1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright (C) 2003-2013 Altera Corporation 4 * All rights reserved. 5 */ 6 7 8#include <linux/linkage.h> 9#include <asm/entry.h> 10 11.set noat 12.set nobreak 13 14/* 15* Explicitly allow the use of r1 (the assembler temporary register) 16* within this code. This register is normally reserved for the use of 17* the compiler. 18*/ 19 20ENTRY(instruction_trap) 21 ldw r1, PT_R1(sp) // Restore registers 22 ldw r2, PT_R2(sp) 23 ldw r3, PT_R3(sp) 24 ldw r4, PT_R4(sp) 25 ldw r5, PT_R5(sp) 26 ldw r6, PT_R6(sp) 27 ldw r7, PT_R7(sp) 28 ldw r8, PT_R8(sp) 29 ldw r9, PT_R9(sp) 30 ldw r10, PT_R10(sp) 31 ldw r11, PT_R11(sp) 32 ldw r12, PT_R12(sp) 33 ldw r13, PT_R13(sp) 34 ldw r14, PT_R14(sp) 35 ldw r15, PT_R15(sp) 36 ldw ra, PT_RA(sp) 37 ldw fp, PT_FP(sp) 38 ldw gp, PT_GP(sp) 39 ldw et, PT_ESTATUS(sp) 40 wrctl estatus, et 41 ldw ea, PT_EA(sp) 42 ldw et, PT_SP(sp) /* backup sp in et */ 43 44 addi sp, sp, PT_REGS_SIZE 45 46 /* INSTRUCTION EMULATION 47 * --------------------- 48 * 49 * Nios II processors generate exceptions for unimplemented instructions. 50 * The routines below emulate these instructions. Depending on the 51 * processor core, the only instructions that might need to be emulated 52 * are div, divu, mul, muli, mulxss, mulxsu, and mulxuu. 53 * 54 * The emulations match the instructions, except for the following 55 * limitations: 56 * 57 * 1) The emulation routines do not emulate the use of the exception 58 * temporary register (et) as a source operand because the exception 59 * handler already has modified it. 60 * 61 * 2) The routines do not emulate the use of the stack pointer (sp) or 62 * the exception return address register (ea) as a destination because 63 * modifying these registers crashes the exception handler or the 64 * interrupted routine. 65 * 66 * Detailed Design 67 * --------------- 68 * 69 * The emulation routines expect the contents of integer registers r0-r31 70 * to be on the stack at addresses sp, 4(sp), 8(sp), ... 124(sp). The 71 * routines retrieve source operands from the stack and modify the 72 * destination register's value on the stack prior to the end of the 73 * exception handler. Then all registers except the destination register 74 * are restored to their previous values. 75 * 76 * The instruction that causes the exception is found at address -4(ea). 77 * The instruction's OP and OPX fields identify the operation to be 78 * performed. 79 * 80 * One instruction, muli, is an I-type instruction that is identified by 81 * an OP field of 0x24. 82 * 83 * muli AAAAA,BBBBB,IIIIIIIIIIIIIIII,-0x24- 84 * 27 22 6 0 <-- LSB of field 85 * 86 * The remaining emulated instructions are R-type and have an OP field 87 * of 0x3a. Their OPX fields identify them. 88 * 89 * R-type AAAAA,BBBBB,CCCCC,XXXXXX,NNNNN,-0x3a- 90 * 27 22 17 11 6 0 <-- LSB of field 91 * 92 * 93 * Opcode Encoding. muli is identified by its OP value. Then OPX & 0x02 94 * is used to differentiate between the division opcodes and the 95 * remaining multiplication opcodes. 