1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2005-2009 Cavium Networks 7 */ 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/interrupt.h> 12 #include <linux/time.h> 13 #include <linux/delay.h> 14 #include <linux/platform_device.h> 15 #include <linux/swiotlb.h> 16 17 #include <asm/time.h> 18 19 #include <asm/octeon/octeon.h> 20 #include <asm/octeon/cvmx-npi-defs.h> 21 #include <asm/octeon/cvmx-pci-defs.h> 22 #include <asm/octeon/pci-octeon.h> 23 24 #include <dma-coherence.h> 25 26 #define USE_OCTEON_INTERNAL_ARBITER 27 28 /* 29 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO 30 * addresses. Use PCI endian swapping 1 so no address swapping is 31 * necessary. The Linux io routines will endian swap the data. 32 */ 33 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull 34 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) 35 36 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ 37 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) 38 39 u64 octeon_bar1_pci_phys; 40 41 /** 42 * This is the bit decoding used for the Octeon PCI controller addresses 43 */ 44 union octeon_pci_address { 45 uint64_t u64; 46 struct { 47 uint64_t upper:2; 48 uint64_t reserved:13; 49 uint64_t io:1; 50 uint64_t did:5; 51 uint64_t subdid:3; 52 uint64_t reserved2:4; 53 uint64_t endian_swap:2; 54 uint64_t reserved3:10; 55 uint64_t bus:8; 56 uint64_t dev:5; 57 uint64_t func:3; 58 uint64_t reg:8; 59 } s; 60 }; 61 62 int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev, 63 u8 slot, u8 pin); 64 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; 65 66 /** 67 * Map a PCI device to the appropriate interrupt line 68 * 69 * @dev: The Linux PCI device structure for the device to map 70 * @slot: The slot number for this device on __BUS 0__. Linux 71 * enumerates through all the bridges and figures out the 72 * slot on Bus 0 where this device eventually hooks to. 73 * @pin: The PCI interrupt pin read from the device, then swizzled 74 * as it goes through each bridge. 75 * Returns Interrupt number for the device 76 */ 77 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) 78 { 79 if (octeon_pcibios_map_irq) 80 return octeon_pcibios_map_irq(dev, slot, pin); 81 else 82 panic("octeon_pcibios_map_irq not set."); 83 } 84 85 86 /* 87 * Called to perform platform specific PCI setup 88 */ 89 int pcibios_plat_dev_init(struct pci_dev *dev) 90 { 91 uint16_t config; 92 uint32_t dconfig; 93 int pos; 94 /* 95 * Force the Cache line setting to 64 bytes. The standard 96 * Linux bus scan doesn't seem to set it. Octeon really has 97 * 128 byte lines, but Intel bridges get really upset if you 98 * try and set values above 64 bytes. Value is specified in 99 * 32bit words. 100 */ 101 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); 102 /* Set latency timers for all devices */ 103 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); 104 105 /* Enable reporting System errors and parity errors on all devices */ 106 /* Enable parity checking and error reporting */ 107 pci_read_config_word(dev, PCI_COMMAND, &config); 108 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; 109 pci_write_config_word(dev, PCI_COMMAND, config); 110 111 if (dev->subordinate) { 112 /* Set latency timers on sub bridges */ 113 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); 114 /* More bridge error detection */ 115 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); 116 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; 117 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); 118 } 119 120 /* Enable the PCIe normal error reporting */ 121 config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ 122 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ 123 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ 124 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ 125 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); 126 127 /* Find the Advanced Error Reporting capability */ 128 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); 129 if (pos) { 130 /* Clear Uncorrectable Error Status */ 131 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 132 &dconfig); 133 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 134 dconfig); 135 /* Enable reporting of all uncorrectable errors */ 136 /* Uncorrectable Error Mask - turned on bits disable errors */ 137 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); 138 /* 139 * Leave severity at HW default. This only controls if 140 * errors are reported as uncorrectable or 141 * correctable, not if the error is reported. 