1 #include <linux/kernel.h> 2 #include <linux/mmzone.h> 3 #include <linux/nodemask.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/atomic.h> 7 #include <asm/sn/types.h> 8 #include <asm/sn/addrs.h> 9 #include <asm/sn/nmi.h> 10 #include <asm/sn/arch.h> 11 #include <asm/sn/sn0/hub.h> 12 13 #if 0 14 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n) 15 #else 16 #define NODE_NUM_CPUS(n) CPUS_PER_NODE 17 #endif 18 19 #define CNODEID_NONE (cnodeid_t)-1 20 21 typedef unsigned long machreg_t; 22 23 static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED; 24 25 /* 26 * Let's see what else we need to do here. Set up sp, gp? 27 */ 28 void nmi_dump(void) 29 { 30 void cont_nmi_dump(void); 31 32 cont_nmi_dump(); 33 } 34 35 void install_cpu_nmi_handler(int slice) 36 { 37 nmi_t *nmi_addr; 38 39 nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice); 40 if (nmi_addr->call_addr) 41 return; 42 nmi_addr->magic = NMI_MAGIC; 43 nmi_addr->call_addr = (void *)nmi_dump; 44 nmi_addr->call_addr_c = 45 (void *)(~((unsigned long)(nmi_addr->call_addr))); 46 nmi_addr->call_parm = 0; 47 } 48 49 /* 50 * Copy the cpu registers which have been saved in the IP27prom format 51 * into the eframe format for the node under consideration. 52 */ 53 54 void nmi_cpu_eframe_save(nasid_t nasid, int slice) 55 { 56 struct reg_struct *nr; 57 int i; 58 59 /* Get the pointer to the current cpu's register set. */ 60 nr = (struct reg_struct *) 61 (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) + 62 slice * IP27_NMI_KREGS_CPU_SIZE); 63 64 printk("NMI nasid %d: slice %d\n", nasid, slice); 65 66 /* 67 * Saved main processor registers 68 */ 69 for (i = 0; i < 32; ) { 70 if ((i % 4) == 0) 71 printk("$%2d :", i); 72 printk(" %016lx", nr->gpr[i]); 73 74 i++; 75 if ((i % 4) == 0) 76 printk("\n"); 77 } 78 79 printk("Hi : (value lost)\n"); 80 printk("Lo : (value lost)\n"); 81 82 /* 83 * Saved cp0 registers 84 */ 85 printk("epc : %016lx %pS\n", nr->epc, (void *) nr->epc); 86 printk("%s\n", print_tainted()); 87 printk("ErrEPC: %016lx %pS\n", nr->error_epc, (void *) nr->error_epc); 88 printk("ra : %016lx %pS\n", nr->gpr[31], (void *) nr->gpr[31]); 89 printk("Status: %08lx ", nr->sr); 90 91 if (nr->sr & ST0_KX) 92 printk("KX "); 93 if (nr->sr & ST0_SX) 94 printk("SX "); 95 if (nr->sr & ST0_UX) 96 printk("UX "); 97 98 switch (nr->sr & ST0_KSU) { 99 case KSU_USER: 100 printk("USER "); 101 break; 102 case KSU_SUPERVISOR: 103 printk("SUPERVISOR "); 104 break; 105 case KSU_KERNEL: 106 printk("KERNEL "); 107 break; 108 default: 109 printk("BAD_MODE "); 110 break; 111 } 112 113 if (nr->sr & ST0_ERL) 114 printk("ERL "); 115 if (nr->sr & ST0_EXL) 116 printk("EXL "); 117 if (nr->sr & ST0_IE) 118 printk("IE "); 119 printk("\n"); 120 121 printk("Cause : %08lx\n", nr->cause); 122 printk("PrId : %08x\n", read_c0_prid()); 123 printk("BadVA : %016lx\n", nr->badva); 124 printk("CErr : %016lx\n", nr->cache_err); 125 printk("NMI_SR: %016lx\n", nr->nmi_sr); 126 127 printk("\n"); 128 } 129 130 void nmi_dump_hub_irq(nasid_t nasid, int slice) 131 { 132 hubreg_t mask0, mask1, pend0, pend1; 133 134 if (slice == 0) { /* Slice A */ 135 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A); 136 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A); 137 } else { /* Slice B */ 138 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B); 139 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B); 140 } 141 142 pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0); 143 pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1); 144 145 printk("PI_INT_MASK0: %16Lx PI_INT_MASK1: %16Lx\n", mask0, mask1); 146 printk("PI_INT_PEND0: %16Lx PI_INT_PEND1: %16Lx\n", pend0, pend1); 147 printk("\n\n"); 148 } 149 150 /* 151 * Copy the cpu registers which have been saved in the IP27prom format 152 * into the eframe format for the node under consideration. 153 */ 154 void nmi_node_eframe_save(cnodeid_t cnode) 155 { 156 nasid_t nasid; 157 int slice; 158 159 /* Make sure that we have a valid node */ 160 if (cnode == CNODEID_NONE) 161 return; 162 163 nasid = COMPACT_TO_NASID_NODEID(cnode); 164 if (nasid == INVALID_NASID) 165 return; 166 167 /* Save the registers into eframe for each cpu */ 168 for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) { 169 nmi_cpu_eframe_save(nasid, slice); 170 nmi_dump_hub_irq(nasid, slice); 171 } 172 } 173 174 /* 175 * Save the nmi cpu registers for all cpus in the system. 176 */ 177 void 178 nmi_eframes_save(void) 179 { 180 cnodeid_t cnode; 181 182 for_each_online_node(cnode) 183 nmi_node_eframe_save(cnode); 184 } 185 186 void 187 cont_nmi_dump(void) 188 { 189 #ifndef REAL_NMI_SIGNAL 190 static atomic_t nmied_cpus = ATOMIC_INIT(0); 191 192 atomic_inc(&nmied_cpus); 193 #endif 194 /* 195 * Only allow 1 cpu to proceed 196 */ 197 arch_spin_lock(&nmi_lock); 198 199 #ifdef REAL_NMI_SIGNAL 200 /* 201 * Wait up to 15 seconds for the other cpus to respond to the NMI. 202 * If a cpu has not responded after 10 sec, send it 1 additional NMI. 203 * This is for 2 reasons: 204 * - sometimes a MMSC fail to NMI all cpus. 205 * - on 512p SN0 system, the MMSC will only send NMIs to 206 * half the cpus. Unfortunately, we don't know which cpus may be 207 * NMIed - it depends on how the site chooses to configure. 208 * 209 * Note: it has been measure that it takes the MMSC up to 2.3 secs to 210 * send NMIs to all cpus on a 256p system. 211 */ 212 for (i=0; i < 1500; i++) { 213 for_each_online_node(node) 214 if (NODEPDA(node)->dump_count == 0) 215 break; 216 if (node == MAX_NUMNODES) 217 break; 218 if (i == 1000) { 219 for_each_online_node(node) 220 if (NODEPDA(node)->dump_count == 0) { 221 cpu = cpumask_first(cpumask_of_node(node)); 222 for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) { 223 CPUMASK_SETB(nmied_cpus, cpu); 224 /* 225 * cputonasid, cputoslice 226 * needs kernel cpuid 227 */ 228 SEND_NMI((cputonasid(cpu)), (cputoslice(cpu))); 229 } 230 } 231 232 } 233 udelay(10000); 234 } 235 #else 236 while (atomic_read(&nmied_cpus) != num_online_cpus()); 237 #endif 238 239 /* 240 * Save the nmi cpu registers for all cpu in the eframe format. 241 */ 242 nmi_eframes_save(); 243 LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET); 244 } 245