xref: /openbmc/linux/arch/mips/sibyte/bcm1480/irq.c (revision f42b3800)
1 /*
2  * Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  */
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/linkage.h>
21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h>
23 #include <linux/mm.h>
24 #include <linux/slab.h>
25 #include <linux/kernel_stat.h>
26 
27 #include <asm/errno.h>
28 #include <asm/irq_regs.h>
29 #include <asm/signal.h>
30 #include <asm/system.h>
31 #include <asm/io.h>
32 
33 #include <asm/sibyte/bcm1480_regs.h>
34 #include <asm/sibyte/bcm1480_int.h>
35 #include <asm/sibyte/bcm1480_scd.h>
36 
37 #include <asm/sibyte/sb1250_uart.h>
38 #include <asm/sibyte/sb1250.h>
39 
40 /*
41  * These are the routines that handle all the low level interrupt stuff.
42  * Actions handled here are: initialization of the interrupt map, requesting of
43  * interrupt lines by handlers, dispatching if interrupts to handlers, probing
44  * for interrupt lines
45  */
46 
47 
48 static void end_bcm1480_irq(unsigned int irq);
49 static void enable_bcm1480_irq(unsigned int irq);
50 static void disable_bcm1480_irq(unsigned int irq);
51 static void ack_bcm1480_irq(unsigned int irq);
52 #ifdef CONFIG_SMP
53 static void bcm1480_set_affinity(unsigned int irq, cpumask_t mask);
54 #endif
55 
56 #ifdef CONFIG_PCI
57 extern unsigned long ht_eoi_space;
58 #endif
59 
60 #ifdef CONFIG_KGDB
61 #include <asm/gdb-stub.h>
62 extern void breakpoint(void);
63 static int kgdb_irq;
64 #ifdef CONFIG_GDB_CONSOLE
65 extern void register_gdb_console(void);
66 #endif
67 
68 /* kgdb is on when configured.  Pass "nokgdb" kernel arg to turn it off */
69 static int kgdb_flag = 1;
70 static int __init nokgdb(char *str)
71 {
72 	kgdb_flag = 0;
73 	return 1;
74 }
75 __setup("nokgdb", nokgdb);
76 
77 /* Default to UART1 */
78 int kgdb_port = 1;
79 #ifdef CONFIG_SERIAL_SB1250_DUART
80 extern char sb1250_duart_present[];
81 #endif
82 #endif
83 
84 static struct irq_chip bcm1480_irq_type = {
85 	.name = "BCM1480-IMR",
86 	.ack = ack_bcm1480_irq,
87 	.mask = disable_bcm1480_irq,
88 	.mask_ack = ack_bcm1480_irq,
89 	.unmask = enable_bcm1480_irq,
90 	.end = end_bcm1480_irq,
91 #ifdef CONFIG_SMP
92 	.set_affinity = bcm1480_set_affinity
93 #endif
94 };
95 
96 /* Store the CPU id (not the logical number) */
97 int bcm1480_irq_owner[BCM1480_NR_IRQS];
98 
99 DEFINE_SPINLOCK(bcm1480_imr_lock);
100 
101 void bcm1480_mask_irq(int cpu, int irq)
102 {
103 	unsigned long flags, hl_spacing;
104 	u64 cur_ints;
105 
106 	spin_lock_irqsave(&bcm1480_imr_lock, flags);
107 	hl_spacing = 0;
108 	if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
109 		hl_spacing = BCM1480_IMR_HL_SPACING;
110 		irq -= BCM1480_NR_IRQS_HALF;
111 	}
112 	cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
113 	cur_ints |= (((u64) 1) << irq);
114 	____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
115 	spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
116 }
117 
118 void bcm1480_unmask_irq(int cpu, int irq)
119 {
120 	unsigned long flags, hl_spacing;
121 	u64 cur_ints;
122 
123 	spin_lock_irqsave(&bcm1480_imr_lock, flags);
124 	hl_spacing = 0;
125 	if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
126 		hl_spacing = BCM1480_IMR_HL_SPACING;
127 		irq -= BCM1480_NR_IRQS_HALF;
128 	}
129 	cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
130 	cur_ints &= ~(((u64) 1) << irq);
131 	____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
