1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2005-2009 Cavium Networks 7 */ 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/interrupt.h> 12 #include <linux/time.h> 13 #include <linux/delay.h> 14 #include <linux/platform_device.h> 15 #include <linux/swiotlb.h> 16 17 #include <asm/time.h> 18 19 #include <asm/octeon/octeon.h> 20 #include <asm/octeon/cvmx-npi-defs.h> 21 #include <asm/octeon/cvmx-pci-defs.h> 22 #include <asm/octeon/pci-octeon.h> 23 24 #include <dma-coherence.h> 25 26 #define USE_OCTEON_INTERNAL_ARBITER 27 28 /* 29 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO 30 * addresses. Use PCI endian swapping 1 so no address swapping is 31 * necessary. The Linux io routines will endian swap the data. 32 */ 33 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull 34 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) 35 36 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ 37 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) 38 39 u64 octeon_bar1_pci_phys; 40 41 /** 42 * This is the bit decoding used for the Octeon PCI controller addresses 43 */ 44 union octeon_pci_address { 45 uint64_t u64; 46 struct { 47 uint64_t upper:2; 48 uint64_t reserved:13; 49 uint64_t io:1; 50 uint64_t did:5; 51 uint64_t subdid:3; 52 uint64_t reserved2:4; 53 uint64_t endian_swap:2; 54 uint64_t reserved3:10; 55 uint64_t bus:8; 56 uint64_t dev:5; 57 uint64_t func:3; 58 uint64_t reg:8; 59 } s; 60 }; 61 62 int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin); 63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; 64 65 /** 66 * Map a PCI device to the appropriate interrupt line 67 * 68 * @dev: The Linux PCI device structure for the device to map 69 * @slot: The slot number for this device on __BUS 0__. Linux 70 * enumerates through all the bridges and figures out the 71 * slot on Bus 0 where this device eventually hooks to. 72 * @pin: The PCI interrupt pin read from the device, then swizzled 73 * as it goes through each bridge. 74 * Returns Interrupt number for the device 75 */ 76 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) 77 { 78 if (octeon_pcibios_map_irq) 79 return octeon_pcibios_map_irq(dev, slot, pin); 80 else 81 panic("octeon_pcibios_map_irq not set."); 82 } 83 84 85 /* 86 * Called to perform platform specific PCI setup 87 */ 88 int pcibios_plat_dev_init(struct pci_dev *dev) 89 { 90 uint16_t config; 91 uint32_t dconfig; 92 int pos; 93 /* 94 * Force the Cache line setting to 64 bytes. The standard 95 * Linux bus scan doesn't seem to set it. Octeon really has 96 * 128 byte lines, but Intel bridges get really upset if you 97 * try and set values above 64 bytes. Value is specified in 98 * 32bit words. 99 */ 100 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); 101 /* Set latency timers for all devices */ 102 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); 103 104 /* Enable reporting System errors and parity errors on all devices */ 105 /* Enable parity checking and error reporting */ 106 pci_read_config_word(dev, PCI_COMMAND, &config); 107 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; 108 pci_write_config_word(dev, PCI_COMMAND, config); 109 110 if (dev->subordinate) { 111 /* Set latency timers on sub bridges */ 112 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); 113 /* More bridge error detection */ 114 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); 115 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; 116 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); 117 } 118 119 /* Enable the PCIe normal error reporting */ 120 config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ 121 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ 122 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ 123 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ 124 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); 125 126 /* Find the Advanced Error Reporting capability */ 127 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); 128 if (pos) { 129 /* Clear Uncorrectable Error Status */ 130 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 131 &dconfig); 132 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 133 dconfig); 134 /* Enable reporting of all uncorrectable errors */ 135 /* Uncorrectable Error Mask - turned on bits disable errors */ 136 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); 137 /* 138 * Leave severity at HW default. This only controls if 139 * errors are reported as uncorrectable or 140 * correctable, not if the error is reported. 