xref: /openbmc/linux/arch/nios2/kernel/insnemu.S (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1/*
2 *  Copyright (C) 2003-2013 Altera Corporation
3 *  All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19
20#include <linux/linkage.h>
21#include <asm/entry.h>
22
23.set noat
24.set nobreak
25
26/*
27* Explicitly allow the use of r1 (the assembler temporary register)
28* within this code. This register is normally reserved for the use of
29* the compiler.
30*/
31
32ENTRY(instruction_trap)
33	ldw	r1, PT_R1(sp)		// Restore registers
34	ldw	r2, PT_R2(sp)
35	ldw	r3, PT_R3(sp)
36	ldw	r4, PT_R4(sp)
37	ldw	r5, PT_R5(sp)
38	ldw	r6, PT_R6(sp)
39	ldw	r7, PT_R7(sp)
40	ldw	r8, PT_R8(sp)
41	ldw	r9, PT_R9(sp)
42	ldw	r10, PT_R10(sp)
43	ldw	r11, PT_R11(sp)
44	ldw	r12, PT_R12(sp)
45	ldw	r13, PT_R13(sp)
46	ldw	r14, PT_R14(sp)
47	ldw	r15, PT_R15(sp)
48	ldw	ra, PT_RA(sp)
49	ldw	fp, PT_FP(sp)
50	ldw	gp, PT_GP(sp)
51	ldw	et, PT_ESTATUS(sp)
52	wrctl	estatus, et
53	ldw	ea, PT_EA(sp)
54	ldw	et, PT_SP(sp)		/* backup sp in et */
55
56	addi	sp, sp, PT_REGS_SIZE
57
58	/* INSTRUCTION EMULATION
59	*  ---------------------
60	*
61	* Nios II processors generate exceptions for unimplemented instructions.
62	* The routines below emulate these instructions.  Depending on the
63	* processor core, the only instructions that might need to be emulated
64	* are div, divu, mul, muli, mulxss, mulxsu, and mulxuu.
65	*
66	* The emulations match the instructions, except for the following
67	* limitations:
68	*
69	* 1) The emulation routines do not emulate the use of the exception
70	*    temporary register (et) as a source operand because the exception
71	*    handler already has modified it.
72	*
73	* 2) The routines do not emulate the use of the stack pointer (sp) or
74	*    the exception return address register (ea) as a destination because
75	*    modifying these registers crashes the exception handler or the
76	*    interrupted routine.
77	*
78	* Detailed Design
79	* ---------------
80	*
81	* The emulation routines expect the contents of integer registers r0-r31
82	* to be on the stack at addresses sp, 4(sp), 8(sp), ... 124(sp).  The
83	* routines retrieve source operands from the stack and modify the
84	* destination register's value on the stack prior to the end of the
85	* exception handler.  Then all registers except the destination register
86	* are restored to their previous values.
87	*
88	* The instruction that causes the exception is found at address -4(ea).
89	* The instruction's OP and OPX fields identify the operation to be
90	* performed.
91	*
92	* One instruction, muli, is an I-type instruction that is identified by
93	* an OP field of 0x24.
94	*
95	* muli   AAAAA,BBBBB,IIIIIIIIIIIIIIII,-0x24-
96	*           27    22                6      0    <-- LSB of field
97	*
98	* The remaining emulated instructions are R-type and have an OP field
99	* of 0x3a.  Their OPX fields identify them.
100	*
101	* R-type AAAAA,BBBBB,CCCCC,XXXXXX,NNNNN,-0x3a-
102	*           27    22    17     11     6      0  <-- LSB of field
103	*
104	*
105	* Opcode Encoding.  muli is identified by its OP value.  Then OPX & 0x02
106	* is used to differentiate between the division opcodes and the
107	* remaining multiplication opcodes.
108	*
109	* Instruction   OP      OPX    OPX & 0x02
110	* -----------   ----    ----   ----------
111	* muli          0x24
112	* divu          0x3a    0x24         0
113	* div           0x3a    0x25         0
114	* mul           0x3a    0x27      != 0
115	* mulxuu        0x3a    0x07      != 0
116	* mulxsu        0x3a    0x17      != 0
117	* mulxss        0x3a    0x1f      != 0
118	*/
119
120
121	/*
122	* Save everything on the stack to make it easy for the emulation
123	* routines to retrieve the source register operands.
