xref: /openbmc/linux/arch/mips/sgi-ip27/ip27-irq.c (revision 5b628549)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4  *
5  * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
6  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
7  * Copyright (C) 1999 - 2001 Kanoj Sarcar
8  */
9 
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/ioport.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 
16 #include <asm/io.h>
17 #include <asm/irq_cpu.h>
18 #include <asm/pci/bridge.h>
19 #include <asm/sn/addrs.h>
20 #include <asm/sn/agent.h>
21 #include <asm/sn/arch.h>
22 #include <asm/sn/hub.h>
23 #include <asm/sn/intr.h>
24 
25 struct hub_irq_data {
26 	struct bridge_controller *bc;
27 	u64	*irq_mask[2];
28 	cpuid_t	cpu;
29 	int	bit;
30 	int	pin;
31 };
32 
33 static DECLARE_BITMAP(hub_irq_map, IP27_HUB_IRQ_COUNT);
34 
35 static DEFINE_PER_CPU(unsigned long [2], irq_enable_mask);
36 
37 static inline int alloc_level(void)
38 {
39 	int level;
40 
41 again:
42 	level = find_first_zero_bit(hub_irq_map, IP27_HUB_IRQ_COUNT);
43 	if (level >= IP27_HUB_IRQ_COUNT)
44 		return -ENOSPC;
45 
46 	if (test_and_set_bit(level, hub_irq_map))
47 		goto again;
48 
49 	return level;
50 }
51 
52 static void enable_hub_irq(struct irq_data *d)
53 {
54 	struct hub_irq_data *hd = irq_data_get_irq_chip_data(d);
55 	unsigned long *mask = per_cpu(irq_enable_mask, hd->cpu);
56 
57 	set_bit(hd->bit, mask);
58 	__raw_writeq(mask[0], hd->irq_mask[0]);
59 	__raw_writeq(mask[1], hd->irq_mask[1]);
60 }
61 
62 static void disable_hub_irq(struct irq_data *d)
63 {
64 	struct hub_irq_data *hd = irq_data_get_irq_chip_data(d);
65 	unsigned long *mask = per_cpu(irq_enable_mask, hd->cpu);
66 
67 	clear_bit(hd->bit, mask);
68 	__raw_writeq(mask[0], hd->irq_mask[0]);
69 	__raw_writeq(mask[1], hd->irq_mask[1]);
70 }
71 
72 static unsigned int startup_bridge_irq(struct irq_data *d)
73 {
74 	struct hub_irq_data *hd = irq_data_get_irq_chip_data(d);
75 	struct bridge_controller *bc;
76 	nasid_t nasid;
77 	u32 device;
78 	int pin;
79 
80 	if (!hd)
81 		return -EINVAL;
82 
83 	pin = hd->pin;
84 	bc = hd->bc;
85 
86 	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(hd->cpu));
87 	bridge_write(bc, b_int_addr[pin].addr,
88 		     (0x20000 | hd->bit | (nasid << 8)));
89 	bridge_set(bc, b_int_enable, (1 << pin));
90 	bridge_set(bc, b_int_enable, 0x7ffffe00); /* more stuff in int_enable */
91 
92 	/*
93 	 * Enable sending of an interrupt clear packt to the hub on a high to
94 	 * low transition of the interrupt pin.
95 	 *
96 	 * IRIX sets additional bits in the address which are documented as
97 	 * reserved in the bridge docs.
98 	 */
99 	bridge_set(bc, b_int_mode, (1UL << pin));
100 
101 	/*
102 	 * We assume the bridge to have a 1:1 mapping between devices
103 	 * (slots) and intr pins.