142 */ 143 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ 144 /* Clear Correctable Error Status */ 145 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); 146 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); 147 /* Enable reporting of all correctable errors */ 148 /* Correctable Error Mask - turned on bits disable errors */ 149 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); 150 /* Advanced Error Capabilities */ 151 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); 152 /* ECRC Generation Enable */ 153 if (config & PCI_ERR_CAP_ECRC_GENC) 154 config |= PCI_ERR_CAP_ECRC_GENE; 155 /* ECRC Check Enable */ 156 if (config & PCI_ERR_CAP_ECRC_CHKC) 157 config |= PCI_ERR_CAP_ECRC_CHKE; 158 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); 159 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ 160 /* Report all errors to the root complex */ 161 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, 162 PCI_ERR_ROOT_CMD_COR_EN | 163 PCI_ERR_ROOT_CMD_NONFATAL_EN | 164 PCI_ERR_ROOT_CMD_FATAL_EN); 165 /* Clear the Root status register */ 166 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); 167 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); 168 } 169 170 dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops; 171 172 return 0; 173 } 174 175 /** 176 * Return the mapping of PCI device number to IRQ line. Each 177 * character in the return string represents the interrupt 178 * line for the device at that position. Device 1 maps to the 179 * first character, etc. The characters A-D are used for PCI 180 * interrupts. 181 * 182 * Returns PCI interrupt mapping 183 */ 184 const char *octeon_get_pci_interrupts(void) 185 { 186 /* 187 * Returning an empty string causes the interrupts to be 188 * routed based on the PCI specification. From the PCI spec: 189 * 190 * INTA# of Device Number 0 is connected to IRQW on the system 191 * board. (Device Number has no significance regarding being 192 * located on the system board or in a connector.) INTA# of 193 * Device Number 1 is connected to IRQX on the system 194 * board. INTA# of Device Number 2 is connected to IRQY on the 195 * system board. INTA# of Device Number 3 is connected to IRQZ 196 * on the system board. The table below describes how each 197 * agent's INTx# lines are connected to the system board 198 * interrupt lines. The following equation can be used to 199 * determine to which INTx# signal on the system board a given 200 * device's INTx# line(s) is connected. 201 * 202 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, 203 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = 204 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and 205 * INTD# = 3) 206 */ 207 switch (octeon_bootinfo->board_type) { 208 case CVMX_BOARD_TYPE_NAO38: 209 /* This is really the NAC38 */ 210 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; 211 case CVMX_BOARD_TYPE_EBH3100: 212 case CVMX_BOARD_TYPE_CN3010_EVB_HS5: 213 case CVMX_BOARD_TYPE_CN3005_EVB_HS5: 214 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; 215 case CVMX_BOARD_TYPE_BBGW_REF: 216 return "AABCD"; 217 case CVMX_BOARD_TYPE_CUST_DSR1000N: 218 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; 219 case CVMX_BOARD_TYPE_THUNDER: 220 case CVMX_BOARD_TYPE_EBH3000: 221 default: 222 return ""; 223 } 224 } 225 226 /** 227 * Map a PCI device to the appropriate interrupt line 228 * 229 * @dev: The Linux PCI device structure for the device to map 230 * @slot: The slot number for this device on __BUS 0__. Linux 231 * enumerates through all the bridges and figures out the 232 * slot on Bus 0 where this device eventually hooks to. 233 * @pin: The PCI interrupt pin read from the device, then swizzled 234 * as it goes through each bridge. 235 * Returns Interrupt number for the device 236 */ 237 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, 238 u8 slot, u8 pin) 239 { 240 int irq_num; 241 const char *interrupts; 242 int dev_num; 243 244 /* Get the board specific interrupt mapping */ 245 interrupts = octeon_get_pci_interrupts(); 246 247 dev_num = dev->devfn >> 3; 248 if (dev_num < strlen(interrupts)) 249 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + 250 OCTEON_IRQ_PCI_INT0; 251 else 252 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; 253 return irq_num; 254 } 255 256 257 /* 258 * Read a value from configuration space 259 */ 260 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, 261 int reg, int size, u32 *val) 262 { 263 union octeon_pci_address pci_addr; 264 265 pci_addr.u64 = 0; 266 pci_addr.s.upper = 2; 267 pci_addr.s.io = 1; 268 pci_addr.s.did = 3; 269 pci_addr.s.subdid = 1; 270 pci_addr.s.endian_swap = 1; 271 pci_addr.s.bus = bus->number; 272 pci_addr.s.dev = devfn >> 3; 273 pci_addr.s.func = devfn & 0x7; 274 pci_addr.s.reg = reg; 275 276 switch (size) { 277 case 4: 278 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); 279 return PCIBIOS_SUCCESSFUL; 280 case 2: 281 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); 282 return PCIBIOS_SUCCESSFUL; 283 case 1: 284 *val = cvmx_read64_uint8(pci_addr.u64); 285 return PCIBIOS_SUCCESSFUL; 286 } 287 return PCIBIOS_FUNC_NOT_SUPPORTED; 288 } 289 290 291 /* 292 * Write