xref: /openbmc/linux/arch/mips/sni/time.c (revision 84953b39)
1 #include <linux/types.h>
2 #include <linux/interrupt.h>
3 #include <linux/time.h>
4 
5 #include <asm/i8253.h>
6 #include <asm/sni.h>
7 #include <asm/time.h>
8 #include <asm-generic/rtc.h>
9 
10 #define SNI_CLOCK_TICK_RATE     3686400
11 #define SNI_COUNTER2_DIV        64
12 #define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
13 
14 static void a20r_set_mode(enum clock_event_mode mode,
15                           struct clock_event_device *evt)
16 {
17 	switch (mode) {
18 	case CLOCK_EVT_MODE_PERIODIC:
19 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
20 		wmb();
21 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
22 		wmb();
23 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
24 		wmb();
25 
26 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
27 		wmb();
28 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
29 		wmb();
30 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
31 		wmb();
32 
33                 break;
34         case CLOCK_EVT_MODE_ONESHOT:
35         case CLOCK_EVT_MODE_UNUSED:
36         case CLOCK_EVT_MODE_SHUTDOWN:
37                 break;
38         case CLOCK_EVT_MODE_RESUME:
39                 break;
40         }
41 }
42 
43 static struct clock_event_device a20r_clockevent_device = {
44 	.name		= "a20r-timer",
45 	.features	= CLOCK_EVT_FEAT_PERIODIC,
46 
47 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
48 
49 	.rating		= 300,
50 	.irq		= SNI_A20R_IRQ_TIMER,
51 	.set_mode	= a20r_set_mode,
52 };
53 
54 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
55 {
56 	struct clock_event_device *cd = dev_id;
57 
58 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
59 	wmb();
60 
61 	cd->event_handler(cd);
62 
63 	return IRQ_HANDLED;
64 }
65 
66 static struct irqaction a20r_irqaction = {
67 	.handler	= a20r_interrupt,
68 	.flags		= IRQF_DISABLED | IRQF_PERCPU,
69 	.name		= "a20r-timer",
70 };
71 
72 /*
73  * a20r platform uses 2 counters to divide the input frequency.
74  * Counter 2 output is connected to Counter 0 & 1 input.
75  */
76 static void __init sni_a20r_timer_setup(void)
77 {
78 	struct clock_event_device *cd = &a20r_clockevent_device;
79 	struct irqaction *action = &a20r_irqaction;
80 	unsigned int cpu = smp_processor_id();
81 
82 	cd->cpumask             = cpumask_of_cpu(cpu);
83 
84 	action->dev_id = cd;
85 	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
86 }
87 
88 #define SNI_8254_TICK_RATE        1193182UL
89 
90 #define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
91 
92 static __init unsigned long dosample(void)
93 {
94 	u32 ct0, ct1;
95 	volatile u8 msb, lsb;
96 
97 	/* Start the counter. */
98 	outb_p(0x34, 0x43);
99 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
100 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
101 
102 	/* Get initial counter invariant */
103 	ct0 = read_c0_count();
104 
105 	/* Latch and spin until top byte of counter0 is zero */
106 	do {
107 		outb(0x00, 0x43);
108 		lsb = inb(0x40);
109 		msb = inb(0x40);
110 		ct1 = read_c0_count();
111 	} while (msb);
112 
113 	/* Stop the counter. */
114 	outb(0x38, 0x43);
115 	/*
116 	 * Return the difference, this is how far the r4k counter increments
117 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
118 	 * clock (= 1000000 / HZ / 2).
119 	 */
120 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
121 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
122 }
123 
124 /*
125  * Here we need to calibrate the cycle counter to at least be close.
126  */
127 void __init plat_time_init(void)
128 {
129 	unsigned long r4k_ticks[3];
130 	unsigned long r4k_tick;
131 
132 	/*
133 	 * Figure out the r4k offset, the algorithm is very simple and works in
134 	 * _all_ cases as long as the 8254 counter register itself works ok (as
135 	 * an interrupt driving timer it does not because of bug, this is why
136 	 * we are using the onchip r4k counter/compare register to serve this
137 	 * purpose, but for r4k_offset calculation it will work ok for us).
138 	 * There are other very complicated ways of performing this calculation
139 	 * but this one works just fine so I am not going to futz around. ;-)
140 	 */
141 	printk(KERN_INFO "Calibrating system timer... ");
142 	dosample();	/* Prime cache. */
143 	dosample();	/* Prime cache. */
144 	/* Zero is NOT an option. */
145 	do {
146 		r4k_ticks[0] = dosample();
147 	} while (!r4k_ticks[0]);
148 	do {
149 		r4k_ticks[1] = dosample();
150 	} while (!r4k_ticks[1]);
151 
152 	if (r4k_ticks[0] != r4k_ticks[1]) {
153 		printk("warning: timer counts differ, retrying... ");
154 		r4k_ticks[2] = dosample();
155 		if (r4k_ticks[2] == r4k_ticks[0]
156 		    || r4k_ticks[2] == r4k_ticks[1])
157 			r4k_tick = r4k_ticks[2];
158 		else {
159 			printk("disagreement, using average... ");
160 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
161 				   + r4k_ticks[2]) / 3;
162 		}
163 	} else
164 		r4k_tick = r4k_ticks[0];
165 
166 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
167 		(int) (r4k_tick / (500000 / HZ)),
168 		(int) (r4k_tick % (500000 / HZ)));
169 
170 	mips_hpt_frequency = r4k_tick * HZ;
171 
172 	setup_pit_timer();
173 
174 	switch (sni_brd_type) {
175 	case SNI_BRD_10:
176 	case SNI_BRD_10NEW:
177 	case SNI_BRD_TOWER_OASIC:
178 	case SNI_BRD_MINITOWER:
179 		sni_a20r_timer_setup();
180 		break;
181 	}
182 }
183 
184 unsigned long read_persistent_clock(void)
185 {
186 	return -1;
187 }
188