xref: /openbmc/linux/arch/mips/pci/msi-octeon.c (revision 8fdff1dc)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009, 2010 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13 
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-pexp-defs.h>
19 #include <asm/octeon/pci-octeon.h>
20 
21 /*
22  * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
23  * in use.
24  */
25 static u64 msi_free_irq_bitmask[4];
26 
27 /*
28  * Each bit in msi_multiple_irq_bitmask tells that the device using
29  * this bit in msi_free_irq_bitmask is also using the next bit. This
30  * is used so we can disable all of the MSI interrupts when a device
31  * uses multiple.
32  */
33 static u64 msi_multiple_irq_bitmask[4];
34 
35 /*
36  * This lock controls updates to msi_free_irq_bitmask and
37  * msi_multiple_irq_bitmask.
38  */
39 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
40 
41 /*
42  * Number of MSI IRQs used. This variable is set up in
43  * the module init time.
44  */
45 static int msi_irq_size;
46 
47 /**
48  * Called when a driver request MSI interrupts instead of the
49  * legacy INT A-D. This routine will allocate multiple interrupts
50  * for MSI devices that support them. A device can override this by
51  * programming the MSI control bits [6:4] before calling
52  * pci_enable_msi().
53  *
54  * @dev:    Device requesting MSI interrupts
55  * @desc:   MSI descriptor
56  *
57  * Returns 0 on success.
58  */
59 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
60 {
61 	struct msi_msg msg;
62 	u16 control;
63 	int configured_private_bits;
64 	int request_private_bits;
65 	int irq = 0;
66 	int irq_step;
67 	u64 search_mask;
68 	int index;
69 
70 	/*
71 	 * Read the MSI config to figure out how many IRQs this device
72 	 * wants.  Most devices only want 1, which will give
73 	 * configured_private_bits and request_private_bits equal 0.
74 	 */
75 	pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
76 			     &control);
77 
78 	/*
79 	 * If the number of private bits has been configured then use
80 	 * that value instead of the requested number. This gives the
81 	 * driver the chance to override the number of interrupts
82 	 * before calling pci_enable_msi().
83 	 */
84 	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85 	if (configured_private_bits == 0) {
86 		/* Nothing is configured, so use the hardware requested size */
87 		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88 	} else {
89 		/*
90 		 * Use the number of configured bits, assuming the
91 		 * driver wanted to override the hardware request
92 		 * value.
93 		 */
94 		request_private_bits = configured_private_bits;
95 	}
96 
97 	/*
98 	 * The PCI 2.3 spec mandates that there are at most 32
99 	 * interrupts. If this device asks for more, only give it one.
100 	 */
101 	if (request_private_bits > 5)
102 		request_private_bits = 0;
103 
104 try_only_one:
105 	/*
106 	 * The IRQs have to be aligned on a power of two based on the
107 	 * number being requested.
108 	 */
109 	irq_step = 1 << request_private_bits;
110 
111 	/* Mask with one bit for each IRQ */
112 	search_mask = (1 << irq_step) - 1;
113 
114 	/*
115 	 * We're going to search msi_free_irq_bitmask_lock for zero
116 	 * bits. This represents an MSI interrupt number that isn't in
117 	 * use.
118 	 */
119 	spin_lock(&msi_free_irq_bitmask_lock);
120 	for (index = 0; index < msi_irq_size/64; index++) {
121 		for (irq = 0; irq < 64; irq += irq_step) {
122 			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123 				msi_free_irq_bitmask[index] |= search_mask << irq;
124 				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125 				goto msi_irq_allocated;
126 			}
127 		}
128 	}
129 msi_irq_allocated:
130 	spin_unlock(&msi_free_irq_bitmask_lock);
131 
132 	/* Make sure the search for available interrupts didn't fail */
133 	if (irq >= 64) {
134 		if (request_private_bits) {
135 			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136 			       1 << request_private_bits);
137 			request_private_bits = 0;
138 			goto try_only_one;
139 		} else
140 			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141 	}
142 
143 	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144 	irq += index*64;
145 	irq += OCTEON_IRQ_MSI_BIT0;
146 
147 	switch (octeon_dma_bar_type) {
148 	case OCTEON_DMA_BAR_TYPE_SMALL:
149 		/* When not using big bar, Bar 0 is based at 128MB */
150 		msg.address_lo =
151 			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152 		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153 	case OCTEON_DMA_BAR_TYPE_BIG:
154 		/* When using big bar, Bar 0 is based at 0 */
155 		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
156 		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
157 		break;
158 	case OCTEON_DMA_BAR_TYPE_PCIE:
159 		/* When using PCIe, Bar 0 is based at 0 */
160 		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
161 		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
162 		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
163 		break;
164 	default:
165 		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
166 	}
167 	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
168 
169 	/* Update the number of IRQs the device has available to it */
170 	control &= ~PCI_MSI_FLAGS_QSIZE;
171 	control |= request_private_bits << 4;
172 	pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
173 			      control);
174 
175 	irq_set_msi_desc(irq, desc);
176 	write_msi_msg(irq, &msg);
177 	return 0;
178 }
179 
180 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
181 {
182 	struct msi_desc *entry;
183 	int ret;
184 
185 	/*
186 	 * MSI-X is not supported.
