xref: /openbmc/linux/arch/mips/sibyte/bcm1480/irq.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation
4  */
5 #include <linux/kernel.h>
6 #include <linux/init.h>
7 #include <linux/linkage.h>
8 #include <linux/interrupt.h>
9 #include <linux/smp.h>
10 #include <linux/spinlock.h>
11 #include <linux/mm.h>
12 #include <linux/kernel_stat.h>
13 
14 #include <asm/errno.h>
15 #include <asm/irq_regs.h>
16 #include <asm/signal.h>
17 #include <asm/io.h>
18 
19 #include <asm/sibyte/bcm1480_regs.h>
20 #include <asm/sibyte/bcm1480_int.h>
21 #include <asm/sibyte/bcm1480_scd.h>
22 
23 #include <asm/sibyte/sb1250_uart.h>
24 #include <asm/sibyte/sb1250.h>
25 
26 /*
27  * These are the routines that handle all the low level interrupt stuff.
28  * Actions handled here are: initialization of the interrupt map, requesting of
29  * interrupt lines by handlers, dispatching if interrupts to handlers, probing
30  * for interrupt lines
31  */
32 
33 #ifdef CONFIG_PCI
34 extern unsigned long ht_eoi_space;
35 #endif
36 
37 /* Store the CPU id (not the logical number) */
38 int bcm1480_irq_owner[BCM1480_NR_IRQS];
39 
40 static DEFINE_RAW_SPINLOCK(bcm1480_imr_lock);
41 
42 void bcm1480_mask_irq(int cpu, int irq)
43 {
44 	unsigned long flags, hl_spacing;
45 	u64 cur_ints;
46 
47 	raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
48 	hl_spacing = 0;
49 	if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
50 		hl_spacing = BCM1480_IMR_HL_SPACING;
51 		irq -= BCM1480_NR_IRQS_HALF;
52 	}
53 	cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
54 	cur_ints |= (((u64) 1) << irq);
55 	____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
56 	raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
57 }
58 
59 void bcm1480_unmask_irq(int cpu, int irq)
60 {
61 	unsigned long flags, hl_spacing;
62 	u64 cur_ints;
63 
64 	raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
65 	hl_spacing = 0;
66 	if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
67 		hl_spacing = BCM1480_IMR_HL_SPACING;
68 		irq -= BCM1480_NR_IRQS_HALF;
69 	}
70 	cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
71 	cur_ints &= ~(((u64) 1) << irq);
72 	____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
73 	raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
74 }
75 
76 #ifdef CONFIG_SMP
77 static int bcm1480_set_affinity(struct irq_data *d, const struct cpumask *mask,
78 				bool force)
79 {
80 	unsigned int irq_dirty, irq = d->irq;
81 	int i = 0, old_cpu, cpu, int_on, k;
82 	u64 cur_ints;
83 	unsigned long flags;
84 
85 	i = cpumask_first_and(mask, cpu_online_mask);
86 
87 	/* Convert logical CPU to physical CPU */
88 	cpu = cpu_logical_map(i);
89 
90 	/* Protect against other affinity changers and IMR manipulation */
91 	raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
92 
93 	/* Swizzle each CPU's IMR (but leave the IP selection alone) */
94 	old_cpu = bcm1480_irq_owner[irq];
95 	irq_dirty = irq;
96 	if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
97 		irq_dirty -= BCM1480_NR_IRQS_HALF;
98 	}
99 
100 	for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */
101 		cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
102 		int_on = !(cur_ints & (((u64) 1) << irq_dirty));
103 		if (int_on) {
104 			/* If it was on, mask it */
105 			cur_ints |= (((u64) 1) << irq_dirty);
106 			____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
107 		}
108 		bcm1480_irq_owner[irq] = cpu;
109 		if (int_on) {
110 			/* unmask for the new CPU */