a value to PCI configuration space 293 */ 294 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, 295 int reg, int size, u32 val) 296 { 297 union octeon_pci_address pci_addr; 298 299 pci_addr.u64 = 0; 300 pci_addr.s.upper = 2; 301 pci_addr.s.io = 1; 302 pci_addr.s.did = 3; 303 pci_addr.s.subdid = 1; 304 pci_addr.s.endian_swap = 1; 305 pci_addr.s.bus = bus->number; 306 pci_addr.s.dev = devfn >> 3; 307 pci_addr.s.func = devfn & 0x7; 308 pci_addr.s.reg = reg; 309 310 switch (size) { 311 case 4: 312 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); 313 return PCIBIOS_SUCCESSFUL; 314 case 2: 315 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); 316 return PCIBIOS_SUCCESSFUL; 317 case 1: 318 cvmx_write64_uint8(pci_addr.u64, val); 319 return PCIBIOS_SUCCESSFUL; 320 } 321 return PCIBIOS_FUNC_NOT_SUPPORTED; 322 } 323 324 325 static struct pci_ops octeon_pci_ops = { 326 .read = octeon_read_config, 327 .write = octeon_write_config, 328 }; 329 330 static struct resource octeon_pci_mem_resource = { 331 .start = 0, 332 .end = 0, 333 .name = "Octeon PCI MEM", 334 .flags = IORESOURCE_MEM, 335 }; 336 337 /* 338 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI 339 * bridge 340 */ 341 static struct resource octeon_pci_io_resource = { 342 .start = 0x4000, 343 .end = OCTEON_PCI_IOSPACE_SIZE - 1, 344 .name = "Octeon PCI IO", 345 .flags = IORESOURCE_IO, 346 }; 347 348 static struct pci_controller octeon_pci_controller = { 349 .pci_ops = &octeon_pci_ops, 350 .mem_resource = &octeon_pci_mem_resource, 351 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, 352 .io_resource = &octeon_pci_io_resource, 353 .io_offset = 0, 354 .io_map_base = OCTEON_PCI_IOSPACE_BASE, 355 }; 356 357 358 /* 359 * Low level initialize the Octeon PCI controller 360 */ 361 static void octeon_pci_initialize(void) 362 { 363 union cvmx_pci_cfg01 cfg01; 364 union cvmx_npi_ctl_status ctl_status; 365 union cvmx_pci_ctl_status_2 ctl_status_2; 366 union cvmx_pci_cfg19 cfg19; 367 union cvmx_pci_cfg16 cfg16; 368 union cvmx_pci_cfg22 cfg22; 369 union cvmx_pci_cfg56 cfg56; 370 371 /* Reset the PCI Bus */ 372 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); 373 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 374 375 udelay(2000); /* Hold PCI reset for 2 ms */ 376 377 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ 378 ctl_status.s.max_word = 1; 379 ctl_status.s.timer = 1; 380 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); 381 382 /* Deassert PCI reset and advertize PCX Host Mode Device Capability 383 (64b) */ 384 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); 385 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 386 387 udelay(2000); /* Wait 2 ms after deasserting PCI reset */ 388 389 ctl_status_2.u32 = 0; 390 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set 391 before any PCI reads. */ 392 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ 393 ctl_status_2.s.bar2_enb = 1; 394 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ 395 ctl_status_2.s.bar2_esx = 1; 396 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ 397 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 398 /* BAR1 hole */ 399 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; 400 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ 401 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ 402 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ 403 ctl_status_2.s.bb1 = 1; /* BAR1 is big */ 404 ctl_status_2.s.bb0 = 1; /* BAR0 is big */ 405 } 406 407 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); 408 udelay(2000); /* Wait 2 ms before doing PCI reads */ 409 410 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); 411 pr_notice("PCI Status: %s %s-bit\n", 412 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", 413 ctl_status_2.s.ap_64ad ? "64" : "32"); 414 415 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { 416 union cvmx_pci_cnt_reg cnt_reg_start; 417 union cvmx_pci_cnt_reg cnt_reg_end; 418 unsigned long cycles, pci_clock; 419 420 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 421 cycles = read_c0_cvmcount(); 422 udelay(1000); 423 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 424 cycles = read_c0_cvmcount() - cycles; 425 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / 426 (cycles / (mips_hpt_frequency / 1000000)); 427 pr_notice("PCI Clock: %lu MHz\n", pci_clock); 428 } 429 430 /* 431 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 432 * in PCI-X mode to allow four outstanding splits. Otherwise, 433 * should not change from its reset value. Don't write PCI_CFG19 434 * in PCI mode (0x82000001 reset value), write it to 0x82000004 435 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. 