132 	spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
133 }
134 
135 #ifdef CONFIG_SMP
136 static void bcm1480_set_affinity(unsigned int irq, cpumask_t mask)
137 {
138 	int i = 0, old_cpu, cpu, int_on, k;
139 	u64 cur_ints;
140 	struct irq_desc *desc = irq_desc + irq;
141 	unsigned long flags;
142 	unsigned int irq_dirty;
143 
144 	if (cpus_weight(mask) != 1) {
145 		printk("attempted to set irq affinity for irq %d to multiple CPUs\n", irq);
146 		return;
147 	}
148 	i = first_cpu(mask);
149 
150 	/* Convert logical CPU to physical CPU */
151 	cpu = cpu_logical_map(i);
152 
153 	/* Protect against other affinity changers and IMR manipulation */
154 	spin_lock_irqsave(&desc->lock, flags);
155 	spin_lock(&bcm1480_imr_lock);
156 
157 	/* Swizzle each CPU's IMR (but leave the IP selection alone) */
158 	old_cpu = bcm1480_irq_owner[irq];
159 	irq_dirty = irq;
160 	if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
161 		irq_dirty -= BCM1480_NR_IRQS_HALF;
162 	}
163 
164 	for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */
165 		cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
166 		int_on = !(cur_ints & (((u64) 1) << irq_dirty));
167 		if (int_on) {
168 			/* If it was on, mask it */
169 			cur_ints |= (((u64) 1) << irq_dirty);
170 			____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
171 		}
172 		bcm1480_irq_owner[irq] = cpu;
173 		if (int_on) {
174 			/* unmask for the new CPU */
175 			cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
176 			cur_ints &= ~(((u64) 1) << irq_dirty);
177 			____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
178 		}
179 	}
180 	spin_unlock(&bcm1480_imr_lock);
181 	spin_unlock_irqrestore(&desc->lock, flags);
182 }
183 #endif
184 
185 
186 /*****************************************************************************/
187 
188 static void disable_bcm1480_irq(unsigned int irq)
189 {
190 	bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
191 }
192 
193 static void enable_bcm1480_irq(unsigned int irq)
194 {
195 	bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq);
196 }
197 
198 
199 static void ack_bcm1480_irq(unsigned int irq)
200 {
201 	u64 pending;
202 	unsigned int irq_dirty;
203 	int k;
204 
205 	/*
206 	 * If the interrupt was an HT interrupt, now is the time to
207 	 * clear it.  NOTE: we assume the HT bridge was set up to
208 	 * deliver the interrupts to all CPUs (which makes affinity
209 	 * changing easier for us)
210 	 */
211 	irq_dirty = irq;
212 	if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
213 		irq_dirty -= BCM1480_NR_IRQS_HALF;
214 	}
215 	for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */
216 		pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq],
217 						R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING))));
218 		pending &= ((u64)1 << (irq_dirty));
219 		if (pending) {
220 #ifdef CONFIG_SMP
221 			int i;
222 			for (i=0; i<NR_CPUS; i++) {
223 				/*
224 				 * Clear for all CPUs so an affinity switch
225 				 * doesn't find an old status
226 				 */
227 				__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i),
228 								R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
229 			}
230 #else
231 			__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
232 #endif
233 
234 			/*
235 			 * Generate EOI.  For Pass 1 parts, EOI is a nop.  For
236 			 * Pass 2, the LDT world may be edge-triggered, but
237 			 * this EOI shouldn't hurt.  If they are
238 			 * level-sensitive, the EOI is required.