96 * 97 * Instruction OP OPX OPX & 0x02 98 * ----------- ---- ---- ---------- 99 * muli 0x24 100 * divu 0x3a 0x24 0 101 * div 0x3a 0x25 0 102 * mul 0x3a 0x27 != 0 103 * mulxuu 0x3a 0x07 != 0 104 * mulxsu 0x3a 0x17 != 0 105 * mulxss 0x3a 0x1f != 0 106 */ 107 108 109 /* 110 * Save everything on the stack to make it easy for the emulation 111 * routines to retrieve the source register operands. 112 */ 113 114 addi sp, sp, -128 115 stw zero, 0(sp) /* Save zero on stack to avoid special case for r0. */ 116 stw r1, 4(sp) 117 stw r2, 8(sp) 118 stw r3, 12(sp) 119 stw r4, 16(sp) 120 stw r5, 20(sp) 121 stw r6, 24(sp) 122 stw r7, 28(sp) 123 stw r8, 32(sp) 124 stw r9, 36(sp) 125 stw r10, 40(sp) 126 stw r11, 44(sp) 127 stw r12, 48(sp) 128 stw r13, 52(sp) 129 stw r14, 56(sp) 130 stw r15, 60(sp) 131 stw r16, 64(sp) 132 stw r17, 68(sp) 133 stw r18, 72(sp) 134 stw r19, 76(sp) 135 stw r20, 80(sp) 136 stw r21, 84(sp) 137 stw r22, 88(sp) 138 stw r23, 92(sp) 139 /* Don't bother to save et. It's already been changed. */ 140 rdctl r5, estatus 141 stw r5, 100(sp) 142 143 stw gp, 104(sp) 144 stw et, 108(sp) /* et contains previous sp value. */ 145 stw fp, 112(sp) 146 stw ea, 116(sp) 147 stw ra, 120(sp) 148 149 150 /* 151 * Split the instruction into its fields. We need 4*A, 4*B, and 4*C as 152 * offsets to the stack pointer for access to the stored register values. 153 */ 154 ldw r2,-4(ea) /* r2 = AAAAA,BBBBB,IIIIIIIIIIIIIIII,PPPPPP */ 155 roli r3, r2, 7 /* r3 = BBB,IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BB */ 156 roli r4, r3, 3 /* r4 = IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB */ 157 roli r5, r4, 2 /* r5 = IIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB,II */ 158 srai r4, r4, 16 /* r4 = (sign-extended) IMM16 */ 159 roli r6, r5, 5 /* r6 = XXXX,NNNNN,PPPPPP,AAAAA,BBBBB,CCCCC,XX */ 160 andi r2, r2, 0x3f /* r2 = 00000000000000000000000000,PPPPPP */ 161 andi r3, r3, 0x7c /* r3 = 0000000000000000000000000,AAAAA,00 */ 162 andi r5, r5, 0x7c /* r5 = 0000000000000000000000000,BBBBB,00 */ 163 andi r6, r6, 0x7c /* r6 = 0000000000000000000000000,CCCCC,00 */ 164 165 /* Now 166 * r2 = OP 167 * r3 = 4*A 168 * r4 = IMM16 (sign extended) 169 * r5 = 4*B 170 * r6 = 4*C 171 */ 172 173 /* 174 * Get the operands. 175 * 176 * It is necessary to check for muli because it uses an I-type 177 * instruction format, while the other instructions are have an R-type 178 * format. 179 * 180 * Prepare for either multiplication or division loop. 181 * They both loop 32 times. 182 */ 183 movi r14, 32 184 185 add r3, r3, sp /* r3 = address of A-operand. */ 186 ldw r3, 0(r3) /* r3 = A-operand. */ 187 movi r7, 0x24 /* muli opcode (I-type instruction format) */ 188 beq r2, r7, mul_immed /* muli doesn't use the B register as a source */ 189 190 add r5, r5, sp /* r5 = address of B-operand. */ 191 ldw r5, 0(r5) /* r5 = B-operand. */ 192 /* r4 = SSSSSSSSSSSSSSSS,-----IMM16------ */ 193 /* IMM16 not needed, align OPX portion */ 194 /* r4 = SSSSSSSSSSSSSSSS,CCCCC,-OPX--,00000 */ 195 srli r4, r4, 5 /* r4 = 00000,SSSSSSSSSSSSSSSS,CCCCC,-OPX-- */ 196 andi r4, r4, 0x3f /* r4 = 00000000000000000000000000,-OPX-- */ 197 198 /* Now 199 * r2 = OP 200 * r3 = src1 201 * r5 = src2 202 * r4 = OPX (no longer can be muli) 203 * r6 = 4*C 204 */ 205 206 207 /* 208 * Multiply or Divide? 