141 */ 142 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ 143 /* Clear Correctable Error Status */ 144 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); 145 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); 146 /* Enable reporting of all correctable errors */ 147 /* Correctable Error Mask - turned on bits disable errors */ 148 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); 149 /* Advanced Error Capabilities */ 150 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); 151 /* ECRC Generation Enable */ 152 if (config & PCI_ERR_CAP_ECRC_GENC) 153 config |= PCI_ERR_CAP_ECRC_GENE; 154 /* ECRC Check Enable */ 155 if (config & PCI_ERR_CAP_ECRC_CHKC) 156 config |= PCI_ERR_CAP_ECRC_CHKE; 157 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); 158 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ 159 /* Report all errors to the root complex */ 160 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, 161 PCI_ERR_ROOT_CMD_COR_EN | 162 PCI_ERR_ROOT_CMD_NONFATAL_EN | 163 PCI_ERR_ROOT_CMD_FATAL_EN); 164 /* Clear the Root status register */ 165 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); 166 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); 167 } 168 169 dev->dev.dma_ops = octeon_pci_dma_map_ops; 170 171 return 0; 172 } 173 174 /** 175 * Return the mapping of PCI device number to IRQ line. Each 176 * character in the return string represents the interrupt 177 * line for the device at that position. Device 1 maps to the 178 * first character, etc. The characters A-D are used for PCI 179 * interrupts. 180 * 181 * Returns PCI interrupt mapping 182 */ 183 const char *octeon_get_pci_interrupts(void) 184 { 185 /* 186 * Returning an empty string causes the interrupts to be 187 * routed based on the PCI specification. From the PCI spec: 188 * 189 * INTA# of Device Number 0 is connected to IRQW on the system 190 * board. (Device Number has no significance regarding being 191 * located on the system board or in a connector.) INTA# of 192 * Device Number 1 is connected to IRQX on the system 193 * board. INTA# of Device Number 2 is connected to IRQY on the 194 * system board. INTA# of Device Number 3 is connected to IRQZ 195 * on the system board. The table below describes how each 196 * agent's INTx# lines are connected to the system board 197 * interrupt lines. The following equation can be used to 198 * determine to which INTx# signal on the system board a given 199 * device's INTx# line(s) is connected. 200 * 201 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, 202 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = 203 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and 204 * INTD# = 3) 205 */ 206 if (of_machine_is_compatible("dlink,dsr-500n")) 207 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; 208 switch (octeon_bootinfo->board_type) { 209 case CVMX_BOARD_TYPE_NAO38: 210 /* This is really the NAC38 */ 211 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; 212 case CVMX_BOARD_TYPE_EBH3100: 213 case CVMX_BOARD_TYPE_CN3010_EVB_HS5: 214 case CVMX_BOARD_TYPE_CN3005_EVB_HS5: 215 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; 216 case CVMX_BOARD_TYPE_BBGW_REF: 217 return "AABCD"; 218 case CVMX_BOARD_TYPE_CUST_DSR1000N: 219 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; 220 case CVMX_BOARD_TYPE_THUNDER: 221 case CVMX_BOARD_TYPE_EBH3000: 222 default: 223 return ""; 224 } 225 } 226 227 /** 228 * Map a PCI device to the appropriate interrupt line 229 * 230 * @dev: The Linux PCI device structure for the device to map 231 * @slot: The slot number for this device on __BUS 0__. Linux 232 * enumerates through all the bridges and figures out the 233 * slot on Bus 0 where this device eventually hooks to. 234 * @pin: The PCI interrupt pin read from the device, then swizzled 235 * as it goes through each bridge. 236 * Returns Interrupt number for the device 237 */ 238 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, 239 u8 slot, u8 pin) 240 { 241 int irq_num; 242 const char *interrupts; 243 int dev_num; 244 245 /* Get the board specific interrupt mapping */ 246 interrupts = octeon_get_pci_interrupts(); 247 248 dev_num = dev->devfn >> 3; 249 if (dev_num < strlen(interrupts)) 250 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + 251 OCTEON_IRQ_PCI_INT0; 252 else 253 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; 254 return irq_num; 255 } 256 257 258 /* 259 * Read a value from configuration space 260 */ 261 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, 262 int reg, int size, u32 *val) 263 { 264 union octeon_pci_address pci_addr; 265 266 pci_addr.u64 = 0; 267 pci_addr.s.upper = 2; 268 pci_addr.s.io = 1; 269 pci_addr.s.did = 3; 270 pci_addr.s.subdid = 1; 271 pci_addr.s.endian_swap = 1; 272 pci_addr.s.bus = bus->number; 273 pci_addr.s.dev = devfn >> 3; 274 pci_addr.s.func = devfn & 0x7; 275 pci_addr.s.reg = reg; 276 277 switch (size) { 278 case 4: 279 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); 280 return PCIBIOS_SUCCESSFUL; 281 case 2: 282 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); 283 return PCIBIOS_SUCCESSFUL; 284 case 1: 285 *val = cvmx_read64_uint8(pci_addr.u64); 286 return PCIBIOS_SUCCESSFUL; 287 } 288 return PCIBIOS_FUNC_NOT_SUPPORTED; 