xref: /openbmc/linux/arch/mips/sibyte/sb1250/time.c (revision 9b9ea220)
1 /*
2  * Copyright (C) 2000, 2001 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  */
18 
19 /*
20  * These are routines to set up and handle interrupts from the
21  * sb1250 general purpose timer 0.  We're using the timer as a
22  * system clock, so we set it up to run at 100 Hz.  On every
23  * interrupt, we update our idea of what the time of day is,
24  * then call do_timer() in the architecture-independent kernel
25  * code to do general bookkeeping (e.g. update jiffies, run
26  * bottom halves, etc.)
27  */
28 #include <linux/clockchips.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/kernel_stat.h>
33 
34 #include <asm/irq.h>
35 #include <asm/addrspace.h>
36 #include <asm/time.h>
37 #include <asm/io.h>
38 
39 #include <asm/sibyte/sb1250.h>
40 #include <asm/sibyte/sb1250_regs.h>
41 #include <asm/sibyte/sb1250_int.h>
42 #include <asm/sibyte/sb1250_scd.h>
43 
44 
45 #define IMR_IP2_VAL	K_INT_MAP_I0
46 #define IMR_IP3_VAL	K_INT_MAP_I1
47 #define IMR_IP4_VAL	K_INT_MAP_I2
48 
49 #define SB1250_HPT_NUM		3
50 #define SB1250_HPT_VALUE	M_SCD_TIMER_CNT /* max value */
51 
52 
53 extern int sb1250_steal_irq(int irq);
54 
55 static cycle_t sb1250_hpt_read(void);
56 
57 void __init sb1250_hpt_setup(void)
58 {
59 	int cpu = smp_processor_id();
60 
61 	if (!cpu) {
62 		/* Setup hpt using timer #3 but do not enable irq for it */
63 		__raw_writeq(0, IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CFG)));
64 		__raw_writeq(SB1250_HPT_VALUE,
65 			     IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_INIT)));
66 		__raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS,
67 			     IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CFG)));
68 
69 		mips_hpt_frequency = V_SCD_TIMER_FREQ;
70 		clocksource_mips.read = sb1250_hpt_read;
71 		clocksource_mips.mask = M_SCD_TIMER_INIT;
72 	}
73 }
74 
75 /*
76  * The general purpose timer ticks at 1 Mhz independent if
77  * the rest of the system
78  */
79 static void sibyte_set_mode(enum clock_event_mode mode,
80                            struct clock_event_device *evt)
81 {
82 	unsigned int cpu = smp_processor_id();
83 	void __iomem *timer_cfg, *timer_init;
84 
85 	timer_cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
86 	timer_init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
87 
88 	switch(mode) {
89 	case CLOCK_EVT_MODE_PERIODIC:
90 		__raw_writeq(0, timer_cfg);
91 		__raw_writeq((V_SCD_TIMER_FREQ / HZ) - 1, timer_init);
92 		__raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS,
93 			     timer_cfg);
94 		break;
95 
96 	case CLOCK_EVT_MODE_ONESHOT:
97 		/* Stop the timer until we actually program a shot */
98 	case CLOCK_EVT_MODE_SHUTDOWN:
99 		__raw_writeq(0, timer_cfg);
100 		break;
101 
102 	case CLOCK_EVT_MODE_UNUSED:	/* shuddup gcc */
103 		;
104 	}
105 }
106 
107 static int
108 sibyte_next_event(unsigned long delta, struct clock_event_device *evt)
109 {
110 	unsigned int cpu = smp_processor_id();
111 	void __iomem *timer_cfg, *timer_init;
112 
113 	timer_cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
114 	timer_init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
115 
116 	__raw_writeq(0, timer_cfg);
117 	__raw_writeq(delta, timer_init);
118 	__raw_writeq(M_SCD_TIMER_ENABLE, timer_cfg);
119 
120 	return 0;
121 }
122 
123 struct clock_event_device sibyte_hpt_clockevent = {
124 	.name		= "sb1250-counter",
125 	.features	= CLOCK_EVT_FEAT_PERIODIC,
126 	.set_mode	= sibyte_set_mode,
127 	.set_next_event	= sibyte_next_event,
128 	.shift		= 32,
129 	.irq		= 0,
130 };
131 
132 static irqreturn_t sibyte_counter_handler(int irq, void *dev_id)
133 {
134 	struct clock_event_device *cd = &sibyte_hpt_clockevent;
135 
136 	cd->event_handler(cd);
137 
138 	return IRQ_HANDLED;
139 }
140 