124	*/
125
126	addi sp, sp, -128
127	stw zero, 0(sp)	/* Save zero on stack to avoid special case for r0. */
128	stw r1, 4(sp)
129	stw r2,  8(sp)
130	stw r3, 12(sp)
131	stw r4, 16(sp)
132	stw r5, 20(sp)
133	stw r6, 24(sp)
134	stw r7, 28(sp)
135	stw r8, 32(sp)
136	stw r9, 36(sp)
137	stw r10, 40(sp)
138	stw r11, 44(sp)
139	stw r12, 48(sp)
140	stw r13, 52(sp)
141	stw r14, 56(sp)
142	stw r15, 60(sp)
143	stw r16, 64(sp)
144	stw r17, 68(sp)
145	stw r18, 72(sp)
146	stw r19, 76(sp)
147	stw r20, 80(sp)
148	stw r21, 84(sp)
149	stw r22, 88(sp)
150	stw r23, 92(sp)
151		/* Don't bother to save et.  It's already been changed. */
152	rdctl r5, estatus
153	stw r5,  100(sp)
154
155	stw gp, 104(sp)
156	stw et, 108(sp)	/* et contains previous sp value. */
157	stw fp, 112(sp)
158	stw ea, 116(sp)
159	stw ra, 120(sp)
160
161
162	/*
163	* Split the instruction into its fields.  We need 4*A, 4*B, and 4*C as
164	* offsets to the stack pointer for access to the stored register values.
165	*/
166	ldw r2,-4(ea)	/* r2 = AAAAA,BBBBB,IIIIIIIIIIIIIIII,PPPPPP */
167	roli r3, r2, 7	/* r3 = BBB,IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BB */
168	roli r4, r3, 3	/* r4 = IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB */
169	roli r5, r4, 2	/* r5 = IIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB,II */
170	srai r4, r4, 16	/* r4 = (sign-extended) IMM16 */
171	roli r6, r5, 5	/* r6 = XXXX,NNNNN,PPPPPP,AAAAA,BBBBB,CCCCC,XX */
172	andi r2, r2, 0x3f	/* r2 = 00000000000000000000000000,PPPPPP */
173	andi r3, r3, 0x7c	/* r3 = 0000000000000000000000000,AAAAA,00 */
174	andi r5, r5, 0x7c	/* r5 = 0000000000000000000000000,BBBBB,00 */
175	andi r6, r6, 0x7c	/* r6 = 0000000000000000000000000,CCCCC,00 */
176
177	/* Now
178	* r2 = OP
179	* r3 = 4*A
180	* r4 = IMM16 (sign extended)
181	* r5 = 4*B
182	* r6 = 4*C
183	*/
184
185	/*
186	* Get the operands.
187	*
188	* It is necessary to check for muli because it uses an I-type
189	* instruction format, while the other instructions are have an R-type
190	* format.
191	*
192	*  Prepare for either multiplication or division loop.
193	*  They both loop 32 times.
194	*/
195	movi r14, 32
196
197	add  r3, r3, sp		/* r3 = address of A-operand. */
198	ldw  r3, 0(r3)		/* r3 = A-operand. */
199	movi r7, 0x24		/* muli opcode (I-type instruction format) */
200	beq r2, r7, mul_immed /* muli doesn't use the B register as a source */
201
202	add  r5, r5, sp		/* r5 = address of B-operand. */
203	ldw  r5, 0(r5)		/* r5 = B-operand. */
204				/* r4 = SSSSSSSSSSSSSSSS,-----IMM16------ */
205				/* IMM16 not needed, align OPX portion */
206				/* r4 = SSSSSSSSSSSSSSSS,CCCCC,-OPX--,00000 */
207	srli r4, r4, 5		/* r4 = 00000,SSSSSSSSSSSSSSSS,CCCCC,-OPX-- */
208	andi r4, r4, 0x3f	/* r4 = 00000000000000000000000000,-OPX-- */
209
210	/* Now
211	* r2 = OP
212	* r3 = src1
213	* r5 = src2
214	* r4 = OPX (no longer can be muli)
215	* r6 = 4*C
216	*/
217
218
219	/*
220	*  Multiply or Divide?