239 			 */
240 #ifdef CONFIG_PCI
241 			if (ht_eoi_space)
242 				*(uint32_t *)(ht_eoi_space+(irq<<16)+(7<<2)) = 0;
243 #endif
244 		}
245 	}
246 	bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
247 }
248 
249 
250 static void end_bcm1480_irq(unsigned int irq)
251 {
252 	if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
253 		bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq);
254 	}
255 }
256 
257 
258 void __init init_bcm1480_irqs(void)
259 {
260 	int i;
261 
262 	for (i = 0; i < BCM1480_NR_IRQS; i++) {
263 		set_irq_chip(i, &bcm1480_irq_type);
264 		bcm1480_irq_owner[i] = 0;
265 	}
266 }
267 
268 /*
269  *  init_IRQ is called early in the boot sequence from init/main.c.  It
270  *  is responsible for setting up the interrupt mapper and installing the
271  *  handler that will be responsible for dispatching interrupts to the
272  *  "right" place.
273  */
274 /*
275  * For now, map all interrupts to IP[2].  We could save
276  * some cycles by parceling out system interrupts to different
277  * IP lines, but keep it simple for bringup.  We'll also direct
278  * all interrupts to a single CPU; we should probably route
279  * PCI and LDT to one cpu and everything else to the other
280  * to balance the load a bit.
281  *
282  * On the second cpu, everything is set to IP5, which is
283  * ignored, EXCEPT the mailbox interrupt.  That one is
284  * set to IP[2] so it is handled.  This is needed so we
285  * can do cross-cpu function calls, as requred by SMP
286  */
287 
288 #define IMR_IP2_VAL	K_BCM1480_INT_MAP_I0
289 #define IMR_IP3_VAL	K_BCM1480_INT_MAP_I1
290 #define IMR_IP4_VAL	K_BCM1480_INT_MAP_I2
291 #define IMR_IP5_VAL	K_BCM1480_INT_MAP_I3
292 #define IMR_IP6_VAL	K_BCM1480_INT_MAP_I4
293 
294 void __init arch_init_irq(void)
295 {
296 	unsigned int i, cpu;
297 	u64 tmp;
298 	unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
299 		STATUSF_IP1 | STATUSF_IP0;
300 
301 	/* Default everything to IP2 */
302 	/* Start with _high registers which has no bit 0 interrupt source */
303 	for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) {	/* was I0 */
304 		for (cpu = 0; cpu < 4; cpu++) {
305 			__raw_writeq(IMR_IP2_VAL,
306 				     IOADDR(A_BCM1480_IMR_REGISTER(cpu,
307 								   R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3)));
308 		}
309 	}
310 
311 	/* Now do _low registers */
312 	for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) {
313 		for (cpu = 0; cpu < 4; cpu++) {
314 			__raw_writeq(IMR_IP2_VAL,
315 				     IOADDR(A_BCM1480_IMR_REGISTER(cpu,
316 								   R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3)));
317 		}
318 	}
319 
320 	init_bcm1480_irqs();
321 
322 	/*
323 	 * Map the high 16 bits of mailbox_0 registers to IP[3], for
324 	 * inter-cpu messages
325 	 */
326 	/* Was I1 */
327 	for (cpu = 0; cpu < 4; cpu++) {
328 		__raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) +
329 						 (K_BCM1480_INT_MBOX_0_0 << 3)));
330         }
331 
332 
333 	/* Clear the mailboxes.  The firmware may leave them dirty */
334 	for (cpu = 0; cpu < 4; cpu++) {
335 		__raw_writeq(0xffffffffffffffffULL,
336 			     IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU)));
337 		__raw_writeq(0xffffffffffffffffULL,
338 			     IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU)));
339 	}
340 
341 
342 	/* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */
343 	tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0));
344 	for (cpu = 0; cpu < 4; cpu++) {
345 		__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H)));
346 	}
347 	tmp = ~((u64) 0);
348 	for (cpu = 0; cpu < 4; cpu++) {
349 		__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L)));
350 	}
351 
352 	/*
353 	 * Note that the timer interrupts are also mapped, but this is
354 	 * done in bcm1480_time_init().  Also, the profiling driver
355 	 * does its own management of IP7.