436 * MRBCM -> must be one. 437 */ 438 if (ctl_status_2.s.ap_pcix) { 439 cfg19.u32 = 0; 440 /* 441 * Target Delayed/Split request outstanding maximum 442 * count. [1..31] and 0=32. NOTE: If the user 443 * programs these bits beyond the Designed Maximum 444 * outstanding count, then the designed maximum table 445 * depth will be used instead. No additional 446 * Deferred/Split transactions will be accepted if 447 * this outstanding maximum count is 448 * reached. Furthermore, no additional deferred/split 449 * transactions will be accepted if the I/O delay/ I/O 450 * Split Request outstanding maximum is reached. 451 */ 452 cfg19.s.tdomc = 4; 453 /* 454 * Master Deferred Read Request Outstanding Max Count 455 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC 456 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 457 * 5 2 110 6 3 111 7 3 For example, if these bits are 458 * programmed to 100, the core can support 2 DAC 459 * cycles, 4 SAC cycles or a combination of 1 DAC and 460 * 2 SAC cycles. NOTE: For the PCI-X maximum 461 * outstanding split transactions, refer to 462 * CRE0[22:20]. 463 */ 464 cfg19.s.mdrrmc = 2; 465 /* 466 * Master Request (Memory Read) Byte Count/Byte Enable 467 * select. 0 = Byte Enables valid. In PCI mode, a 468 * burst transaction cannot be performed using Memory 469 * Read command=4?h6. 1 = DWORD Byte Count valid 470 * (default). In PCI Mode, the memory read byte 471 * enables are automatically generated by the 472 * core. Note: N3 Master Request transaction sizes are 473 * always determined through the 474 * am_attr[<35:32>|<7:0>] field. 475 */ 476 cfg19.s.mrbcm = 1; 477 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); 478 } 479 480 481 cfg01.u32 = 0; 482 cfg01.s.msae = 1; /* Memory Space Access Enable */ 483 cfg01.s.me = 1; /* Master Enable */ 484 cfg01.s.pee = 1; /* PERR# Enable */ 485 cfg01.s.see = 1; /* System Error Enable */ 486 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ 487 488 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); 489 490 #ifdef USE_OCTEON_INTERNAL_ARBITER 491 /* 492 * When OCTEON is a PCI host, most systems will use OCTEON's 493 * internal arbiter, so must enable it before any PCI/PCI-X 494 * traffic can occur. 495 */ 496 { 497 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; 498 499 pci_int_arb_cfg.u64 = 0; 500 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ 501 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); 502 } 503 #endif /* USE_OCTEON_INTERNAL_ARBITER */ 504 505 /* 506 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, 507 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to 508 * 1..7. 509 */ 510 cfg16.u32 = 0; 511 cfg16.s.mltd = 1; /* Master Latency Timer Disable */ 512 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); 513 514 /* 515 * Should be written to 0x4ff00. MTTV -> must be zero. 516 * FLUSH -> must be 1. MRV -> should be 0xFF. 517 */ 518 cfg22.u32 = 0; 519 /* Master Retry Value [1..255] and 0=infinite */ 520 cfg22.s.mrv = 0xff; 521 /* 522 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper 523 * N3K operation. 524 */ 525 cfg22.s.flush = 1; 526 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); 527 528 /* 529 * MOST Indicates the maximum number of outstanding splits (in -1 530 * notation) when OCTEON is in PCI-X mode. PCI-X performance is 531 * affected by the MOST selection. Should generally be written 532 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, 533 * depending on the desired MOST of 3, 2, 1, or 0, respectively. 534 */ 535 cfg56.u32 = 0; 536 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ 537 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ 538 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ 539 cfg56.s.roe = 1; /* Relaxed Ordering Enable */ 540 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count 541 [0=512B,1=1024B,2=2048B,3=4096B] */ 542 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 543 .. 7=32] */ 544 545 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); 546 547 /* 548 * Affects PCI performance when OCTEON services reads to its 549 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are 550 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and 551 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, 552 * these values need to be changed so they won't possibly prefetch off 553 * of the end of memory if PCI is DMAing a buffer at the end of 554 * memory. Note that these values differ from their reset values. 