221	*/
222	andi r7, r4, 0x02	/* For R-type multiply instructions,
223				   OPX & 0x02 != 0 */
224	bne r7, zero, multiply
225
226
227	/* DIVISION
228	*
229	* Divide an unsigned dividend by an unsigned divisor using
230	* a shift-and-subtract algorithm.  The example below shows
231	* 43 div 7 = 6 for 8-bit integers.  This classic algorithm uses a
232	* single register to store both the dividend and the quotient,
233	* allowing both values to be shifted with a single instruction.
234	*
235	*                               remainder dividend:quotient
236	*                               --------- -----------------
237	*   initialize                   00000000     00101011:
238	*   shift                        00000000     0101011:_
239	*   remainder >= divisor? no     00000000     0101011:0
240	*   shift                        00000000     101011:0_
241	*   remainder >= divisor? no     00000000     101011:00
242	*   shift                        00000001     01011:00_
243	*   remainder >= divisor? no     00000001     01011:000
244	*   shift                        00000010     1011:000_
245	*   remainder >= divisor? no     00000010     1011:0000
246	*   shift                        00000101     011:0000_
247	*   remainder >= divisor? no     00000101     011:00000
248	*   shift                        00001010     11:00000_
249	*   remainder >= divisor? yes    00001010     11:000001
250	*       remainder -= divisor   - 00000111
251	*                              ----------
252	*                                00000011     11:000001
253	*   shift                        00000111     1:000001_
254	*   remainder >= divisor? yes    00000111     1:0000011
255	*       remainder -= divisor   - 00000111
256	*                              ----------
257	*                                00000000     1:0000011
258	*   shift                        00000001     :0000011_
259	*   remainder >= divisor? no     00000001     :00000110
260	*
261	* The quotient is 00000110.
262	*/
263
264divide:
265	/*
266	*  Prepare for division by assuming the result
267	*  is unsigned, and storing its "sign" as 0.
268	*/
269	movi r17, 0
270
271
272	/* Which division opcode? */
273	xori r7, r4, 0x25		/* OPX of div */
274	bne r7, zero, unsigned_division
275
276
277	/*
278	*  OPX is div.  Determine and store the sign of the quotient.
279	*  Then take the absolute value of both operands.
280	*/
281	xor r17, r3, r5		/* MSB contains sign of quotient */
282	bge r3,zero,dividend_is_nonnegative
283	sub r3, zero, r3	/* -r3 */
284dividend_is_nonnegative:
285	bge r5, zero, divisor_is_nonnegative
286	sub r5, zero, r5	/* -r5 */
287divisor_is_nonnegative:
288
289
290unsigned_division:
291	/* Initialize the unsigned-division loop. */
292	movi r13, 0	/* remainder = 0 */
293
294	/* Now
295	* r3 = dividend : quotient
296	* r4 = 0x25 for div, 0x24 for divu
297	* r5 = divisor
298	* r13 = remainder
299	* r14 = loop counter (already initialized to 32)
300	* r17 = MSB contains sign of quotient
301	*/
302
303
304	/*
305	*   for (count = 32; count > 0; --count)
306	*   {
307	*/
308divide_loop:
309
310	/*
311	*       Division:
312	*
313	*       (remainder:dividend:quotient) <<= 1;
314	*/
315	slli r13, r13, 1
316	cmplt r7, r3, zero	/* r7 = MSB of r3 */
317	or r13, r13, r7
318	slli r3, r3, 1
319
320
321	/*
322	*       if (remainder >= divisor)
323	*       {
324	*           set LSB of quotient
325	*           remainder -= divisor;
326	*       }
327	*/
328	bltu r13, r5, div_skip
329	ori r3, r3, 1
330	sub r13, r13, r5
331div_skip:
332
333	/*
334	*   }
335	*/
336	subi r14, r14, 1
337	bne r14, zero, divide_loop
338
339
340	/* Now
341	* r3 = quotient
342	* r4 = 0x25 for div, 0x24 for divu
343	* r6 = 4*C
344	* r17 = MSB contains sign of quotient
345	*/
346
347
348	/*
349	*  Conditionally negate signed quotient.  If quotient is unsigned,
350	*  the sign already is initialized to 0.