104 	 */
105 	device = bridge_read(bc, b_int_device);
106 	device &= ~(7 << (pin*3));
107 	device |= (pin << (pin*3));
108 	bridge_write(bc, b_int_device, device);
109 
110 	bridge_read(bc, b_wid_tflush);
111 
112 	enable_hub_irq(d);
113 
114 	return 0;	/* Never anything pending.  */
115 }
116 
117 static void shutdown_bridge_irq(struct irq_data *d)
118 {
119 	struct hub_irq_data *hd = irq_data_get_irq_chip_data(d);
120 	struct bridge_controller *bc;
121 	int pin = hd->pin;
122 
123 	if (!hd)
124 		return;
125 
126 	disable_hub_irq(d);
127 
128 	bc = hd->bc;
129 	bridge_clr(bc, b_int_enable, (1 << pin));
130 	bridge_read(bc, b_wid_tflush);
131 }
132 
133 static void setup_hub_mask(struct hub_irq_data *hd, const struct cpumask *mask)
134 {
135 	nasid_t nasid;
136 	int cpu;
137 
138 	cpu = cpumask_first_and(mask, cpu_online_mask);
139 	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
140 	hd->cpu = cpu;
141 	if (!cputoslice(cpu)) {
142 		hd->irq_mask[0] = REMOTE_HUB_PTR(nasid, PI_INT_MASK0_A);
143 		hd->irq_mask[1] = REMOTE_HUB_PTR(nasid, PI_INT_MASK1_A);
144 	} else {
145 		hd->irq_mask[0] = REMOTE_HUB_PTR(nasid, PI_INT_MASK0_B);
146 		hd->irq_mask[1] = REMOTE_HUB_PTR(nasid, PI_INT_MASK1_B);
147 	}
148 
149 	/* Make sure it's not already pending when we connect it. */
150 	REMOTE_HUB_CLR_INTR(nasid, hd->bit);
151 }
152 
153 static int set_affinity_hub_irq(struct irq_data *d, const struct cpumask *mask,
154 				bool force)
155 {
156 	struct hub_irq_data *hd = irq_data_get_irq_chip_data(d);
157 
158 	if (!hd)
159 		return -EINVAL;
160 
161 	if (irqd_is_started(d))
162 		disable_hub_irq(d);
163 
164 	setup_hub_mask(hd, mask);
165 
166 	if (irqd_is_started(d))
167 		startup_bridge_irq(d);
168 
169 	irq_data_update_effective_affinity(d, cpumask_of(hd->cpu));
170 
171 	return 0;
172 }
173 
174 static struct irq_chip hub_irq_type = {
175 	.name		  = "HUB",
176 	.irq_startup	  = startup_bridge_irq,
177 	.irq_shutdown	  = shutdown_bridge_irq,
178 	.irq_mask	  = disable_hub_irq,
179 	.irq_unmask	  = enable_hub_irq,
180 	.irq_set_affinity = set_affinity_hub_irq,
181 };
182 
183 int request_bridge_irq(struct bridge_controller *bc, int pin)
184 {
185 	struct hub_irq_data *hd;
186 	struct hub_data *hub;
187 	struct irq_desc *desc;
188 	int swlevel;
189 	int irq;
190 
191 	hd = kzalloc(sizeof(*hd), GFP_KERNEL);
192 	if (!hd)
193 		return -ENOMEM;
194 
195 	swlevel = alloc_level();
196 	if (unlikely(swlevel < 0)) {
197 		kfree(hd);
198 		return -EAGAIN;
199 	}
200 	irq = swlevel + IP27_HUB_IRQ_BASE;
201 
202 	hd->bc = bc;
203 	hd->bit = swlevel;
204 	hd->pin = pin;
205 	irq_set_chip_data(irq, hd);
206 
207 	/* use CPU connected to nearest hub */
208 	hub = hub_data(NASID_TO_COMPACT_NODEID(bc->nasid));
209 	setup_hub_mask(hd, &hub->h_cpus);
210 
211 	desc = irq_to_desc(irq);
212 	desc->irq_common_data.node = bc->nasid;
213 	cpumask_copy(desc->irq_common_data.affinity, &hub->h_cpus);
214 
215 	return irq;
216 }
217 
218 void ip27_hub_irq_init(void)
219 {
220 	int i;
221 
222 	for (i = IP27_HUB_IRQ_BASE;
223 	     i < (IP27_HUB_IRQ_BASE + IP27_HUB_IRQ_COUNT); i++)
224 		irq_set_chip_and_handler(i, &hub_irq_type, handle_level_irq);
225 
226 	/*
227 	 * Some interrupts are reserved by hardware or by software convention.
228 	 * Mark these as reserved right away so they won't be used accidentally
229 	 * later.
