xref: /openbmc/linux/arch/mips/sni/time.c (revision 320ab2b0)
1 #include <linux/types.h>
2 #include <linux/interrupt.h>
3 #include <linux/time.h>
4 #include <linux/clockchips.h>
5 
6 #include <asm/i8253.h>
7 #include <asm/sni.h>
8 #include <asm/time.h>
9 #include <asm-generic/rtc.h>
10 
11 #define SNI_CLOCK_TICK_RATE     3686400
12 #define SNI_COUNTER2_DIV        64
13 #define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
14 
15 static void a20r_set_mode(enum clock_event_mode mode,
16                           struct clock_event_device *evt)
17 {
18 	switch (mode) {
19 	case CLOCK_EVT_MODE_PERIODIC:
20 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
21 		wmb();
22 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
23 		wmb();
24 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
25 		wmb();
26 
27 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
28 		wmb();
29 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
30 		wmb();
31 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
32 		wmb();
33 
34                 break;
35         case CLOCK_EVT_MODE_ONESHOT:
36         case CLOCK_EVT_MODE_UNUSED:
37         case CLOCK_EVT_MODE_SHUTDOWN:
38                 break;
39         case CLOCK_EVT_MODE_RESUME:
40                 break;
41         }
42 }
43 
44 static struct clock_event_device a20r_clockevent_device = {
45 	.name		= "a20r-timer",
46 	.features	= CLOCK_EVT_FEAT_PERIODIC,
47 
48 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
49 
50 	.rating		= 300,
51 	.irq		= SNI_A20R_IRQ_TIMER,
52 	.set_mode	= a20r_set_mode,
53 };
54 
55 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
56 {
57 	struct clock_event_device *cd = dev_id;
58 
59 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
60 	wmb();
61 
62 	cd->event_handler(cd);
63 
64 	return IRQ_HANDLED;
65 }
66 
67 static struct irqaction a20r_irqaction = {
68 	.handler	= a20r_interrupt,
69 	.flags		= IRQF_DISABLED | IRQF_PERCPU,
70 	.name		= "a20r-timer",
71 };
72 
73 /*
74  * a20r platform uses 2 counters to divide the input frequency.
75  * Counter 2 output is connected to Counter 0 & 1 input.
76  */
77 static void __init sni_a20r_timer_setup(void)
78 {
79 	struct clock_event_device *cd = &a20r_clockevent_device;
80 	struct irqaction *action = &a20r_irqaction;
81 	unsigned int cpu = smp_processor_id();
82 
83 	cd->cpumask             = cpumask_of(cpu);
84 	clockevents_register_device(cd);
85 	action->dev_id = cd;
86 	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
87 }
88 
89 #define SNI_8254_TICK_RATE        1193182UL
90 
91 #define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
92 
93 static __init unsigned long dosample(void)
94 {
95 	u32 ct0, ct1;
96 	volatile u8 msb, lsb;
97 
98 	/* Start the counter. */
99 	outb_p(0x34, 0x43);
100 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
101 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
102 
103 	/* Get initial counter invariant */
104 	ct0 = read_c0_count();
105 
106 	/* Latch and spin until top byte of counter0 is zero */
107 	do {
108 		outb(0x00, 0x43);
109 		lsb = inb(0x40);
110 		msb = inb(0x40);
111 		ct1 = read_c0_count();
112 	} while (msb);
113 
114 	/* Stop the counter. */
115 	outb(0x38, 0x43);
116 	/*
117 	 * Return the difference, this is how far the r4k counter increments
118 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
119 	 * clock (= 1000000 / HZ / 2).
120 	 */
121 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
122 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
123 }
124 
125 /*
126  * Here we need to calibrate the cycle counter to at least be close.
127  */
128 void __init plat_time_init(void)
129 {
130 	unsigned long r4k_ticks[3];
131 	unsigned long r4k_tick;
132 
133 	/*
134 	 * Figure out the r4k offset, the algorithm is very simple and works in
135 	 * _all_ cases as long as the 8254 counter register itself works ok (as
136 	 * an interrupt driving timer it does not because of bug, this is why
137 	 * we are using the onchip r4k counter/compare register to serve this
138 	 * purpose, but for r4k_offset calculation it will work ok for us).
139 	 * There are other very complicated ways of performing this calculation
140 	 * but this one works just fine so I am not going to futz around. ;-)
141 	 */
142 	printk(KERN_INFO "Calibrating system timer... ");
143 	dosample();	/* Prime cache. */
144 	dosample();	/* Prime cache. */
145 	/* Zero is NOT an option. */
146 	do {
147 		r4k_ticks[0] = dosample();
148 	} while (!r4k_ticks[0]);
149 	do {
150 		r4k_ticks[1] = dosample();
151 	} while (!r4k_ticks[1]);
152 
153 	if (r4k_ticks[0] != r4k_ticks[1]) {
154 		printk("warning: timer counts differ, retrying... ");
155 		r4k_ticks[2] = dosample();
156 		if (r4k_ticks[2] == r4k_ticks[0]
157 		    || r4k_ticks[2] == r4k_ticks[1])
158 			r4k_tick = r4k_ticks[2];
159 		else {
160 			printk("disagreement, using average... ");
161 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
162 				   + r4k_ticks[2]) / 3;
163 		}
164 	} else
165 		r4k_tick = r4k_ticks[0];
166 
167 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
168 		(int) (r4k_tick / (500000 / HZ)),
169 		(int) (r4k_tick % (500000 / HZ)));
170 
171 	mips_hpt_frequency = r4k_tick * HZ;
172 
173 	switch (sni_brd_type) {
174 	case SNI_BRD_10:
175 	case SNI_BRD_10NEW:
176 	case SNI_BRD_TOWER_OASIC:
177 	case SNI_BRD_MINITOWER:
178 		sni_a20r_timer_setup();
179 		break;
180 	}
181 	setup_pit_timer();
182 }
183 
184 unsigned long read_persistent_clock(void)
185 {
186 	return -1;
187 }
188