356 	 */
357 
358 #ifdef CONFIG_KGDB
359 	imask |= STATUSF_IP6;
360 #endif
361 	/* Enable necessary IPs, disable the rest */
362 	change_c0_status(ST0_IM, imask);
363 
364 #ifdef CONFIG_KGDB
365 	if (kgdb_flag) {
366 		kgdb_irq = K_BCM1480_INT_UART_0 + kgdb_port;
367 
368 #ifdef CONFIG_SERIAL_SB1250_DUART
369 		sb1250_duart_present[kgdb_port] = 0;
370 #endif
371 		/* Setup uart 1 settings, mapper */
372 		/* QQQ FIXME */
373 		__raw_writeq(M_DUART_IMR_BRK, IOADDR(A_DUART_IMRREG(kgdb_port)));
374 
375 		__raw_writeq(IMR_IP6_VAL,
376 			     IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) +
377 			     (kgdb_irq << 3)));
378 		bcm1480_unmask_irq(0, kgdb_irq);
379 
380 #ifdef CONFIG_GDB_CONSOLE
381 		register_gdb_console();
382 #endif
383 		printk("Waiting for GDB on UART port %d\n", kgdb_port);
384 		set_debug_traps();
385 		breakpoint();
386 	}
387 #endif
388 }
389 
390 #ifdef CONFIG_KGDB
391 
392 #include <linux/delay.h>
393 
394 #define duart_out(reg, val)     csr_out32(val, IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
395 #define duart_in(reg)           csr_in32(IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
396 
397 static void bcm1480_kgdb_interrupt(void)
398 {
399 	/*
400 	 * Clear break-change status (allow some time for the remote
401 	 * host to stop the break, since we would see another
402 	 * interrupt on the end-of-break too)
403 	 */
404 	kstat.irqs[smp_processor_id()][kgdb_irq]++;
405 	mdelay(500);
406 	duart_out(R_DUART_CMD, V_DUART_MISC_CMD_RESET_BREAK_INT |
407 				M_DUART_RX_EN | M_DUART_TX_EN);
408 	set_async_breakpoint(&get_irq_regs()->cp0_epc);
409 }
410 
411 #endif 	/* CONFIG_KGDB */
412 
413 extern void bcm1480_mailbox_interrupt(void);
414 
415 static inline void dispatch_ip2(void)
416 {
417 	unsigned long long mask_h, mask_l;
418 	unsigned int cpu = smp_processor_id();
419 	unsigned long base;
420 
421 	/*
422 	 * Default...we've hit an IP[2] interrupt, which means we've got to
423 	 * check the 1480 interrupt registers to figure out what to do.  Need
424 	 * to detect which CPU we're on, now that smp_affinity is supported.
425 	 */
426 	base = A_BCM1480_IMR_MAPPER(cpu);
427 	mask_h = __raw_readq(
428 		IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H));
429 	mask_l = __raw_readq(
430 		IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L));
431 
432 	if (mask_h) {
433 		if (mask_h ^ 1)
434 			do_IRQ(fls64(mask_h) - 1);
435 		else if (mask_l)
436 			do_IRQ(63 + fls64(mask_l));
437 	}
438 }
439 
440 asmlinkage void plat_irq_dispatch(void)
441 {
442 	unsigned int cpu = smp_processor_id();
443 	unsigned int pending;
444 
445 #ifdef CONFIG_SIBYTE_BCM1480_PROF
446 	/* Set compare to count to silence count/compare timer interrupts */
447 	write_c0_compare(read_c0_count());
448 #endif
449 
450 	pending = read_c0_cause() & read_c0_status();
451 
452 #ifdef CONFIG_SIBYTE_BCM1480_PROF
453 	if (pending & CAUSEF_IP7)	/* Cpu performance counter interrupt */
454 		sbprof_cpu_intr();
455 	else
456 #endif
457 
458 	if (pending & CAUSEF_IP4)
459 		do_IRQ(K_BCM1480_INT_TIMER_0 + cpu);
460 #ifdef CONFIG_SMP
461 	else if (pending & CAUSEF_IP3)
462 		bcm1480_mailbox_interrupt();
463 #endif
464 
465 #ifdef CONFIG_KGDB
466 	else if (pending & CAUSEF_IP6)
467 		bcm1480_kgdb_interrupt();		/* KGDB (uart 1) */
468 #endif
469 
470 	else if (pending & CAUSEF_IP2)
471 		dispatch_ip2();
472 }
473