209 */ 210 andi r7, r4, 0x02 /* For R-type multiply instructions, 211 OPX & 0x02 != 0 */ 212 bne r7, zero, multiply 213 214 215 /* DIVISION 216 * 217 * Divide an unsigned dividend by an unsigned divisor using 218 * a shift-and-subtract algorithm. The example below shows 219 * 43 div 7 = 6 for 8-bit integers. This classic algorithm uses a 220 * single register to store both the dividend and the quotient, 221 * allowing both values to be shifted with a single instruction. 222 * 223 * remainder dividend:quotient 224 * --------- ----------------- 225 * initialize 00000000 00101011: 226 * shift 00000000 0101011:_ 227 * remainder >= divisor? no 00000000 0101011:0 228 * shift 00000000 101011:0_ 229 * remainder >= divisor? no 00000000 101011:00 230 * shift 00000001 01011:00_ 231 * remainder >= divisor? no 00000001 01011:000 232 * shift 00000010 1011:000_ 233 * remainder >= divisor? no 00000010 1011:0000 234 * shift 00000101 011:0000_ 235 * remainder >= divisor? no 00000101 011:00000 236 * shift 00001010 11:00000_ 237 * remainder >= divisor? yes 00001010 11:000001 238 * remainder -= divisor - 00000111 239 * ---------- 240 * 00000011 11:000001 241 * shift 00000111 1:000001_ 242 * remainder >= divisor? yes 00000111 1:0000011 243 * remainder -= divisor - 00000111 244 * ---------- 245 * 00000000 1:0000011 246 * shift 00000001 :0000011_ 247 * remainder >= divisor? no 00000001 :00000110 248 * 249 * The quotient is 00000110. 250 */ 251 252divide: 253 /* 254 * Prepare for division by assuming the result 255 * is unsigned, and storing its "sign" as 0. 256 */ 257 movi r17, 0 258 259 260 /* Which division opcode? */ 261 xori r7, r4, 0x25 /* OPX of div */ 262 bne r7, zero, unsigned_division 263 264 265 /* 266 * OPX is div. Determine and store the sign of the quotient. 267 * Then take the absolute value of both operands. 268 */ 269 xor r17, r3, r5 /* MSB contains sign of quotient */ 270 bge r3,zero,dividend_is_nonnegative 271 sub r3, zero, r3 /* -r3 */ 272dividend_is_nonnegative: 273 bge r5, zero, divisor_is_nonnegative 274 sub r5, zero, r5 /* -r5 */ 275divisor_is_nonnegative: 276 277 278unsigned_division: 279 /* Initialize the unsigned-division loop. */ 280 movi r13, 0 /* remainder = 0 */ 281 282 /* Now 283 * r3 = dividend : quotient 284 * r4 = 0x25 for div, 0x24 for divu 285 * r5 = divisor 286 * r13 = remainder 287 * r14 = loop counter (already initialized to 32) 288 * r17 = MSB contains sign of quotient 289 */ 290 291 292 /* 293 * for (count = 32; count > 0; --count) 294 * { 295 */ 296divide_loop: 297 298 /* 299 * Division: 300 * 301 * (remainder:dividend:quotient) <<= 1; 302 */ 303 slli r13, r13, 1 304 cmplt r7, r3, zero /* r7 = MSB of r3 */ 305 or r13, r13, r7 306 slli r3, r3, 1 307 308 309 /* 310 * if (remainder >= divisor) 311 * { 312 * set LSB of quotient 313 * remainder -= divisor; 314 * } 315 */ 316 bltu r13, r5, div_skip 317 ori r3, r3, 1 318 sub r13, r13, r5 319div_skip: 320 321 /* 322 * } 323 */ 324 subi r14, r14, 1 325 bne r14, zero, divide_loop 326 327 328 /* Now 329 * r3 = quotient 330 * r4 = 0x25 for div, 0x24 for divu 331 * r6 = 4*C 332 * r17 = MSB contains sign of quotient 333 */ 334 335 336 /* 337 * Conditionally negate signed quotient. If quotient is unsigned, 338 * the sign already is initialized to 0. 