1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/mmzone.h> 4 #include <linux/nodemask.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/atomic.h> 8 #include <asm/sn/types.h> 9 #include <asm/sn/addrs.h> 10 #include <asm/sn/nmi.h> 11 #include <asm/sn/arch.h> 12 #include <asm/sn/agent.h> 13 14 #if 0 15 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n) 16 #else 17 #define NODE_NUM_CPUS(n) CPUS_PER_NODE 18 #endif 19 20 #define SEND_NMI(_nasid, _slice) \ 21 REMOTE_HUB_S((_nasid), (PI_NMI_A + ((_slice) * PI_NMI_OFFSET)), 1) 22 23 typedef unsigned long machreg_t; 24 25 static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED; 26 27 /* 28 * Let's see what else we need to do here. Set up sp, gp? 29 */ 30 void nmi_dump(void) 31 { 32 void cont_nmi_dump(void); 33 34 cont_nmi_dump(); 35 } 36 37 void install_cpu_nmi_handler(int slice) 38 { 39 nmi_t *nmi_addr; 40 41 nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice); 42 if (nmi_addr->call_addr) 43 return; 44 nmi_addr->magic = NMI_MAGIC; 45 nmi_addr->call_addr = (void *)nmi_dump; 46 nmi_addr->call_addr_c = 47 (void *)(~((unsigned long)(nmi_addr->call_addr))); 48 nmi_addr->call_parm = 0; 49 } 50 51 /* 52 * Copy the cpu registers which have been saved in the IP27prom format 53 * into the eframe format for the node under consideration. 54 */ 55 56 void nmi_cpu_eframe_save(nasid_t nasid, int slice) 57 { 58 struct reg_struct *nr; 59 int i; 60 61 /* Get the pointer to the current cpu's register set. */ 62 nr = (struct reg_struct *) 63 (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) + 64 slice * IP27_NMI_KREGS_CPU_SIZE); 65 66 pr_emerg("NMI nasid %d: slice %d\n", nasid, slice); 67 68 /* 69 * Saved main processor registers 70 */ 71 for (i = 0; i < 32; ) { 72 if ((i % 4) == 0) 73 pr_emerg("$%2d :", i); 74 pr_cont(" %016lx", nr->gpr[i]); 75 76 i++; 77 if ((i % 4) == 0) 78 pr_cont("\n"); 79 } 80 81 pr_emerg("Hi : (value lost)\n"); 82 pr_emerg("Lo : (value lost)\n"); 83 84 /* 85 * Saved cp0 registers 86 */ 87 pr_emerg("epc : %016lx %pS\n", nr->epc, (void *)nr->epc); 88 pr_emerg("%s\n", print_tainted()); 89 pr_emerg("ErrEPC: %016lx %pS\n", nr->error_epc, (void *)nr->error_epc); 90 pr_emerg("ra : %016lx %pS\n", nr->gpr[31], (void *)nr->gpr[31]); 91 pr_emerg("Status: %08lx ", nr->sr); 92 93 if (nr->sr & ST0_KX) 94 pr_cont("KX "); 95 if (nr->sr & ST0_SX) 96 pr_cont("SX "); 97 if (nr->sr & ST0_UX) 98 pr_cont("UX "); 99 100 switch (nr->sr & ST0_KSU) { 101 case KSU_USER: 102 pr_cont("USER "); 103 break; 104 case KSU_SUPERVISOR: 105 pr_cont("SUPERVISOR "); 106 break; 107 case KSU_KERNEL: 108 pr_cont("KERNEL "); 109 break; 110 default: 111 pr_cont("BAD_MODE "); 112 break; 113 } 114 115 if (nr->sr & ST0_ERL) 116 pr_cont("ERL "); 117 if (nr->sr & ST0_EXL) 118 pr_cont("EXL "); 119 if (nr->sr & ST0_IE) 120 pr_cont("IE "); 121 pr_cont("\n"); 122 123 pr_emerg("Cause : %08lx\n", nr->cause); 124 pr_emerg("PrId : %08x\n", read_c0_prid()); 125 pr_emerg("BadVA : %016lx\n", nr->badva); 126 pr_emerg("CErr : %016lx\n", nr->cache_err); 127 pr_emerg("NMI_SR: %016lx\n", nr->nmi_sr); 128 129 