1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/mmzone.h> 4 #include <linux/nodemask.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/atomic.h> 8 #include <asm/sn/types.h> 9 #include <asm/sn/addrs.h> 10 #include <asm/sn/nmi.h> 11 #include <asm/sn/arch.h> 12 #include <asm/sn/sn0/hub.h> 13 14 #if 0 15 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n) 16 #else 17 #define NODE_NUM_CPUS(n) CPUS_PER_NODE 18 #endif 19 20 #define CNODEID_NONE (cnodeid_t)-1 21 22 typedef unsigned long machreg_t; 23 24 static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED; 25 26 /* 27 * Let's see what else we need to do here. Set up sp, gp? 28 */ 29 void nmi_dump(void) 30 { 31 void cont_nmi_dump(void); 32 33 cont_nmi_dump(); 34 } 35 36 void install_cpu_nmi_handler(int slice) 37 { 38 nmi_t *nmi_addr; 39 40 nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice); 41 if (nmi_addr->call_addr) 42 return; 43 nmi_addr->magic = NMI_MAGIC; 44 nmi_addr->call_addr = (void *)nmi_dump; 45 nmi_addr->call_addr_c = 46 (void *)(~((unsigned long)(nmi_addr->call_addr))); 47 nmi_addr->call_parm = 0; 48 } 49 50 /* 51 * Copy the cpu registers which have been saved in the IP27prom format 52 * into the eframe format for the node under consideration. 53 */ 54 55 void nmi_cpu_eframe_save(nasid_t nasid, int slice) 56 { 57 struct reg_struct *nr; 58 int i; 59 60 /* Get the pointer to the current cpu's register set. */ 61 nr = (struct reg_struct *) 62 (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) + 63 slice * IP27_NMI_KREGS_CPU_SIZE); 64 65 printk("NMI nasid %d: slice %d\n", nasid, slice); 66 67 /* 68 * Saved main processor registers 69 */ 70 for (i = 0; i < 32; ) { 71 if ((i % 4) == 0) 72 printk("$%2d :", i); 73 printk(" %016lx", nr->gpr[i]); 74 75 i++; 76 if ((i % 4) == 0) 77 printk("\n"); 78 } 79 80 printk("Hi : (value lost)\n"); 81 printk("Lo : (value lost)\n"); 82 83 /* 84 * Saved cp0 registers 85 */ 86 printk("epc : %016lx %pS\n", nr->epc, (void *) nr->epc); 87 printk("%s\n", print_tainted()); 88 printk("ErrEPC: %016lx %pS\n", nr->error_epc, (void *) nr->error_epc); 89 printk("ra : %016lx %pS\n", nr->gpr[31], (void *) nr->gpr[31]); 90 printk("Status: %08lx ", nr->sr); 91 92 if (nr->sr & ST0_KX) 93 printk("KX "); 94 if (nr->sr & ST0_SX) 95 printk("SX "); 96 if (nr->sr & ST0_UX) 97 printk("UX "); 98 99 switch (nr->sr & ST0_KSU) { 100 case KSU_USER: 101 printk("USER "); 102 break; 103 case KSU_SUPERVISOR: 104 printk("SUPERVISOR "); 105 break; 106 case KSU_KERNEL: 107 printk("KERNEL "); 108 break; 109 default: 110 printk("BAD_MODE "); 111 break; 112 } 113 114 if (nr->sr & ST0_ERL) 115 printk("ERL "); 116 if (nr->sr & ST0_EXL) 117 printk("EXL "); 118 if (nr->sr & ST0_IE) 119 printk("IE "); 120 printk("\n"); 121 122 printk("Cause : %08lx\n", nr->cause); 123 printk("PrId : %08x\n", read_c0_prid()); 124 printk("BadVA : %016lx\n", nr->badva); 125 printk("CErr : %016lx\n", nr->cache_err); 126 printk("NMI_SR: %016lx\n", nr->nmi_sr); 127 128 printk("\n"); 129 } 130 131 void nmi_dump_hub_irq(nasid_t nasid, int slice) 132 { 133 hubreg_t mask0, mask1, pend0, pend1; 134 135 if (slice == 0) { /* Slice A */ 136 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A); 137 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A); 138 } else { /* Slice B */ 139 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B); 140 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B); 141 } 142 143 pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0); 144 pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1); 145 146 printk("PI_INT_MASK0: %16Lx PI_INT_MASK1: %16Lx\n", mask0, mask1); 147 printk("PI_INT_PEND0: %16Lx PI_INT_PEND1: %16Lx\n", pend0, pend1); 148 printk("\n\n"); 149 } 150 151 /* 152 * Copy the cpu registers which have been saved in the IP27prom format 153 * into the eframe format for the node under consideration. 154 */ 155 void nmi_node_eframe_save(cnodeid_t cnode) 156 { 157 nasid_t nasid; 158 int slice; 159 160 /* Make sure that we have a valid node */ 161 if (cnode == CNODEID_NONE) 162 return; 163 164 nasid = COMPACT_TO_NASID_NODEID(cnode); 165 if (nasid == INVALID_NASID) 166 return; 167 168 /* Save the registers into eframe for each cpu */ 169 for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) { 170 nmi_cpu_eframe_save(nasid, slice); 171 nmi_dump_hub_irq(nasid, slice); 172 } 173 } 174 175 /* 176 * Save the nmi cpu registers for all cpus in the system. 177 */ 178 void 179 nmi_eframes_save(void) 180 { 181 cnodeid_t cnode; 182 183 for_each_online_node(cnode) 184 nmi_node_eframe_save(cnode); 185 } 186 187 void 188 cont_nmi_dump(void) 189 { 190 #ifndef REAL_NMI_SIGNAL 191 static atomic_t nmied_cpus = ATOMIC_INIT(0); 192 193 atomic_inc(&nmied_cpus); 194 #endif 195 /* 196 * Only allow 1 cpu to proceed 197 */ 198 arch_spin_lock(&nmi_lock); 199 200 #ifdef REAL_NMI_SIGNAL 201 /* 202 * Wait up to 15 seconds for the other cpus to respond to the NMI. 203 * If a cpu has not responded after 10 sec, send it 1 additional NMI. 204 * This is for 2 reasons: 205 * - sometimes a MMSC fail to NMI all cpus. 206 * - on 512p SN0 system, the MMSC will only send NMIs to 207 * half the cpus. Unfortunately, we don't know which cpus may be 208 * NMIed - it depends on how the site chooses to configure. 209 * 210 * Note: it has been measure that it takes the MMSC up to 2.3 secs to 211 * send NMIs to all cpus on a 256p system. 212 */ 213 for (i=0; i < 1500; i++) { 214 for_each_online_node(node) 215 if (NODEPDA(node)->dump_count == 0) 216 break; 217 if (node == MAX_NUMNODES) 218 break; 219 if (i == 1000) { 220 for_each_online_node(node) 221 if (NODEPDA(node)->dump_count == 0) { 222 cpu = cpumask_first(cpumask_of_node(node)); 223 for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) { 224 CPUMASK_SETB(nmied_cpus, cpu); 225 /* 226 * cputonasid, cputoslice 227 * needs kernel cpuid 228 */ 229 SEND_NMI((cputonasid(cpu)), (cputoslice(cpu))); 230 } 231 } 232 233 } 234 udelay(10000); 235 } 236 #else 237 while (atomic_read(&nmied_cpus) != num_online_cpus()); 238 #endif 239 240 /* 241 * Save the nmi cpu registers for all cpu in the eframe format. 242 */ 243 nmi_eframes_save(); 244 LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET); 245 } 246