289 } 290 291 292 /* 293 * Write a value to PCI configuration space 294 */ 295 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, 296 int reg, int size, u32 val) 297 { 298 union octeon_pci_address pci_addr; 299 300 pci_addr.u64 = 0; 301 pci_addr.s.upper = 2; 302 pci_addr.s.io = 1; 303 pci_addr.s.did = 3; 304 pci_addr.s.subdid = 1; 305 pci_addr.s.endian_swap = 1; 306 pci_addr.s.bus = bus->number; 307 pci_addr.s.dev = devfn >> 3; 308 pci_addr.s.func = devfn & 0x7; 309 pci_addr.s.reg = reg; 310 311 switch (size) { 312 case 4: 313 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); 314 return PCIBIOS_SUCCESSFUL; 315 case 2: 316 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); 317 return PCIBIOS_SUCCESSFUL; 318 case 1: 319 cvmx_write64_uint8(pci_addr.u64, val); 320 return PCIBIOS_SUCCESSFUL; 321 } 322 return PCIBIOS_FUNC_NOT_SUPPORTED; 323 } 324 325 326 static struct pci_ops octeon_pci_ops = { 327 .read = octeon_read_config, 328 .write = octeon_write_config, 329 }; 330 331 static struct resource octeon_pci_mem_resource = { 332 .start = 0, 333 .end = 0, 334 .name = "Octeon PCI MEM", 335 .flags = IORESOURCE_MEM, 336 }; 337 338 /* 339 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI 340 * bridge 341 */ 342 static struct resource octeon_pci_io_resource = { 343 .start = 0x4000, 344 .end = OCTEON_PCI_IOSPACE_SIZE - 1, 345 .name = "Octeon PCI IO", 346 .flags = IORESOURCE_IO, 347 }; 348 349 static struct pci_controller octeon_pci_controller = { 350 .pci_ops = &octeon_pci_ops, 351 .mem_resource = &octeon_pci_mem_resource, 352 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, 353 .io_resource = &octeon_pci_io_resource, 354 .io_offset = 0, 355 .io_map_base = OCTEON_PCI_IOSPACE_BASE, 356 }; 357 358 359 /* 360 * Low level initialize the Octeon PCI controller 361 */ 362 static void octeon_pci_initialize(void) 363 { 364 union cvmx_pci_cfg01 cfg01; 365 union cvmx_npi_ctl_status ctl_status; 366 union cvmx_pci_ctl_status_2 ctl_status_2; 367 union cvmx_pci_cfg19 cfg19; 368 union cvmx_pci_cfg16 cfg16; 369 union cvmx_pci_cfg22 cfg22; 370 union cvmx_pci_cfg56 cfg56; 371 372 /* Reset the PCI Bus */ 373 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); 374 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 375 376 udelay(2000); /* Hold PCI reset for 2 ms */ 377 378 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ 379 ctl_status.s.max_word = 1; 380 ctl_status.s.timer = 1; 381 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); 382 383 /* Deassert PCI reset and advertize PCX Host Mode Device Capability 384 (64b) */ 385 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); 386 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 387 388 udelay(2000); /* Wait 2 ms after deasserting PCI reset */ 389 390 ctl_status_2.u32 = 0; 391 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set 392 before any PCI reads. */ 393 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ 394 ctl_status_2.s.bar2_enb = 1; 395 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ 396 ctl_status_2.s.bar2_esx = 1; 397 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ 398 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 399 /* BAR1 hole */ 400 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; 401 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ 402 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ 403 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ 404 ctl_status_2.s.bb1 = 1; /* BAR1 is big */ 405 ctl_status_2.s.bb0 = 1; /* BAR0 is big */ 406 } 407 408 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); 409 udelay(2000); /* Wait 2 ms before doing PCI reads */ 410 411 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); 412 pr_notice("PCI Status: %s %s-bit\n", 413 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", 414 ctl_status_2.s.ap_64ad ? "64" : "32"); 415 416 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { 417 union cvmx_pci_cnt_reg cnt_reg_start; 418 union cvmx_pci_cnt_reg cnt_reg_end; 419 unsigned long cycles, pci_clock; 420 421 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 422 cycles = read_c0_cvmcount(); 423 udelay(1000); 424 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 425 cycles = read_c0_cvmcount() - cycles; 426 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / 427 (cycles / (mips_hpt_frequency / 1000000)); 428 pr_notice("PCI Clock: %lu MHz\n", pci_clock); 429 } 430 431 /* 432 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 433 * in PCI-X mode to allow four outstanding splits. Otherwise, 434 * should not change from its reset value. Don't write PCI_CFG19 435 * in PCI mode (0x82000001 reset value), write it to 0x82000004 436 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. 