351	*/
352	bge r17, zero, quotient_is_nonnegative
353	sub r3, zero, r3		/* -r3 */
354	quotient_is_nonnegative:
355
356
357	/*
358	*  Final quotient is in r3.
359	*/
360	add r6, r6, sp
361	stw r3, 0(r6)	/* write quotient to stack */
362	br restore_registers
363
364
365
366
367	/* MULTIPLICATION
368	*
369	* A "product" is the number that one gets by summing a "multiplicand"
370	* several times.  The "multiplier" specifies the number of copies of the
371	* multiplicand that are summed.
372	*
373	* Actual multiplication algorithms don't use repeated addition, however.
374	* Shift-and-add algorithms get the same answer as repeated addition, and
375	* they are faster.  To compute the lower half of a product (pppp below)
376	* one shifts the product left before adding in each of the partial
377	* products (a * mmmm) through (d * mmmm).
378	*
379	* To compute the upper half of a product (PPPP below), one adds in the
380	* partial products (d * mmmm) through (a * mmmm), each time following
381	* the add by a right shift of the product.
382	*
383	*     mmmm
384	*   * abcd
385	*   ------
386	*     ####  = d * mmmm
387	*    ####   = c * mmmm
388	*   ####    = b * mmmm
389	*  ####     = a * mmmm
390	* --------
391	* PPPPpppp
392	*
393	* The example above shows 4 partial products.  Computing actual Nios II
394	* products requires 32 partials.
395	*
396	* It is possible to compute the result of mulxsu from the result of
397	* mulxuu because the only difference between the results of these two
398	* opcodes is the value of the partial product associated with the sign
399	* bit of rA.
400	*
401	*   mulxsu = mulxuu - (rA < 0) ? rB : 0;
402	*
403	* It is possible to compute the result of mulxss from the result of
404	* mulxsu because the only difference between the results of these two
405	* opcodes is the value of the partial product associated with the sign
406	* bit of rB.
407	*
408	*   mulxss = mulxsu - (rB < 0) ? rA : 0;
409	*
410	*/
411
412mul_immed:
413	/* Opcode is muli.  Change it into mul for remainder of algorithm. */
414	mov r6, r5		/* Field B is dest register, not field C. */
415	mov r5, r4		/* Field IMM16 is src2, not field B. */
416	movi r4, 0x27		/* OPX of mul is 0x27 */
417
418multiply:
419	/* Initialize the multiplication loop. */
420	movi r9, 0	/* mul_product    = 0 */
421	movi r10, 0	/* mulxuu_product = 0 */
422	mov r11, r5	/* save original multiplier for mulxsu and mulxss */
423	mov r12, r5	/* mulxuu_multiplier (will be shifted) */
424	movi r16, 1	/* used to create "rori B,A,1" from "ror B,A,r16" */
425
426	/* Now
427	* r3 = multiplicand
428	* r5 = mul_multiplier
429	* r6 = 4 * dest_register (used later as offset to sp)
430	* r7 = temp
431	* r9 = mul_product
432	* r10 = mulxuu_product
433	* r11 = original multiplier
434	* r12 = mulxuu_multiplier
435	* r14 = loop counter (already initialized)
436	* r16 = 1
437	*/
438
439
440	/*
441	*   for (count = 32; count > 0; --count)
442	*   {
443	*/
444multiply_loop:
445
446	/*
447	*       mul_product <<= 1;
448	*       lsb = multiplier & 1;
449	*/
450	slli r9, r9, 1
451	andi r7, r12, 1
452
453	/*
454	*       if (lsb == 1)
455	*       {
456	*           mulxuu_product += multiplicand;
457	*       }
458	*/
459	beq r7, zero, mulx_skip
460	add r10, r10, r3
461	cmpltu r7, r10, r3 /* Save the carry from the MSB of mulxuu_product. */
462	ror r7, r7, r16	/* r7 = 0x80000000 on carry, or else 0x00000000 */
463mulx_skip:
464
465	/*
466	*       if (MSB of mul_multiplier == 1)
467	*       {
468	*           mul_product += multiplicand;
469	*       }
470	*/
471	bge r5, zero, mul_skip
472	add r9, r9, r3
473mul_skip:
474
475	/*
476	*       mulxuu_product >>= 1;           logical shift
477	*       mul_multiplier <<= 1;           done with MSB
478	*       mulx_multiplier >>= 1;          done with LSB
479	*/
480	srli r10, r10, 1
481	or r10, r10, r7		/* OR in the saved carry bit. */
482	slli r5, r5, 1
483	srli r12, r12, 1
484
485
486	/*
487	*   }
488	*/
489	subi r14, r14, 1
490	bne r14, zero, multiply_loop
491
492
493	/*
494	*  Multiply emulation loop done.