111 			cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
112 			cur_ints &= ~(((u64) 1) << irq_dirty);
113 			____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
114 		}
115 	}
116 	raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
117 
118 	return 0;
119 }
120 #endif
121 
122 
123 /*****************************************************************************/
124 
125 static void disable_bcm1480_irq(struct irq_data *d)
126 {
127 	unsigned int irq = d->irq;
128 
129 	bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
130 }
131 
132 static void enable_bcm1480_irq(struct irq_data *d)
133 {
134 	unsigned int irq = d->irq;
135 
136 	bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq);
137 }
138 
139 
140 static void ack_bcm1480_irq(struct irq_data *d)
141 {
142 	unsigned int irq_dirty, irq = d->irq;
143 	u64 pending;
144 	int k;
145 
146 	/*
147 	 * If the interrupt was an HT interrupt, now is the time to
148 	 * clear it.  NOTE: we assume the HT bridge was set up to
149 	 * deliver the interrupts to all CPUs (which makes affinity
150 	 * changing easier for us)
151 	 */
152 	irq_dirty = irq;
153 	if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
154 		irq_dirty -= BCM1480_NR_IRQS_HALF;
155 	}
156 	for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */
157 		pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq],
158 						R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING))));
159 		pending &= ((u64)1 << (irq_dirty));
160 		if (pending) {
161 #ifdef CONFIG_SMP
162 			int i;
163 			for (i=0; i<NR_CPUS; i++) {
164 				/*
165 				 * Clear for all CPUs so an affinity switch
166 				 * doesn't find an old status
167 				 */
168 				__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i),
169 								R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
170 			}
171 #else
172 			__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
173 #endif
174 
175 			/*
176 			 * Generate EOI.  For Pass 1 parts, EOI is a nop.  For
177 			 * Pass 2, the LDT world may be edge-triggered, but
178 			 * this EOI shouldn't hurt.  If they are
179 			 * level-sensitive, the EOI is required.
180 			 */
181 #ifdef CONFIG_PCI
182 			if (ht_eoi_space)
183 				*(uint32_t *)(ht_eoi_space+(irq<<16)+(7<<2)) = 0;
184 #endif
185 		}
186 	}
187 	bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
188 }
189 
190 static struct irq_chip bcm1480_irq_type = {
191 	.name = "BCM1480-IMR",
192 	.irq_mask_ack = ack_bcm1480_irq,
193 	.irq_mask = disable_bcm1480_irq,
194 	.irq_unmask = enable_bcm1480_irq,
195 #ifdef CONFIG_SMP
196 	.irq_set_affinity = bcm1480_set_affinity
197 #endif
198 };
199 
200 void __init init_bcm1480_irqs(void)
201 {
202 	int i;
203 
204 	for (i = 0; i < BCM1480_NR_IRQS; i++) {
205 		irq_set_chip_and_handler(i, &bcm1480_irq_type,
206 					 handle_level_irq);
207 		bcm1480_irq_owner[i] = 0;
208 	}
209 }
210 
211 /*
212  *  init_IRQ is called early in the boot sequence from init/main.c.  It
213  *  is responsible for setting up the interrupt mapper and installing the
214  *  handler that will be responsible for dispatching interrupts to the
215  *  "right" place.
216  */
217 /*
218  * For now, map all interrupts to IP[2].  We could save
219  * some cycles by parceling out system interrupts to different
220  * IP lines, but keep it simple for bringup.  We'll also direct
221  * all interrupts to a single CPU; we should probably route
222  * PCI and LDT to one cpu and everything else to the other
223  * to balance the load a bit.