339 */ 340 bge r17, zero, quotient_is_nonnegative 341 sub r3, zero, r3 /* -r3 */ 342 quotient_is_nonnegative: 343 344 345 /* 346 * Final quotient is in r3. 347 */ 348 add r6, r6, sp 349 stw r3, 0(r6) /* write quotient to stack */ 350 br restore_registers 351 352 353 354 355 /* MULTIPLICATION 356 * 357 * A "product" is the number that one gets by summing a "multiplicand" 358 * several times. The "multiplier" specifies the number of copies of the 359 * multiplicand that are summed. 360 * 361 * Actual multiplication algorithms don't use repeated addition, however. 362 * Shift-and-add algorithms get the same answer as repeated addition, and 363 * they are faster. To compute the lower half of a product (pppp below) 364 * one shifts the product left before adding in each of the partial 365 * products (a * mmmm) through (d * mmmm). 366 * 367 * To compute the upper half of a product (PPPP below), one adds in the 368 * partial products (d * mmmm) through (a * mmmm), each time following 369 * the add by a right shift of the product. 370 * 371 * mmmm 372 * * abcd 373 * ------ 374 * #### = d * mmmm 375 * #### = c * mmmm 376 * #### = b * mmmm 377 * #### = a * mmmm 378 * -------- 379 * PPPPpppp 380 * 381 * The example above shows 4 partial products. Computing actual Nios II 382 * products requires 32 partials. 383 * 384 * It is possible to compute the result of mulxsu from the result of 385 * mulxuu because the only difference between the results of these two 386 * opcodes is the value of the partial product associated with the sign 387 * bit of rA. 388 * 389 * mulxsu = mulxuu - (rA < 0) ? rB : 0; 390 * 391 * It is possible to compute the result of mulxss from the result of 392 * mulxsu because the only difference between the results of these two 393 * opcodes is the value of the partial product associated with the sign 394 * bit of rB. 395 * 396 * mulxss = mulxsu - (rB < 0) ? rA : 0; 397 * 398 */ 399 400mul_immed: 401 /* Opcode is muli. Change it into mul for remainder of algorithm. */ 402 mov r6, r5 /* Field B is dest register, not field C. */ 403 mov r5, r4 /* Field IMM16 is src2, not field B. */ 404 movi r4, 0x27 /* OPX of mul is 0x27 */ 405 406multiply: 407 /* Initialize the multiplication loop. */ 408 movi r9, 0 /* mul_product = 0 */ 409 movi r10, 0 /* mulxuu_product = 0 */ 410 mov r11, r5 /* save original multiplier for mulxsu and mulxss */ 411 mov r12, r5 /* mulxuu_multiplier (will be shifted) */ 412 movi r16, 1 /* used to create "rori B,A,1" from "ror B,A,r16" */ 413 414 /* Now 415 * r3 = multiplicand 416 * r5 = mul_multiplier 417 * r6 = 4 * dest_register (used later as offset to sp) 418 * r7 = temp 419 * r9 = mul_product 420 * r10 = mulxuu_product 421 * r11 = original