1 #include <linux/types.h> 2 #include <linux/interrupt.h> 3 #include <linux/smp.h> 4 #include <linux/time.h> 5 #include <linux/clockchips.h> 6 7 #include <asm/i8253.h> 8 #include <asm/sni.h> 9 #include <asm/time.h> 10 #include <asm-generic/rtc.h> 11 12 #define SNI_CLOCK_TICK_RATE 3686400 13 #define SNI_COUNTER2_DIV 64 14 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ) 15 16 static void a20r_set_mode(enum clock_event_mode mode, 17 struct clock_event_device *evt) 18 { 19 switch (mode) { 20 case CLOCK_EVT_MODE_PERIODIC: 21 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; 22 wmb(); 23 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV; 24 wmb(); 25 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8; 26 wmb(); 27 28 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; 29 wmb(); 30 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV; 31 wmb(); 32 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8; 33 wmb(); 34 35 break; 36 case CLOCK_EVT_MODE_ONESHOT: 37 case CLOCK_EVT_MODE_UNUSED: 38 case CLOCK_EVT_MODE_SHUTDOWN: 39 break; 40 case CLOCK_EVT_MODE_RESUME: 41 break; 42 } 43 } 44 45 static struct clock_event_device a20r_clockevent_device = { 46 .name = "a20r-timer", 47 .features = CLOCK_EVT_FEAT_PERIODIC, 48 49 /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */ 50 51 .rating = 300, 52 .irq = SNI_A20R_IRQ_TIMER, 53 .set_mode = a20r_set_mode, 54 }; 55 56 static irqreturn_t a20r_interrupt(int irq, void *dev_id) 57 { 58 struct clock_event_device *cd = dev_id; 59 60 *(volatile u8 *)A20R_PT_TIM0_ACK = 0; 61 wmb(); 62 63 cd->event_handler(cd); 64 65 return IRQ_HANDLED; 66 } 67 68 static struct irqaction a20r_irqaction = { 69 .handler = a20r_interrupt, 70 .flags = IRQF_DISABLED | IRQF_PERCPU, 71 .name = "a20r-timer", 72 }; 73 74 /* 75 * a20r platform uses 2 counters to divide the input frequency. 76 * Counter 2 output is connected to Counter 0 & 1 input. 77 */ 78 static void __init sni_a20r_timer_setup(void) 79 { 80 struct clock_event_device *cd = &a20r_clockevent_device; 81 struct irqaction *action = &a20r_irqaction; 82 unsigned int cpu = smp_processor_id(); 83 84 cd->cpumask = cpumask_of(cpu); 85 clockevents_register_device(cd); 86 action->dev_id = cd; 87 setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction); 88 } 89 90 #define SNI_8254_TICK_RATE 1193182UL 91 92 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255) 93 94 static __init unsigned long dosample(void) 95 { 96 u32 ct0, ct1; 97 volatile u8 msb, lsb; 98 99 /* Start the counter. */ 100 outb_p(0x34, 0x43); 101 outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40); 102 outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40); 103 104 /* Get initial counter invariant */ 105 ct0 = read_c0_count(); 106 107 /* Latch and spin until top byte of counter0 is zero */ 108 do { 109 outb(0x00, 0x43); 110 lsb = inb(0x40); 111 msb = inb(0x40); 112 ct1 = read_c0_count(); 113 } while (msb); 114 115 /* Stop the counter. */ 116 outb(0x38, 0x43); 117 /* 118 * Return the difference, this is how far the r4k counter increments 119 * for every 1/HZ seconds. We round off the nearest 1 MHz of master 120 * clock (= 1000000 / HZ / 2). 121 */ 122 /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/ 123 return (ct1 - ct0) / (500000/HZ) * (500000/HZ); 124 } 125 126 /* 127 * Here we need to calibrate the cycle counter to at least be close. 128 */ 129 void __init plat_time_init(void) 130 { 131 unsigned long r4k_ticks[3]; 132 unsigned long r4k_tick; 133 134 /* 135 * Figure out the r4k offset, the algorithm is very simple and works in 136 * _all_ cases as long as the 8254 counter register itself works ok (as 137 * an interrupt driving timer it does not because of bug, this is why 138 * we are using the onchip r4k counter/compare register to serve this 139 * purpose, but for r4k_offset calculation it will work ok for us). 140 * There are other very complicated ways of performing this calculation 141 * but this one works just fine so I am not going to futz around. ;-) 142 */ 143 printk(KERN_INFO "Calibrating system timer... "); 144 dosample(); /* Prime cache. */ 145 dosample(); /* Prime cache. */ 146 /* Zero is NOT an option. */ 147 do { 148 r4k_ticks[0] = dosample(); 149 } while (!r4k_ticks[0]); 150 do { 151 r4k_ticks[1] = dosample(); 152 } while (!r4k_ticks[1]); 153 154 if (r4k_ticks[0] != r4k_ticks[1]) { 155 printk("warning: timer counts differ, retrying... "); 156 r4k_ticks[2] = dosample(); 157 if (r4k_ticks[2] == r4k_ticks[0] 158 || r4k_ticks[2] == r4k_ticks[1]) 159 r4k_tick = r4k_ticks[2]; 160 else { 161 printk("disagreement, using average... "); 162 r4k_tick = (r4k_ticks[0] + r4k_ticks[1] 163 + r4k_ticks[2]) / 3; 164 } 165 } else 166 r4k_tick = r4k_ticks[0]; 167 168 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick, 169 (int) (r4k_tick / (500000 / HZ)), 170 (int) (r4k_tick % (500000 / HZ))); 171 172 mips_hpt_frequency = r4k_tick * HZ; 173 174 switch (sni_brd_type) { 175 case SNI_BRD_10: 176 case SNI_BRD_10NEW: 177 case SNI_BRD_TOWER_OASIC: 178 case SNI_BRD_MINITOWER: 179 sni_a20r_timer_setup(); 180 break; 181 } 182 setup_pit_timer(); 183 } 184 185 void read_persistent_clock(struct timespec *ts) 186 { 187 ts->tv_sec = -1; 188 ts->tv_nsec = 0; 189 } 190