141 static struct irqaction sibyte_irqaction = {
142 	.handler	= sibyte_counter_handler,
143 	.flags		= IRQF_DISABLED | IRQF_PERCPU,
144 	.name		= "timer",
145 };
146 
147 /*
148  * The general purpose timer ticks at 1 Mhz independent if
149  * the rest of the system
150  */
151 static void sibyte_set_mode(enum clock_event_mode mode,
152                            struct clock_event_device *evt)
153 {
154 	unsigned int cpu = smp_processor_id();
155 	void __iomem *timer_cfg, *timer_init;
156 
157 	timer_cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
158 	timer_init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
159 
160 	switch (mode) {
161 	case CLOCK_EVT_MODE_PERIODIC:
162 		__raw_writeq(0, timer_cfg);
163 		__raw_writeq((V_SCD_TIMER_FREQ / HZ) - 1, timer_init);
164 		__raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS,
165 			     timer_cfg);
166 		break;
167 
168 	case CLOCK_EVT_MODE_ONESHOT:
169 		/* Stop the timer until we actually program a shot */
170 	case CLOCK_EVT_MODE_SHUTDOWN:
171 		__raw_writeq(0, timer_cfg);
172 		break;
173 
174 	case CLOCK_EVT_MODE_UNUSED:	/* shuddup gcc */
175 		;
176 	}
177 }
178 
179 static int
180 sibyte_next_event(unsigned long delta, struct clock_event_device *evt)
181 {
182 	unsigned int cpu = smp_processor_id();
183 	void __iomem *timer_cfg, *timer_init;
184 
185 	timer_cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
186 	timer_init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG));
187 
188 	__raw_writeq(0, timer_cfg);
189 	__raw_writeq(delta, timer_init);
190 	__raw_writeq(M_SCD_TIMER_ENABLE, timer_cfg);
191 
192 	return 0;
193 }
194 
195 struct clock_event_device sibyte_hpt_clockevent = {
196 	.name		= "sb1250-counter",
197 	.features	= CLOCK_EVT_FEAT_PERIODIC,
198 	.set_mode	= sibyte_set_mode,
199 	.set_next_event	= sibyte_next_event,
200 	.shift		= 32,
201 	.irq		= 0,
202 };
203 
204 static irqreturn_t sibyte_counter_handler(int irq, void *dev_id)
205 {
206 	struct clock_event_device *cd = &sibyte_hpt_clockevent;
207 
208 	cd->event_handler(cd);
209 
210 	return IRQ_HANDLED;
211 }
212 
213 static struct irqaction sibyte_irqaction = {
214 	.handler	= sibyte_counter_handler,
215 	.flags		= IRQF_DISABLED | IRQF_PERCPU,
216 	.name		= "timer",
217 };
218 
219 static void __init sb1250_clockevent_init(void)
220 {
221 	struct clock_event_device *cd = &sibyte_hpt_clockevent;
222 	unsigned int cpu = smp_processor_id();
223 	int irq = K_INT_TIMER_0 + cpu;
224 
225 	/* Only have 4 general purpose timers, and we use last one as hpt */
226 	BUG_ON(cpu > 2);
227 
228 	sb1250_mask_irq(cpu, irq);
229 
230 	/* Map the timer interrupt to ip[4] of this cpu */
231 	__raw_writeq(IMR_IP4_VAL,
232 		     IOADDR(A_IMR_REGISTER(cpu, R_IMR_INTERRUPT_MAP_BASE) +
233 			    (irq << 3)));
234 	cd->cpumask = cpumask_of_cpu(0);
235 
236 	sb1250_unmask_irq(cpu, irq);
237 	sb1250_steal_irq(irq);
238 
239 	/*
240 	 * This interrupt is "special" in that it doesn't use the request_irq
241 	 * way to hook the irq line.  The timer interrupt is initialized early
242 	 * enough to make this a major pain, and it's also firing enough to
243 	 * warrant a bit of special case code.  sb1250_timer_interrupt is
244 	 * called directly from irq_handler.S when IP[4] is set during an
245 	 * interrupt
246 	 */
247 	setup_irq(irq, &sibyte_irqaction);
248 
249 	clockevents_register_device(cd);
250 }
251 
252 void __init plat_time_init(void)
253 {
254 	sb1250_clocksource_init();
255 	sb1250_clockevent_init();
256 }
257 
258 /*
259  * The HPT is free running from SB1250_HPT_VALUE down to 0 then starts over
260  * again.
261  */
262 static cycle_t sb1250_hpt_read(void)
263 {
264 	unsigned int count;
265 
266 	count = G_SCD_TIMER_CNT(__raw_readq(IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CNT))));
267 
268 	return SB1250_HPT_VALUE - count;
269 }
270