xref: /openbmc/linux/arch/mips/pci/msi-octeon.c (revision d2999e1b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009, 2010 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13 
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-sli-defs.h>
19 #include <asm/octeon/cvmx-pexp-defs.h>
20 #include <asm/octeon/pci-octeon.h>
21 
22 /*
23  * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
24  * in use.
25  */
26 static u64 msi_free_irq_bitmask[4];
27 
28 /*
29  * Each bit in msi_multiple_irq_bitmask tells that the device using
30  * this bit in msi_free_irq_bitmask is also using the next bit. This
31  * is used so we can disable all of the MSI interrupts when a device
32  * uses multiple.
33  */
34 static u64 msi_multiple_irq_bitmask[4];
35 
36 /*
37  * This lock controls updates to msi_free_irq_bitmask and
38  * msi_multiple_irq_bitmask.
39  */
40 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
41 
42 /*
43  * Number of MSI IRQs used. This variable is set up in
44  * the module init time.
45  */
46 static int msi_irq_size;
47 
48 /**
49  * Called when a driver request MSI interrupts instead of the
50  * legacy INT A-D. This routine will allocate multiple interrupts
51  * for MSI devices that support them. A device can override this by
52  * programming the MSI control bits [6:4] before calling
53  * pci_enable_msi().
54  *
55  * @dev:    Device requesting MSI interrupts
56  * @desc:   MSI descriptor
57  *
58  * Returns 0 on success.
59  */
60 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
61 {
62 	struct msi_msg msg;
63 	u16 control;
64 	int configured_private_bits;
65 	int request_private_bits;
66 	int irq = 0;
67 	int irq_step;
68 	u64 search_mask;
69 	int index;
70 
71 	/*
72 	 * Read the MSI config to figure out how many IRQs this device
73 	 * wants.  Most devices only want 1, which will give
74 	 * configured_private_bits and request_private_bits equal 0.
75 	 */
76 	pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
77 			     &control);
78 
79 	/*
80 	 * If the number of private bits has been configured then use
81 	 * that value instead of the requested number. This gives the
82 	 * driver the chance to override the number of interrupts
83 	 * before calling pci_enable_msi().
84 	 */
85 	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
86 	if (configured_private_bits == 0) {
87 		/* Nothing is configured, so use the hardware requested size */
88 		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
89 	} else {
90 		/*
91 		 * Use the number of configured bits, assuming the
92 		 * driver wanted to override the hardware request
93 		 * value.
94 		 */
95 		request_private_bits = configured_private_bits;
96 	}
97 
98 	/*
99 	 * The PCI 2.3 spec mandates that there are at most 32
100 	 * interrupts. If this device asks for more, only give it one.
101 	 */
102 	if (request_private_bits > 5)
103 		request_private_bits = 0;
104 
105 try_only_one:
106 	/*
107 	 * The IRQs have to be aligned on a power of two based on the
108 	 * number being requested.
109 	 */
110 	irq_step = 1 << request_private_bits;
111 
112 	/* Mask with one bit for each IRQ */
113 	search_mask = (1 << irq_step) - 1;
114 
115 	/*
116 	 * We're going to search msi_free_irq_bitmask_lock for zero
117 	 * bits. This represents an MSI interrupt number that isn't in
118 	 * use.