230 	 */
231 	for (i = 0; i <= BASE_PCI_IRQ; i++)
232 		set_bit(i, hub_irq_map);
233 
234 	set_bit(IP_PEND0_6_63, hub_irq_map);
235 
236 	for (i = NI_BRDCAST_ERR_A; i <= MSC_PANIC_INTR; i++)
237 		set_bit(i, hub_irq_map);
238 }
239 
240 /*
241  * This code is unnecessarily complex, because we do
242  * intr enabling. Basically, once we grab the set of intrs we need
243  * to service, we must mask _all_ these interrupts; firstly, to make
244  * sure the same intr does not intr again, causing recursion that
245  * can lead to stack overflow. Secondly, we can not just mask the
246  * one intr we are do_IRQing, because the non-masked intrs in the
247  * first set might intr again, causing multiple servicings of the
248  * same intr. This effect is mostly seen for intercpu intrs.
249  * Kanoj 05.13.00
250  */
251 
252 static void ip27_do_irq_mask0(struct irq_desc *desc)
253 {
254 	cpuid_t cpu = smp_processor_id();
255 	unsigned long *mask = per_cpu(irq_enable_mask, cpu);
256 	u64 pend0;
257 
258 	/* copied from Irix intpend0() */
259 	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
260 
261 	pend0 &= mask[0];		/* Pick intrs we should look at */
262 	if (!pend0)
263 		return;
264 
265 #ifdef CONFIG_SMP
266 	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
267 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
268 		scheduler_ipi();
269 	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
270 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
271 		scheduler_ipi();
272 	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
273 		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
274 		generic_smp_call_function_interrupt();
275 	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
276 		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
277 		generic_smp_call_function_interrupt();
278 	} else
279 #endif
280 		generic_handle_irq(__ffs(pend0) + IP27_HUB_IRQ_BASE);
281 
282 	LOCAL_HUB_L(PI_INT_PEND0);
283 }
284 
285 static void ip27_do_irq_mask1(struct irq_desc *desc)
286 {
287 	cpuid_t cpu = smp_processor_id();
288 	unsigned long *mask = per_cpu(irq_enable_mask, cpu);
289 	u64 pend1;
290 
291 	/* copied from Irix intpend0() */
292 	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
293 
294 	pend1 &= mask[1];		/* Pick intrs we should look at */
295 	if (!pend1)
296 		return;
297 
298 	generic_handle_irq(__ffs(pend1) + IP27_HUB_IRQ_BASE + 64);
299 
300 	LOCAL_HUB_L(PI_INT_PEND1);
301 }
302 
303 void install_ipi(void)
304 {
305 	int cpu = smp_processor_id();
306 	unsigned long *mask = per_cpu(irq_enable_mask, cpu);
307 	int slice = LOCAL_HUB_L(PI_CPU_NUM);
308 	int resched, call;
309 
310 	resched = CPU_RESCHED_A_IRQ + slice;
311 	set_bit(resched, mask);
312 	LOCAL_HUB_CLR_INTR(resched);
313 
314 	call = CPU_CALL_A_IRQ + slice;
315 	set_bit(call, mask);
316 	LOCAL_HUB_CLR_INTR(call);
317 
318 	if (slice == 0) {
319 		LOCAL_HUB_S(PI_INT_MASK0_A, mask[0]);
320 		LOCAL_HUB_S(PI_INT_MASK1_A, mask[1]);
321 	} else {
322 		LOCAL_HUB_S(PI_INT_MASK0_B, mask[0]);
323 		LOCAL_HUB_S(PI_INT_MASK1_B, mask[1]);
324 	}
325 }
326 
327 void __init arch_init_irq(void)
328 {
329 	mips_cpu_irq_init();
330 	ip27_hub_irq_init();
331 
332 	irq_set_percpu_devid(IP27_HUB_PEND0_IRQ);
333 	irq_set_chained_handler(IP27_HUB_PEND0_IRQ, ip27_do_irq_mask0);
334 	irq_set_percpu_devid(IP27_HUB_PEND1_IRQ);
335 	irq_set_chained_handler(IP27_HUB_PEND1_IRQ, ip27_do_irq_mask1);
336 }
337