xref: /openbmc/linux/arch/mips/sni/time.c (revision 1fa6ac37)
1 #include <linux/types.h>
2 #include <linux/interrupt.h>
3 #include <linux/smp.h>
4 #include <linux/time.h>
5 #include <linux/clockchips.h>
6 
7 #include <asm/i8253.h>
8 #include <asm/sni.h>
9 #include <asm/time.h>
10 #include <asm-generic/rtc.h>
11 
12 #define SNI_CLOCK_TICK_RATE     3686400
13 #define SNI_COUNTER2_DIV        64
14 #define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
15 
16 static void a20r_set_mode(enum clock_event_mode mode,
17                           struct clock_event_device *evt)
18 {
19 	switch (mode) {
20 	case CLOCK_EVT_MODE_PERIODIC:
21 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
22 		wmb();
23 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
24 		wmb();
25 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
26 		wmb();
27 
28 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
29 		wmb();
30 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
31 		wmb();
32 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
33 		wmb();
34 
35                 break;
36         case CLOCK_EVT_MODE_ONESHOT:
37         case CLOCK_EVT_MODE_UNUSED:
38         case CLOCK_EVT_MODE_SHUTDOWN:
39                 break;
40         case CLOCK_EVT_MODE_RESUME:
41                 break;
42         }
43 }
44 
45 static struct clock_event_device a20r_clockevent_device = {
46 	.name		= "a20r-timer",
47 	.features	= CLOCK_EVT_FEAT_PERIODIC,
48 
49 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
50 
51 	.rating		= 300,
52 	.irq		= SNI_A20R_IRQ_TIMER,
53 	.set_mode	= a20r_set_mode,
54 };
55 
56 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
57 {
58 	struct clock_event_device *cd = dev_id;
59 
60 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
61 	wmb();
62 
63 	cd->event_handler(cd);
64 
65 	return IRQ_HANDLED;
66 }
67 
68 static struct irqaction a20r_irqaction = {
69 	.handler	= a20r_interrupt,
70 	.flags		= IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
71 	.name		= "a20r-timer",
72 };
73 
74 /*
75  * a20r platform uses 2 counters to divide the input frequency.
76  * Counter 2 output is connected to Counter 0 & 1 input.
77  */
78 static void __init sni_a20r_timer_setup(void)
79 {
80 	struct clock_event_device *cd = &a20r_clockevent_device;
81 	struct irqaction *action = &a20r_irqaction;
82 	unsigned int cpu = smp_processor_id();
83 
84 	cd->cpumask             = cpumask_of(cpu);
85 	clockevents_register_device(cd);
86 	action->dev_id = cd;
87 	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
88 }
89 
90 #define SNI_8254_TICK_RATE        1193182UL
91 
92 #define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
93 
94 static __init unsigned long dosample(void)
95 {
96 	u32 ct0, ct1;
97 	volatile u8 msb, lsb;
98 
99 	/* Start the counter. */
100 	outb_p(0x34, 0x43);
101 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
102 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
103 
104 	/* Get initial counter invariant */
105 	ct0 = read_c0_count();
106 
107 	/* Latch and spin until top byte of counter0 is zero */
108 	do {
109 		outb(0x00, 0x43);
110 		lsb = inb(0x40);
111 		msb = inb(0x40);
112 		ct1 = read_c0_count();
113 	} while (msb);
114 
115 	/* Stop the counter. */
116 	outb(0x38, 0x43);
117 	/*
118 	 * Return the difference, this is how far the r4k counter increments
119 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
120 	 * clock (= 1000000 / HZ / 2).
121 	 */
122 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
123 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
124 }
125 
126 /*
127  * Here we need to calibrate the cycle counter to at least be close.
128  */
129 void __init plat_time_init(void)
130 {
131 	unsigned long r4k_ticks[3];
132 	unsigned long r4k_tick;
133 
134 	/*
135 	 * Figure out the r4k offset, the algorithm is very simple and works in
136 	 * _all_ cases as long as the 8254 counter register itself works ok (as
137 	 * an interrupt driving timer it does not because of bug, this is why
138 	 * we are using the onchip r4k counter/compare register to serve this
139 	 * purpose, but for r4k_offset calculation it will work ok for us).
140 	 * There are other very complicated ways of performing this calculation
141 	 * but this one works just fine so I am not going to futz around. ;-)
142 	 */
143 	printk(KERN_INFO "Calibrating system timer... ");
144 	dosample();	/* Prime cache. */
145 	dosample();	/* Prime cache. */
146 	/* Zero is NOT an option. */
147 	do {
148 		r4k_ticks[0] = dosample();
149 	} while (!r4k_ticks[0]);
150 	do {
151 		r4k_ticks[1] = dosample();
152 	} while (!r4k_ticks[1]);
153 
154 	if (r4k_ticks[0] != r4k_ticks[1]) {
155 		printk("warning: timer counts differ, retrying... ");
156 		r4k_ticks[2] = dosample();
157 		if (r4k_ticks[2] == r4k_ticks[0]
158 		    || r4k_ticks[2] == r4k_ticks[1])
159 			r4k_tick = r4k_ticks[2];
160 		else {
161 			printk("disagreement, using average... ");
162 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
163 				   + r4k_ticks[2]) / 3;
164 		}
165 	} else
166 		r4k_tick = r4k_ticks[0];
167 
168 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
169 		(int) (r4k_tick / (500000 / HZ)),
170 		(int) (r4k_tick % (500000 / HZ)));
171 
172 	mips_hpt_frequency = r4k_tick * HZ;
173 
174 	switch (sni_brd_type) {
175 	case SNI_BRD_10:
176 	case SNI_BRD_10NEW:
177 	case SNI_BRD_TOWER_OASIC:
178 	case SNI_BRD_MINITOWER:
179 		sni_a20r_timer_setup();
180 		break;
181 	}
182 	setup_pit_timer();
183 }
184 
185 void read_persistent_clock(struct timespec *ts)
186 {
187 	ts->tv_sec = -1;
188 	ts->tv_nsec = 0;
189 }
190