xref: /openbmc/linux/arch/mips/sgi-ip22/ip22-time.c (revision a1e58bbd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Time operations for IP22 machines. Original code may come from
7  * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure)
8  *
9  * Copyright (C) 2001 by Ladislav Michl
10  * Copyright (C) 2003, 06 Ralf Baechle (ralf@linux-mips.org)
11  */
12 #include <linux/bcd.h>
13 #include <linux/ds1286.h>
14 #include <linux/init.h>
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/time.h>
20 
21 #include <asm/cpu.h>
22 #include <asm/mipsregs.h>
23 #include <asm/i8253.h>
24 #include <asm/io.h>
25 #include <asm/irq.h>
26 #include <asm/time.h>
27 #include <asm/sgialib.h>
28 #include <asm/sgi/ioc.h>
29 #include <asm/sgi/hpc3.h>
30 #include <asm/sgi/ip22.h>
31 
32 /*
33  * Note that mktime uses month from 1 to 12 while rtc_time_to_tm
34  * uses 0 to 11.
35  */
36 unsigned long read_persistent_clock(void)
37 {
38 	unsigned int yrs, mon, day, hrs, min, sec;
39 	unsigned int save_control;
40 	unsigned long flags;
41 
42 	spin_lock_irqsave(&rtc_lock, flags);
43 	save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
44 	hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
45 
46 	sec = BCD2BIN(hpc3c0->rtcregs[RTC_SECONDS] & 0xff);
47 	min = BCD2BIN(hpc3c0->rtcregs[RTC_MINUTES] & 0xff);
48 	hrs = BCD2BIN(hpc3c0->rtcregs[RTC_HOURS] & 0x3f);
49 	day = BCD2BIN(hpc3c0->rtcregs[RTC_DATE] & 0xff);
50 	mon = BCD2BIN(hpc3c0->rtcregs[RTC_MONTH] & 0x1f);
51 	yrs = BCD2BIN(hpc3c0->rtcregs[RTC_YEAR] & 0xff);
52 
53 	hpc3c0->rtcregs[RTC_CMD] = save_control;
54 	spin_unlock_irqrestore(&rtc_lock, flags);
55 
56 	if (yrs < 45)
57 		yrs += 30;
58 	if ((yrs += 40) < 70)
59 		yrs += 100;
60 
61 	return mktime(yrs + 1900, mon, day, hrs, min, sec);
62 }
63 
64 int rtc_mips_set_time(unsigned long tim)
65 {
66 	struct rtc_time tm;
67 	unsigned int save_control;
68 	unsigned long flags;
69 
70 	rtc_time_to_tm(tim, &tm);
71 
72 	tm.tm_mon += 1;		/* tm_mon starts at zero */
73 	tm.tm_year -= 40;
74 	if (tm.tm_year >= 100)
75 		tm.tm_year -= 100;
76 
77 	spin_lock_irqsave(&rtc_lock, flags);
78 	save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
79 	hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
80 
81 	hpc3c0->rtcregs[RTC_YEAR] = BIN2BCD(tm.tm_year);
82 	hpc3c0->rtcregs[RTC_MONTH] = BIN2BCD(tm.tm_mon);
83 	hpc3c0->rtcregs[RTC_DATE] = BIN2BCD(tm.tm_mday);
84 	hpc3c0->rtcregs[RTC_HOURS] = BIN2BCD(tm.tm_hour);
85 	hpc3c0->rtcregs[RTC_MINUTES] = BIN2BCD(tm.tm_min);
86 	hpc3c0->rtcregs[RTC_SECONDS] = BIN2BCD(tm.tm_sec);
87 	hpc3c0->rtcregs[RTC_HUNDREDTH_SECOND] = 0;
88 
89 	hpc3c0->rtcregs[RTC_CMD] = save_control;
90 	spin_unlock_irqrestore(&rtc_lock, flags);
91 
92 	return 0;
93 }
94 
95 static unsigned long dosample(void)
96 {
97 	u32 ct0, ct1;
98 	u8 msb, lsb;
99 
100 	/* Start the counter. */
101 	sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL |
102 			 SGINT_TCWORD_MRGEN);
103 	sgint->tcnt2 = SGINT_TCSAMP_COUNTER & 0xff;
104 	sgint->tcnt2 = SGINT_TCSAMP_COUNTER >> 8;
105 
106 	/* Get initial counter invariant */
107 	ct0 = read_c0_count();
108 
109 	/* Latch and spin until top byte of counter2 is zero */
110 	do {
111 		writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT, &sgint->tcword);
112 		lsb = readb(&sgint->tcnt2);
113 		msb = readb(&sgint->tcnt2);
114 		ct1 = read_c0_count();
115 	} while (msb);
116 
117 	/* Stop the counter. */
118 	writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MSWST,
119 	       &sgint->tcword);
120 	/*
121 	 * Return the difference, this is how far the r4k counter increments
122 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
123 	 * clock (= 1000000 / HZ / 2).
124 	 */
125 
126 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
127 }
128 
129 /*
130  * Here we need to calibrate the cycle counter to at least be close.
131  */
132 __init void plat_time_init(void)
133 {
134 	unsigned long r4k_ticks[3];
135 	unsigned long r4k_tick;
136 
137 	/*
138 	 * Figure out the r4k offset, the algorithm is very simple and works in
139 	 * _all_ cases as long as the 8254 counter register itself works ok (as
140 	 * an interrupt driving timer it does not because of bug, this is why
141 	 * we are using the onchip r4k counter/compare register to serve this
142 	 * purpose, but for r4k_offset calculation it will work ok for us).
143 	 * There are other very complicated ways of performing this calculation
144 	 * but this one works just fine so I am not going to futz around. ;-)
145 	 */
146 	printk(KERN_INFO "Calibrating system timer... ");
147 	dosample();	/* Prime cache. */
148 	dosample();	/* Prime cache. */
149 	/* Zero is NOT an option. */
150 	do {
151 		r4k_ticks[0] = dosample();
152 	} while (!r4k_ticks[0]);
153 	do {
154 		r4k_ticks[1] = dosample();
155 	} while (!r4k_ticks[1]);
156 
157 	if (r4k_ticks[0] != r4k_ticks[1]) {
158 		printk("warning: timer counts differ, retrying... ");
159 		r4k_ticks[2] = dosample();
160 		if (r4k_ticks[2] == r4k_ticks[0]
161 		    || r4k_ticks[2] == r4k_ticks[1])
162 			r4k_tick = r4k_ticks[2];
163 		else {
164 			printk("disagreement, using average... ");
165 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
166 				   + r4k_ticks[2]) / 3;
167 		}
168 	} else
169 		r4k_tick = r4k_ticks[0];
170 
171 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
172 		(int) (r4k_tick / (500000 / HZ)),
173 		(int) (r4k_tick % (500000 / HZ)));
174 
175 	mips_hpt_frequency = r4k_tick * HZ;
176 
177 	if (ip22_is_fullhouse())
178 		setup_pit_timer();
179 }
180 
181 /* Generic SGI handler for (spurious) 8254 interrupts */
182 void indy_8254timer_irq(void)
183 {
184 	int irq = SGI_8254_0_IRQ;
185 	ULONG cnt;
186 	char c;
187 
188 	irq_enter();
189 	kstat_this_cpu.irqs[irq]++;
190 	printk(KERN_ALERT "Oops, got 8254 interrupt.\n");
191 	ArcRead(0, &c, 1, &cnt);
192 	ArcEnterInteractiveMode();
193 	irq_exit();
194 }
195