224  *
225  * On the second cpu, everything is set to IP5, which is
226  * ignored, EXCEPT the mailbox interrupt.  That one is
227  * set to IP[2] so it is handled.  This is needed so we
228  * can do cross-cpu function calls, as required by SMP
229  */
230 
231 #define IMR_IP2_VAL	K_BCM1480_INT_MAP_I0
232 #define IMR_IP3_VAL	K_BCM1480_INT_MAP_I1
233 #define IMR_IP4_VAL	K_BCM1480_INT_MAP_I2
234 #define IMR_IP5_VAL	K_BCM1480_INT_MAP_I3
235 #define IMR_IP6_VAL	K_BCM1480_INT_MAP_I4
236 
237 void __init arch_init_irq(void)
238 {
239 	unsigned int i, cpu;
240 	u64 tmp;
241 	unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
242 		STATUSF_IP1 | STATUSF_IP0;
243 
244 	/* Default everything to IP2 */
245 	/* Start with _high registers which has no bit 0 interrupt source */
246 	for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) {	/* was I0 */
247 		for (cpu = 0; cpu < 4; cpu++) {
248 			__raw_writeq(IMR_IP2_VAL,
249 				     IOADDR(A_BCM1480_IMR_REGISTER(cpu,
250 								   R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3)));
251 		}
252 	}
253 
254 	/* Now do _low registers */
255 	for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) {
256 		for (cpu = 0; cpu < 4; cpu++) {
257 			__raw_writeq(IMR_IP2_VAL,
258 				     IOADDR(A_BCM1480_IMR_REGISTER(cpu,
259 								   R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3)));
260 		}
261 	}
262 
263 	init_bcm1480_irqs();
264 
265 	/*
266 	 * Map the high 16 bits of mailbox_0 registers to IP[3], for
267 	 * inter-cpu messages
268 	 */
269 	/* Was I1 */
270 	for (cpu = 0; cpu < 4; cpu++) {
271 		__raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) +
272 						 (K_BCM1480_INT_MBOX_0_0 << 3)));
273 	}
274 
275 
276 	/* Clear the mailboxes.	 The firmware may leave them dirty */
277 	for (cpu = 0; cpu < 4; cpu++) {
278 		__raw_writeq(0xffffffffffffffffULL,
279 			     IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU)));
280 		__raw_writeq(0xffffffffffffffffULL,
281 			     IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU)));
282 	}
283 
284 
285 	/* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */
286 	tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0));
287 	for (cpu = 0; cpu < 4; cpu++) {
288 		__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H)));
289 	}
290 	tmp = ~((u64) 0);
291 	for (cpu = 0; cpu < 4; cpu++) {
292 		__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L)));
293 	}
294 
295 	/*
296 	 * Note that the timer interrupts are also mapped, but this is
297 	 * done in bcm1480_time_init().	 Also, the profiling driver
298 	 * does its own management of IP7.
299 	 */
300 
301 	/* Enable necessary IPs, disable the rest */
302 	change_c0_status(ST0_IM, imask);
303 }
304 
305 extern void bcm1480_mailbox_interrupt(void);
306 
307 static inline void dispatch_ip2(void)
308 {
309 	unsigned long long mask_h, mask_l;
310 	unsigned int cpu = smp_processor_id();
311 	unsigned long base;
312 
313 	/*
314 	 * Default...we've hit an IP[2] interrupt, which means we've got to
315 	 * check the 1480 interrupt registers to figure out what to do.	 Need
316 	 * to detect which CPU we're on, now that smp_affinity is supported.
317 	 */
318 	base = A_BCM1480_IMR_MAPPER(cpu);
319 	mask_h = __raw_readq(
320 		IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H));
321 	mask_l = __raw_readq(
322 		IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L));
323 
324 	if (mask_h) {
325 		if (mask_h ^ 1)
326 			do_IRQ(fls64(mask_h) - 1);
327 		else if (mask_l)
328 			do_IRQ(63 + fls64(mask_l));
329 	}
330 }
331 
332 asmlinkage void plat_irq_dispatch(void)
333 {
334 	unsigned int cpu = smp_processor_id();
335 	unsigned int pending;
336 
337 	pending = read_c0_cause() & read_c0_status();
338 
339 	if (pending & CAUSEF_IP4)
340 		do_IRQ(K_BCM1480_INT_TIMER_0 + cpu);
341 #ifdef CONFIG_SMP
342 	else if (pending & CAUSEF_IP3)
343 		bcm1480_mailbox_interrupt();
344 #endif
345 
346 	else if (pending & CAUSEF_IP2)
347 		dispatch_ip2();
348 }
349