(struct device *dev, struct page *page,
115 			unsigned long offset, size_t size,
116 			enum dma_data_direction direction,
117 			unsigned long attrs)
118 {
119 	void *addr = page_address(page) + offset;
120 
121 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
122 		__dma_sync_for_device(addr, size, direction);
123 
124 	return page_to_phys(page) + offset;
125 }
126 
127 static void nios2_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
128 		size_t size, enum dma_data_direction direction,
129 		unsigned long attrs)
130 {
131 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
132 		__dma_sync_for_cpu(phys_to_virt(dma_address), size, direction);
133 }
134 
135 static void nios2_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
136 		int nhwentries, enum dma_data_direction direction,
137 		unsigned long attrs)
138 {
139 	void *addr;
140 	int i;
141 
142 	if (direction == DMA_TO_DEVICE)
143 		return;
144 
145 	if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
146 		return;
147 
148 	for_each_sg(sg, sg, nhwentries, i) {
149 		addr = sg_virt(sg);
150 		if (addr)
151 			__dma_sync_for_cpu(addr, sg->length, direction);
152 	}
153 }
154 
155 static void nios2_dma_sync_single_for_cpu(struct device *dev,
156 		dma_addr_t dma_handle, size_t size,
157 		enum dma_data_direction direction)
158 {
159 	__dma_sync_for_cpu(phys_to_virt(dma_handle), size, direction);
160 }
161 
162 static void nios2_dma_sync_single_for_device(struct device *dev,
163 		dma_addr_t dma_handle, size_t size,
164 		enum dma_data_direction direction)
165 {
166 	__dma_sync_for_device(phys_to_virt(dma_handle), size, direction);
167 }
168 
169 static void nios2_dma_sync_sg_for_cpu(struct device *dev,
170 		struct scatterlist *sg, int nelems,
171 		enum dma_data_direction direction)
172 {
173 	int i;
174 
175 	/* Make sure that gcc doesn't leave the empty loop body.  */
176 	for_each_sg(sg, sg, nelems, i)
177 		__dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
178 }
179 
180 static void nios2_dma_sync_sg_for_device(struct device *dev,
181 		struct scatterlist *sg, int nelems,
182 		enum dma_data_direction direction)
183 {
184 	int i;
185 
186 	/* Make sure that gcc doesn't leave the empty loop body.  */
187 	for_each_sg(sg, sg, nelems, i)
188 		__dma_sync_for_device(sg_virt(sg), sg->length, direction);
189 
190 }
191 
192 const struct dma_map_ops nios2_dma_ops = {
193 	.alloc			= nios2_dma_alloc,
194 	.free			= nios2_dma_free,
195 	.map_page		= nios2_dma_map_page,
196 	.unmap_page		= nios2_dma_unmap_page,
197 	.map_sg			= nios2_dma_map_sg,
198 	.unmap_sg		= nios2_dma_unmap_sg,
199 	.sync_single_for_device	= nios2_dma_sync_single_for_device,
200 	.sync_single_for_cpu	= nios2_dma_sync_single_for_cpu,
201 	.sync_sg_for_cpu	= nios2_dma_sync_sg_for_cpu,
202 	.sync_sg_for_device	= nios2_dma_sync_sg_for_device,
203 };
204 EXPORT_SYMBOL(nios2_dma_ops);
205