multiplier 422 * r12 = mulxuu_multiplier 423 * r14 = loop counter (already initialized) 424 * r16 = 1 425 */ 426 427 428 /* 429 * for (count = 32; count > 0; --count) 430 * { 431 */ 432multiply_loop: 433 434 /* 435 * mul_product <<= 1; 436 * lsb = multiplier & 1; 437 */ 438 slli r9, r9, 1 439 andi r7, r12, 1 440 441 /* 442 * if (lsb == 1) 443 * { 444 * mulxuu_product += multiplicand; 445 * } 446 */ 447 beq r7, zero, mulx_skip 448 add r10, r10, r3 449 cmpltu r7, r10, r3 /* Save the carry from the MSB of mulxuu_product. */ 450 ror r7, r7, r16 /* r7 = 0x80000000 on carry, or else 0x00000000 */ 451mulx_skip: 452 453 /* 454 * if (MSB of mul_multiplier == 1) 455 * { 456 * mul_product += multiplicand; 457 * } 458 */ 459 bge r5, zero, mul_skip 460 add r9, r9, r3 461mul_skip: 462 463 /* 464 * mulxuu_product >>= 1; logical shift 465 * mul_multiplier <<= 1; done with MSB 466 * mulx_multiplier >>= 1; done with LSB 467 */ 468 srli r10, r10, 1 469 or r10, r10, r7 /* OR in the saved carry bit. */ 470 slli r5, r5, 1 471 srli r12, r12, 1 472 473 474 /* 475 * } 476 */ 477 subi r14, r14, 1 478 bne r14, zero, multiply_loop 479 480 481 /* 482 * Multiply emulation loop done. 483 */ 484 485 /* Now 486 * r3 = multiplicand 487 * r4 = OPX 488 * r6 = 4 * dest_register (used later as offset to sp) 489 * r7 = temp 490 * r9 = mul_product 491 * r10 = mulxuu_product 492 * r11 = original multiplier 493 */ 494 495 496 /* Calculate address for result from 4 * dest_register */ 497 add r6, r6, sp 498 499 500 /* 501 * Select/compute the result based on OPX. 502 */ 503 504 505 /* OPX == mul? Then store. */ 506 xori r7, r4, 0x27 507 beq r7, zero, store_product 508 509 /* It's one of the mulx.. opcodes. Move over the result. */ 510 mov r9, r10 511 512 /* OPX == mulxuu? Then store. */ 513 xori r7, r4, 0x07 514 beq r7, zero, store_product 515 516 /* Compute mulxsu 517 * 518 * mulxsu = mulxuu - (rA < 0) ? rB : 0; 519 */ 520 bge r3, zero, mulxsu_skip 521 sub r9, r9, r11 522mulxsu_skip: 523 524 /* OPX == mulxsu? Then store. */ 525 xori r7, r4, 0x17 526 beq r7, zero, store_product 527 528 /* Compute mulxss 529 * 530 * mulxss = mulxsu - (rB < 0) ? rA : 0; 531 */ 532 bge r11,zero,mulxss_skip 533 sub r9, r9, r3 534mulxss_skip: 535 /* At this point, assume that OPX is mulxss, so store*/ 536 537 538store_product: 539 stw r9, 0(r6) 540 541 542restore_registers: 543 /* No need to restore r0. */ 544 ldw r5, 100(sp) 545 wrctl estatus, r5 546 547 ldw r1, 4(sp) 548 ldw r2, 8(sp) 549 ldw r3, 12(sp) 550 ldw r4, 16(sp) 551 ldw r5, 20(sp) 552 ldw r6, 24(sp) 553 ldw r7, 28(sp) 554 ldw r8, 32(sp) 555 ldw r9, 36(sp) 556 ldw r10, 40(sp) 557 ldw r11, 44(sp) 558 ldw r12, 48(sp) 559 ldw r13, 52(sp) 560 ldw r14, 56(sp) 561 ldw r15, 60(sp) 562 ldw r16, 64(sp) 563 ldw r17, 68(sp) 564 ldw r18, 72(sp) 565 ldw r19, 76(sp) 566 ldw r20, 80(sp) 567 ldw r21, 84(sp) 568 ldw r22, 88(sp) 569 ldw r23, 92(sp) 570 /* Does not need to restore et */ 571 ldw gp, 104(sp) 572 573 ldw fp, 112(sp) 574 ldw ea, 116(sp) 575 ldw ra, 120(sp) 576 ldw sp, 108(sp) /* last restore sp */ 577 eret 578 579.set at 580.set break 581