495	*/
496
497	/* Now
498	* r3 = multiplicand
499	* r4 = OPX
500	* r6 = 4 * dest_register (used later as offset to sp)
501	* r7 = temp
502	* r9 = mul_product
503	* r10 = mulxuu_product
504	* r11 = original multiplier
505	*/
506
507
508	/* Calculate address for result from 4 * dest_register */
509	add r6, r6, sp
510
511
512	/*
513	* Select/compute the result based on OPX.
514	*/
515
516
517	/* OPX == mul?  Then store. */
518	xori r7, r4, 0x27
519	beq r7, zero, store_product
520
521	/* It's one of the mulx.. opcodes.  Move over the result. */
522	mov r9, r10
523
524	/* OPX == mulxuu?  Then store. */
525	xori r7, r4, 0x07
526	beq r7, zero, store_product
527
528	/* Compute mulxsu
529	 *
530	 * mulxsu = mulxuu - (rA < 0) ? rB : 0;
531	 */
532	bge r3, zero, mulxsu_skip
533	sub r9, r9, r11
534mulxsu_skip:
535
536	/* OPX == mulxsu?  Then store. */
537	xori r7, r4, 0x17
538	beq r7, zero, store_product
539
540	/* Compute mulxss
541	 *
542	 * mulxss = mulxsu - (rB < 0) ? rA : 0;
543	 */
544	bge r11,zero,mulxss_skip
545	sub r9, r9, r3
546mulxss_skip:
547	/* At this point, assume that OPX is mulxss, so store*/
548
549
550store_product:
551	stw r9, 0(r6)
552
553
554restore_registers:
555			/* No need to restore r0. */
556	ldw r5, 100(sp)
557	wrctl estatus, r5
558
559	ldw r1, 4(sp)
560	ldw r2, 8(sp)
561	ldw r3, 12(sp)
562	ldw r4, 16(sp)
563	ldw r5, 20(sp)
564	ldw r6, 24(sp)
565	ldw r7, 28(sp)
566	ldw r8, 32(sp)
567	ldw r9, 36(sp)
568	ldw r10, 40(sp)
569	ldw r11, 44(sp)
570	ldw r12, 48(sp)
571	ldw r13, 52(sp)
572	ldw r14, 56(sp)
573	ldw r15, 60(sp)
574	ldw r16, 64(sp)
575	ldw r17, 68(sp)
576	ldw r18, 72(sp)
577	ldw r19, 76(sp)
578	ldw r20, 80(sp)
579	ldw r21, 84(sp)
580	ldw r22, 88(sp)
581	ldw r23, 92(sp)
582			/* Does not need to restore et */
583	ldw gp, 104(sp)
584
585	ldw fp, 112(sp)
586	ldw ea, 116(sp)
587	ldw ra, 120(sp)
588	ldw sp, 108(sp)	/* last restore sp */
589	eret
590
591.set at
592.set break
593