187 	 */
188 	if (type == PCI_CAP_ID_MSIX)
189 		return -EINVAL;
190 
191 	/*
192 	 * If an architecture wants to support multiple MSI, it needs to
193 	 * override arch_setup_msi_irqs()
194 	 */
195 	if (type == PCI_CAP_ID_MSI && nvec > 1)
196 		return 1;
197 
198 	list_for_each_entry(entry, &dev->msi_list, list) {
199 		ret = arch_setup_msi_irq(dev, entry);
200 		if (ret < 0)
201 			return ret;
202 		if (ret > 0)
203 			return -ENOSPC;
204 	}
205 
206 	return 0;
207 }
208 
209 /**
210  * Called when a device no longer needs its MSI interrupts. All
211  * MSI interrupts for the device are freed.
212  *
213  * @irq:    The devices first irq number. There may be multple in sequence.
214  */
215 void arch_teardown_msi_irq(unsigned int irq)
216 {
217 	int number_irqs;
218 	u64 bitmask;
219 	int index = 0;
220 	int irq0;
221 
222 	if ((irq < OCTEON_IRQ_MSI_BIT0)
223 		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
224 		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
225 		      "MSI interrupt (%d)", irq);
226 
227 	irq -= OCTEON_IRQ_MSI_BIT0;
228 	index = irq / 64;
229 	irq0 = irq % 64;
230 
231 	/*
232 	 * Count the number of IRQs we need to free by looking at the
233 	 * msi_multiple_irq_bitmask. Each bit set means that the next
234 	 * IRQ is also owned by this device.
235 	 */
236 	number_irqs = 0;
237 	while ((irq0 + number_irqs < 64) &&
238 	       (msi_multiple_irq_bitmask[index]
239 		& (1ull << (irq0 + number_irqs))))
240 		number_irqs++;
241 	number_irqs++;
242 	/* Mask with one bit for each IRQ */
243 	bitmask = (1 << number_irqs) - 1;
244 	/* Shift the mask to the correct bit location */
245 	bitmask <<= irq0;
246 	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
247 		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
248 		      "interrupt (%d) not in use", irq);
249 
250 	/* Checks are done, update the in use bitmask */
251 	spin_lock(&msi_free_irq_bitmask_lock);
252 	msi_free_irq_bitmask[index] &= ~bitmask;
253 	msi_multiple_irq_bitmask[index] &= ~bitmask;
254 	spin_unlock(&msi_free_irq_bitmask_lock);
255 }
256 
257 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
258 
259 static u64 msi_rcv_reg[4];
260 static u64 mis_ena_reg[4];
261 
262 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
263 {
264 	u64 en;
265 	unsigned long flags;
266 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
267 	int irq_index = msi_number >> 6;
268 	int irq_bit = msi_number & 0x3f;
269 
270 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
271 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
272 	en |= 1ull << irq_bit;
273 	cvmx_write_csr(mis_ena_reg[irq_index], en);
274 	cvmx_read_csr(mis_ena_reg[irq_index]);
275 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
276 }
277 
278 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
279 {
280 	u64 en;
281 	unsigned long flags;
282 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
283 	int irq_index = msi_number >> 6;
284 	int irq_bit = msi_number & 0x3f;
285 
286 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
287 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
288 	en &= ~(1ull << irq_bit);
289 	cvmx_write_csr(mis_ena_reg[irq_index], en);
290 	cvmx_read_csr(mis_ena_reg[irq_index]);
291 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
292 }
293 
294 static struct irq_chip octeon_irq_chip_msi_pcie = {
295 	.name = "MSI",
296 	.irq_enable = octeon_irq_msi_enable_pcie,
297 	.irq_disable = octeon_irq_msi_disable_pcie,
298 };
299 
300 static void octeon_irq_msi_enable_pci(struct irq_data *data)
301 {
302 	/*
303 	 * Octeon PCI doesn't have the ability to mask/unmask MSI
304 	 * interrupts individually. Instead of masking/unmasking them
305 	 * in groups of 16, we simple assume MSI devices are well
306 	 * behaved. MSI interrupts are always enable and the ACK is
307 	 * assumed to be enough
308 	 */
309 }
310 
311 static void octeon_irq_msi_disable_pci(struct irq_data *data)
312 {
313 	/* See comment in enable */
314 }
315 
316 static struct irq_chip octeon_irq_chip_msi_pci = {