pr_emerg("\n"); 130 } 131 132 void nmi_dump_hub_irq(nasid_t nasid, int slice) 133 { 134 u64 mask0, mask1, pend0, pend1; 135 136 if (slice == 0) { /* Slice A */ 137 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A); 138 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A); 139 } else { /* Slice B */ 140 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B); 141 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B); 142 } 143 144 pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0); 145 pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1); 146 147 pr_emerg("PI_INT_MASK0: %16llx PI_INT_MASK1: %16llx\n", mask0, mask1); 148 pr_emerg("PI_INT_PEND0: %16llx PI_INT_PEND1: %16llx\n", pend0, pend1); 149 pr_emerg("\n\n"); 150 } 151 152 /* 153 * Copy the cpu registers which have been saved in the IP27prom format 154 * into the eframe format for the node under consideration. 155 */ 156 void nmi_node_eframe_save(nasid_t nasid) 157 { 158 int slice; 159 160 if (nasid == INVALID_NASID) 161 return; 162 163 /* Save the registers into eframe for each cpu */ 164 for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) { 165 nmi_cpu_eframe_save(nasid, slice); 166 nmi_dump_hub_irq(nasid, slice); 167 } 168 } 169 170 /* 171 * Save the nmi cpu registers for all cpus in the system. 172 */ 173 void 174 nmi_eframes_save(void) 175 { 176 nasid_t nasid; 177 178 for_each_online_node(nasid) 179 nmi_node_eframe_save(nasid); 180 } 181 182 void 183 cont_nmi_dump(void) 184 { 185 #ifndef REAL_NMI_SIGNAL 186 static atomic_t nmied_cpus = ATOMIC_INIT(0); 187 188 atomic_inc(&nmied_cpus); 189 #endif 190 /* 191 * Only allow 1 cpu to proceed 192 */ 193 arch_spin_lock(&nmi_lock); 194 195 #ifdef REAL_NMI_SIGNAL 196 /* 197 * Wait up to 15 seconds for the other cpus to respond to the NMI. 198 * If a cpu has not responded after 10 sec, send it 1 additional NMI. 199 * This is for 2 reasons: 200 * - sometimes a MMSC fail to NMI all cpus. 201 * - on 512p SN0 system, the MMSC will only send NMIs to 202 * half the cpus. Unfortunately, we don't know which cpus may be 203 * NMIed - it depends on how the site chooses to configure. 204 * 205 * Note: it has been measure that it takes the MMSC up to 2.3 secs to 206 * send NMIs to all cpus on a 256p system. 207 */ 208 for (i=0; i < 1500; i++) { 209 for_each_online_node(node) 210 if (NODEPDA(node)->dump_count == 0) 211 break; 212 if (node == MAX_NUMNODES) 213 break; 214 if (i == 1000) { 215 for_each_online_node(node) 216 if (NODEPDA(node)->dump_count == 0) { 217 cpu = cpumask_first(cpumask_of_node(node)); 218 for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) { 219 CPUMASK_SETB(nmied_cpus, cpu); 220 /* 221 * cputonasid, cputoslice 222 * needs kernel cpuid 223 */ 224 SEND_NMI((cputonasid(cpu)), (cputoslice(cpu))); 225 } 226 } 227 228 } 229 udelay(10000); 230 } 231 #else 232 while (atomic_read(&nmied_cpus) != num_online_cpus()); 233 #endif 234 235 /* 236 * Save the nmi cpu registers for all cpu in the eframe format. 237 */ 238 nmi_eframes_save(); 239 LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET); 240 } 241