119 	 */
120 	spin_lock(&msi_free_irq_bitmask_lock);
121 	for (index = 0; index < msi_irq_size/64; index++) {
122 		for (irq = 0; irq < 64; irq += irq_step) {
123 			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
124 				msi_free_irq_bitmask[index] |= search_mask << irq;
125 				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
126 				goto msi_irq_allocated;
127 			}
128 		}
129 	}
130 msi_irq_allocated:
131 	spin_unlock(&msi_free_irq_bitmask_lock);
132 
133 	/* Make sure the search for available interrupts didn't fail */
134 	if (irq >= 64) {
135 		if (request_private_bits) {
136 			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
137 			       1 << request_private_bits);
138 			request_private_bits = 0;
139 			goto try_only_one;
140 		} else
141 			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
142 	}
143 
144 	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
145 	irq += index*64;
146 	irq += OCTEON_IRQ_MSI_BIT0;
147 
148 	switch (octeon_dma_bar_type) {
149 	case OCTEON_DMA_BAR_TYPE_SMALL:
150 		/* When not using big bar, Bar 0 is based at 128MB */
151 		msg.address_lo =
152 			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
153 		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
154 		break;
155 	case OCTEON_DMA_BAR_TYPE_BIG:
156 		/* When using big bar, Bar 0 is based at 0 */
157 		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
158 		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
159 		break;
160 	case OCTEON_DMA_BAR_TYPE_PCIE:
161 		/* When using PCIe, Bar 0 is based at 0 */
162 		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
163 		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
164 		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
165 		break;
166 	case OCTEON_DMA_BAR_TYPE_PCIE2:
167 		/* When using PCIe2, Bar 0 is based at 0 */
168 		msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
169 		msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
170 		break;
171 	default:
172 		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
173 	}
174 	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
175 
176 	/* Update the number of IRQs the device has available to it */
177 	control &= ~PCI_MSI_FLAGS_QSIZE;
178 	control |= request_private_bits << 4;
179 	pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
180 			      control);
181 
182 	irq_set_msi_desc(irq, desc);
183 	write_msi_msg(irq, &msg);
184 	return 0;
185 }
186 
187 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
188 {
189 	struct msi_desc *entry;
190 	int ret;
191 
192 	/*
193 	 * MSI-X is not supported.
194 	 */
195 	if (type == PCI_CAP_ID_MSIX)
196 		return -EINVAL;
197 
198 	/*
199 	 * If an architecture wants to support multiple MSI, it needs to
200 	 * override arch_setup_msi_irqs()
201 	 */
202 	if (type == PCI_CAP_ID_MSI && nvec > 1)
203 		return 1;
204 
205 	list_for_each_entry(entry, &dev->msi_list, list) {
206 		ret = arch_setup_msi_irq(dev, entry);
207 		if (ret < 0)
208 			return ret;
209 		if (ret > 0)
210 			return -ENOSPC;
211 	}
212 
213 	return 0;
214 }
215 
216 /**
217  * Called when a device no longer needs its MSI interrupts. All
218  * MSI interrupts for the device are freed.
219  *
220  * @irq:    The devices first irq number. There may be multple in sequence.
221  */
222 void arch_teardown_msi_irq(unsigned int irq)
223 {
224 	int number_irqs;
225 	u64 bitmask;
226 	int index = 0;
227 	int irq0;
228 
229 	if ((irq < OCTEON_IRQ_MSI_BIT0)
230 		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
231 		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
232 		      "MSI interrupt (%d)", irq);
233 
234 	irq -= OCTEON_IRQ_MSI_BIT0;
235 	index = irq / 64;
236 	irq0 = irq % 64;
237 
238 	/*
239 	 * Count the number of IRQs we need to free by looking at the
240 	 * msi_multiple_irq_bitmask. Each bit set means that the next
241 	 * IRQ is also owned by this device.
242 	 */
243 	number_irqs = 0;
244 	while ((irq0 + number_irqs < 64) &&
245 	       (msi_multiple_irq_bitmask[index]
246 		& (1ull << (irq0 + number_irqs))))
247 		number_irqs++;
248 	number_irqs++;
249 	/* Mask with one bit for each IRQ */
250 	bitmask = (1 << number_irqs) - 1;
251 	/* Shift the mask to the correct bit location */
252 	bitmask <<= irq0;
253 	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
254 		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
255 		      "interrupt (%d) not in use", irq);
256 
257 	/* Checks are done, update the in use bitmask */
258 	spin_lock(&msi_free_irq_bitmask_lock);
259 	msi_free_irq_bitmask[index] &= ~bitmask;
260 	msi_multiple_irq_bitmask[index] &= ~bitmask;
261 	spin_unlock(&msi_free_irq_bitmask_lock);
262 }
263 
264 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
265 
266 static u64 msi_rcv_reg[4];
267 static u64 mis_ena_reg[4];
268 
269 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
270 {
271 	u64 en;
272 	unsigned long flags;
273 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
274 	int irq_index = msi_number >> 6;
275 	int irq_bit = msi_number & 0x3f;
276 
277 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
278 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
279 	en |= 1ull << irq_bit;
280 	cvmx_write_csr(mis_ena_reg[irq_index], en);
281 	cvmx_read_csr(mis_ena_reg[irq_index]);
282 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
283 }