437 * MRBCM -> must be one. 438 */ 439 if (ctl_status_2.s.ap_pcix) { 440 cfg19.u32 = 0; 441 /* 442 * Target Delayed/Split request outstanding maximum 443 * count. [1..31] and 0=32. NOTE: If the user 444 * programs these bits beyond the Designed Maximum 445 * outstanding count, then the designed maximum table 446 * depth will be used instead. No additional 447 * Deferred/Split transactions will be accepted if 448 * this outstanding maximum count is 449 * reached. Furthermore, no additional deferred/split 450 * transactions will be accepted if the I/O delay/ I/O 451 * Split Request outstanding maximum is reached. 452 */ 453 cfg19.s.tdomc = 4; 454 /* 455 * Master Deferred Read Request Outstanding Max Count 456 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC 457 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 458 * 5 2 110 6 3 111 7 3 For example, if these bits are 459 * programmed to 100, the core can support 2 DAC 460 * cycles, 4 SAC cycles or a combination of 1 DAC and 461 * 2 SAC cycles. NOTE: For the PCI-X maximum 462 * outstanding split transactions, refer to 463 * CRE0[22:20]. 464 */ 465 cfg19.s.mdrrmc = 2; 466 /* 467 * Master Request (Memory Read) Byte Count/Byte Enable 468 * select. 0 = Byte Enables valid. In PCI mode, a 469 * burst transaction cannot be performed using Memory 470 * Read command=4?h6. 1 = DWORD Byte Count valid 471 * (default). In PCI Mode, the memory read byte 472 * enables are automatically generated by the 473 * core. Note: N3 Master Request transaction sizes are 474 * always determined through the 475 * am_attr[<35:32>|<7:0>] field. 476 */ 477 cfg19.s.mrbcm = 1; 478 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); 479 } 480 481 482 cfg01.u32 = 0; 483 cfg01.s.msae = 1; /* Memory Space Access Enable */ 484 cfg01.s.me = 1; /* Master Enable */ 485 cfg01.s.pee = 1; /* PERR# Enable */ 486 cfg01.s.see = 1; /* System Error Enable */ 487 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ 488 489 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); 490 491 #ifdef USE_OCTEON_INTERNAL_ARBITER 492 /* 493 * When OCTEON is a PCI host, most systems will use OCTEON's 494 * internal arbiter, so must enable it before any PCI/PCI-X 495 * traffic can occur. 496 */ 497 { 498 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; 499 500 pci_int_arb_cfg.u64 = 0; 501 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ 502 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); 503 } 504 #endif /* USE_OCTEON_INTERNAL_ARBITER */ 505 506 /* 507 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, 508 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to 509 * 1..7. 510 */ 511 cfg16.u32 = 0; 512 cfg16.s.mltd = 1; /* Master Latency Timer Disable */ 513 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); 514 515 /* 516 * Should be written to 0x4ff00. MTTV -> must be zero. 517 * FLUSH -> must be 1. MRV -> should be 0xFF. 518 */ 519 cfg22.u32 = 0; 520 /* Master Retry Value [1..255] and 0=infinite */ 521 cfg22.s.mrv = 0xff; 522 /* 523 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper 524 * N3K operation. 525 */ 526 cfg22.s.flush = 1; 527 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); 528 529 /* 530 * MOST Indicates the maximum number of outstanding splits (in -1 531 * notation) when OCTEON is in PCI-X mode. PCI-X performance is 532 * affected by the MOST selection. Should generally be written 533 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, 534 * depending on the desired MOST of 3, 2, 1, or 0, respectively. 535 */ 536 cfg56.u32 = 0; 537 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ 538 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ 539 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ 540 cfg56.s.roe = 1; /* Relaxed Ordering Enable */ 541 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count 542 [0=512B,1=1024B,2=2048B,3=4096B] */ 543 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 544 .. 7=32] */ 545 546 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); 547 548 /* 549 * Affects PCI performance when OCTEON services reads to its 550 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are 551 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and 552 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, 553 * these values need to be changed so they won't possibly prefetch off 554 * of the end of memory if PCI is DMAing a buffer at the end of 555 * memory. Note that these values differ from their reset values. 