317 	.name = "MSI",
318 	.irq_enable = octeon_irq_msi_enable_pci,
319 	.irq_disable = octeon_irq_msi_disable_pci,
320 };
321 
322 /*
323  * Called by the interrupt handling code when an MSI interrupt
324  * occurs.
325  */
326 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
327 {
328 	int irq;
329 	int bit;
330 
331 	bit = fls64(msi_bits);
332 	if (bit) {
333 		bit--;
334 		/* Acknowledge it first. */
335 		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
336 
337 		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
338 		do_IRQ(irq);
339 		return IRQ_HANDLED;
340 	}
341 	return IRQ_NONE;
342 }
343 
344 #define OCTEON_MSI_INT_HANDLER_X(x)					\
345 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
346 {									\
347 	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
348 	return __octeon_msi_do_interrupt((x), msi_bits);		\
349 }
350 
351 /*
352  * Create octeon_msi_interrupt{0-3} function body
353  */
354 OCTEON_MSI_INT_HANDLER_X(0);
355 OCTEON_MSI_INT_HANDLER_X(1);
356 OCTEON_MSI_INT_HANDLER_X(2);
357 OCTEON_MSI_INT_HANDLER_X(3);
358 
359 /*
360  * Initializes the MSI interrupt handling code
361  */
362 int __init octeon_msi_initialize(void)
363 {
364 	int irq;
365 	struct irq_chip *msi;
366 
367 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
368 		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
369 		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
370 		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
371 		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
372 		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
373 		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
374 		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
375 		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
376 		msi = &octeon_irq_chip_msi_pcie;
377 	} else {
378 		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
379 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
380 		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
381 		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
382 		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
383 		mis_ena_reg[0] = INVALID_GENERATE_ADE;
384 		mis_ena_reg[1] = INVALID_GENERATE_ADE;
385 		mis_ena_reg[2] = INVALID_GENERATE_ADE;
386 		mis_ena_reg[3] = INVALID_GENERATE_ADE;
387 		msi = &octeon_irq_chip_msi_pci;
388 	}
389 
390 	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
391 		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
392 
393 	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
394 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
395 				0, "MSI[0:63]", octeon_msi_interrupt0))
396 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
397 
398 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
399 				0, "MSI[64:127]", octeon_msi_interrupt1))
400 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
401 
402 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
403 				0, "MSI[127:191]", octeon_msi_interrupt2))
404 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
405 
406 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
407 				0, "MSI[192:255]", octeon_msi_interrupt3))
408 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
409 
410 		msi_irq_size = 256;
411 	} else if (octeon_is_pci_host()) {
412 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
413 				0, "MSI[0:15]", octeon_msi_interrupt0))
414 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
415 
416 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
417 				0, "MSI[16:31]", octeon_msi_interrupt0))
418 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
419 
420 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
421 				0, "MSI[32:47]", octeon_msi_interrupt0))
422 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
423 
424 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
425 				0, "MSI[48:63]", octeon_msi_interrupt0))
426 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
427 		msi_irq_size = 64;
428 	}
429 	return 0;
430 }
431 subsys_initcall(octeon_msi_initialize);
432