284 
285 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
286 {
287 	u64 en;
288 	unsigned long flags;
289 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
290 	int irq_index = msi_number >> 6;
291 	int irq_bit = msi_number & 0x3f;
292 
293 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
294 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
295 	en &= ~(1ull << irq_bit);
296 	cvmx_write_csr(mis_ena_reg[irq_index], en);
297 	cvmx_read_csr(mis_ena_reg[irq_index]);
298 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
299 }
300 
301 static struct irq_chip octeon_irq_chip_msi_pcie = {
302 	.name = "MSI",
303 	.irq_enable = octeon_irq_msi_enable_pcie,
304 	.irq_disable = octeon_irq_msi_disable_pcie,
305 };
306 
307 static void octeon_irq_msi_enable_pci(struct irq_data *data)
308 {
309 	/*
310 	 * Octeon PCI doesn't have the ability to mask/unmask MSI
311 	 * interrupts individually. Instead of masking/unmasking them
312 	 * in groups of 16, we simple assume MSI devices are well
313 	 * behaved. MSI interrupts are always enable and the ACK is
314 	 * assumed to be enough
315 	 */
316 }
317 
318 static void octeon_irq_msi_disable_pci(struct irq_data *data)
319 {
320 	/* See comment in enable */
321 }
322 
323 static struct irq_chip octeon_irq_chip_msi_pci = {
324 	.name = "MSI",
325 	.irq_enable = octeon_irq_msi_enable_pci,
326 	.irq_disable = octeon_irq_msi_disable_pci,
327 };
328 
329 /*
330  * Called by the interrupt handling code when an MSI interrupt
331  * occurs.
332  */
333 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
334 {
335 	int irq;
336 	int bit;
337 
338 	bit = fls64(msi_bits);
339 	if (bit) {
340 		bit--;
341 		/* Acknowledge it first. */
342 		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
343 
344 		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
345 		do_IRQ(irq);
346 		return IRQ_HANDLED;
347 	}
348 	return IRQ_NONE;
349 }
350 
351 #define OCTEON_MSI_INT_HANDLER_X(x)					\
352 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
353 {									\
354 	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
355 	return __octeon_msi_do_interrupt((x), msi_bits);		\
356 }
357 
358 /*
359  * Create octeon_msi_interrupt{0-3} function body
360  */
361 OCTEON_MSI_INT_HANDLER_X(0);
362 OCTEON_MSI_INT_HANDLER_X(1);
363 OCTEON_MSI_INT_HANDLER_X(2);
364 OCTEON_MSI_INT_HANDLER_X(3);
365 
366 /*
367  * Initializes the MSI interrupt handling code
368  */
369 int __init octeon_msi_initialize(void)
370 {
371 	int irq;
372 	struct irq_chip *msi;
373 
374 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
375 		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
376 		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
377 		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
378 		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
379 		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
380 		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
381 		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
382 		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
383 		msi = &octeon_irq_chip_msi_pcie;
384 	} else {
385 		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
386 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
387 		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
388 		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
389 		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
390 		mis_ena_reg[0] = INVALID_GENERATE_ADE;
391 		mis_ena_reg[1] = INVALID_GENERATE_ADE;
392 		mis_ena_reg[2] = INVALID_GENERATE_ADE;
393 		mis_ena_reg[3] = INVALID_GENERATE_ADE;
394 		msi = &octeon_irq_chip_msi_pci;
395 	}
396 
397 	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
398 		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
399 
400 	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
401 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
402 				0, "MSI[0:63]", octeon_msi_interrupt0))
403 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
404 
405 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
406 				0, "MSI[64:127]", octeon_msi_interrupt1))
407 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
408 
409 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
410 				0, "MSI[127:191]", octeon_msi_interrupt2))
411 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
412 
413 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
414 				0, "MSI[192:255]", octeon_msi_interrupt3))
415 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
416 
417 		msi_irq_size = 256;
418 	} else if (octeon_is_pci_host()) {
419 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
420 				0, "MSI[0:15]", octeon_msi_interrupt0))
421 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
422 
423 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
424 				0, "MSI[16:31]", octeon_msi_interrupt0))
425 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
426 
427 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
428 				0, "MSI[32:47]", octeon_msi_interrupt0))
429 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
430 
431 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
432 				0, "MSI[48:63]", octeon_msi_interrupt0))
433 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
434 		msi_irq_size = 64;
435 	}
436 	return 0;
437 }
438 subsys_initcall(octeon_msi_initialize);
439