556 */ 557 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); 558 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); 559 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); 560 } 561 562 563 /* 564 * Initialize the Octeon PCI controller 565 */ 566 static int __init octeon_pci_setup(void) 567 { 568 union cvmx_npi_mem_access_subidx mem_access; 569 int index; 570 571 /* Only these chips have PCI */ 572 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) 573 return 0; 574 575 /* Point pcibios_map_irq() to the PCI version of it */ 576 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; 577 578 /* Only use the big bars on chips that support it */ 579 if (OCTEON_IS_MODEL(OCTEON_CN31XX) || 580 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 581 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) 582 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; 583 else 584 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; 585 586 if (!octeon_is_pci_host()) { 587 pr_notice("Not in host mode, PCI Controller not initialized\n"); 588 return 0; 589 } 590 591 /* PCI I/O and PCI MEM values */ 592 set_io_port_base(OCTEON_PCI_IOSPACE_BASE); 593 ioport_resource.start = 0; 594 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; 595 596 pr_notice("%s Octeon big bar support\n", 597 (octeon_dma_bar_type == 598 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); 599 600 octeon_pci_initialize(); 601 602 mem_access.u64 = 0; 603 mem_access.s.esr = 1; /* Endian-Swap on read. */ 604 mem_access.s.esw = 1; /* Endian-Swap on write. */ 605 mem_access.s.nsr = 0; /* No-Snoop on read. */ 606 mem_access.s.nsw = 0; /* No-Snoop on write. */ 607 mem_access.s.ror = 0; /* Relax Read on read. */ 608 mem_access.s.row = 0; /* Relax Order on write. */ 609 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ 610 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); 611 612 /* 613 * Remap the Octeon BAR 2 above all 32 bit devices 614 * (0x8000000000ul). This is done here so it is remapped 615 * before the readl()'s below. We don't want BAR2 overlapping 616 * with BAR0/BAR1 during these reads. 617 */ 618 octeon_npi_write32(CVMX_NPI_PCI_CFG08, 619 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); 620 octeon_npi_write32(CVMX_NPI_PCI_CFG09, 621 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); 622 623 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 624 /* Remap the Octeon BAR 0 to 0-2GB */ 625 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); 626 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 627 628 /* 629 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the 630 * BAR 1 hole). 631 */ 632 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); 633 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 634 635 /* BAR1 movable mappings set for identity mapping */ 636 octeon_bar1_pci_phys = 0x80000000ull; 637 for (index = 0; index < 32; index++) { 638 union cvmx_pci_bar1_indexx bar1_index; 639 640 bar1_index.u32 = 0; 641 /* Address bits[35:22] sent to L2C */ 642 bar1_index.s.addr_idx = 643 (octeon_bar1_pci_phys >> 22) + index; 644 /* Don't put PCI accesses in L2. */ 645 bar1_index.s.ca = 1; 646 /* Endian Swap Mode */ 647 bar1_index.s.end_swp = 1; 648 /* Set '1' when the selected address range is valid. */ 649 bar1_index.s.addr_v = 1; 650 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 651 bar1_index.u32); 652 } 653 654 /* Devices go after BAR1 */ 655 octeon_pci_mem_resource.start = 656 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - 657 (OCTEON_PCI_BAR1_HOLE_SIZE << 20); 658 octeon_pci_mem_resource.end = 659 octeon_pci_mem_resource.start + (1ul << 30); 660 } else { 661 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ 662 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); 663 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 664 665 /* Remap the Octeon BAR 1 to map 0-128MB */ 666 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); 667 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 668 669 /* BAR1 movable regions contiguous to cover the swiotlb */ 670 octeon_bar1_pci_phys = 671 virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); 672 673 for (index = 0; index < 32; index++) { 674 union cvmx_pci_bar1_indexx bar1_index; 675 676 bar1_index.u32 = 0; 677 /* Address bits[35:22] sent to L2C */ 678 bar1_index.s.addr_idx = 679 (octeon_bar1_pci_phys >> 22) + index; 680 /* Don't put PCI accesses in L2. */ 681 bar1_index.s.ca = 1; 682 /* Endian Swap Mode */ 683 bar1_index.s.end_swp = 1; 684 /* Set '1' when the selected address range is valid. */ 685 bar1_index.s.addr_v = 1; 686 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 687 bar1_index.u32); 688 } 689 690 /* Devices go after BAR0 */ 691 octeon_pci_mem_resource.start = 692 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + 693 (4ul << 10); 694 octeon_pci_mem_resource.end = 695 octeon_pci_mem_resource.start + (1ul << 30); 696 } 697 698 register_pci_controller(&octeon_pci_controller); 699 700 /* 701 * Clear any errors that might be pending from before the bus 702 * was setup properly. 703 */ 704 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); 705 706 if (IS_ERR(platform_device_register_simple("octeon_pci_edac", 707 -1, NULL, 0))) 708 pr_err("Registration of co_pci_edac failed!\n"); 709 710 octeon_pci_dma_init(); 711 712 return 0; 713 } 714 715 arch_initcall(octeon_pci_setup); 716