555 */ 556 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); 557 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); 558 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); 559 } 560 561 562 /* 563 * Initialize the Octeon PCI controller 564 */ 565 static int __init octeon_pci_setup(void) 566 { 567 union cvmx_npi_mem_access_subidx mem_access; 568 int index; 569 570 /* Only these chips have PCI */ 571 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) 572 return 0; 573 574 /* Point pcibios_map_irq() to the PCI version of it */ 575 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; 576 577 /* Only use the big bars on chips that support it */ 578 if (OCTEON_IS_MODEL(OCTEON_CN31XX) || 579 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 580 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) 581 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; 582 else 583 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; 584 585 if (!octeon_is_pci_host()) { 586 pr_notice("Not in host mode, PCI Controller not initialized\n"); 587 return 0; 588 } 589 590 /* PCI I/O and PCI MEM values */ 591 set_io_port_base(OCTEON_PCI_IOSPACE_BASE); 592 ioport_resource.start = 0; 593 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; 594 595 pr_notice("%s Octeon big bar support\n", 596 (octeon_dma_bar_type == 597 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); 598 599 octeon_pci_initialize(); 600 601 mem_access.u64 = 0; 602 mem_access.s.esr = 1; /* Endian-Swap on read. */ 603 mem_access.s.esw = 1; /* Endian-Swap on write. */ 604 mem_access.s.nsr = 0; /* No-Snoop on read. */ 605 mem_access.s.nsw = 0; /* No-Snoop on write. */ 606 mem_access.s.ror = 0; /* Relax Read on read. */ 607 mem_access.s.row = 0; /* Relax Order on write. */ 608 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ 609 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); 610 611 /* 612 * Remap the Octeon BAR 2 above all 32 bit devices 613 * (0x8000000000ul). This is done here so it is remapped 614 * before the readl()'s below. We don't want BAR2 overlapping 615 * with BAR0/BAR1 during these reads. 616 */ 617 octeon_npi_write32(CVMX_NPI_PCI_CFG08, 618 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); 619 octeon_npi_write32(CVMX_NPI_PCI_CFG09, 620 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); 621 622 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 623 /* Remap the Octeon BAR 0 to 0-2GB */ 624 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); 625 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 626 627 /* 628 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the 629 * BAR 1 hole). 630 */ 631 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); 632 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 633 634 /* BAR1 movable mappings set for identity mapping */ 635 octeon_bar1_pci_phys = 0x80000000ull; 636 for (index = 0; index < 32; index++) { 637 union cvmx_pci_bar1_indexx bar1_index; 638 639 bar1_index.u32 = 0; 640 /* Address bits[35:22] sent to L2C */ 641 bar1_index.s.addr_idx = 642 (octeon_bar1_pci_phys >> 22) + index; 643 /* Don't put PCI accesses in L2. */ 644 bar1_index.s.ca = 1; 645 /* Endian Swap Mode */ 646 bar1_index.s.end_swp = 1; 647 /* Set '1' when the selected address range is valid. */ 648 bar1_index.s.addr_v = 1; 649 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 650 bar1_index.u32); 651 } 652 653 /* Devices go after BAR1 */ 654 octeon_pci_mem_resource.start = 655 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - 656 (OCTEON_PCI_BAR1_HOLE_SIZE << 20); 657 octeon_pci_mem_resource.end = 658 octeon_pci_mem_resource.start + (1ul << 30); 659 } else { 660 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ 661 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); 662 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 663 664 /* Remap the Octeon BAR 1 to map 0-128MB */ 665 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); 666 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 667 668 /* BAR1 movable regions contiguous to cover the swiotlb */ 669 octeon_bar1_pci_phys = 670 virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); 671 672 for (index = 0; index < 32; index++) { 673 union cvmx_pci_bar1_indexx bar1_index; 674 675 bar1_index.u32 = 0; 676 /* Address bits[35:22] sent to L2C */ 677 bar1_index.s.addr_idx = 678 (octeon_bar1_pci_phys >> 22) + index; 679 /* Don't put PCI accesses in L2. */ 680 bar1_index.s.ca = 1; 681 /* Endian Swap Mode */ 682 bar1_index.s.end_swp = 1; 683 /* Set '1' when the selected address range is valid. */ 684 bar1_index.s.addr_v = 1; 685 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 686 bar1_index.u32); 687 } 688 689 /* Devices go after BAR0 */ 690 octeon_pci_mem_resource.start = 691 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + 692 (4ul << 10); 693 octeon_pci_mem_resource.end = 694 octeon_pci_mem_resource.start + (1ul << 30); 695 } 696 697 register_pci_controller(&octeon_pci_controller); 698 699 /* 700 * Clear any errors that might be pending from before the bus 701 * was setup properly. 702 */ 703 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); 704 705 if (IS_ERR(platform_device_register_simple("octeon_pci_edac", 706 -1, NULL, 0))) 707 pr_err("Registration of co_pci_edac failed!\n"); 708 709 octeon_pci_dma_init(); 710 711 return 0; 712 } 713 714 arch_initcall(octeon_pci_setup); 715