1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2005-2009, 2010 Cavium Networks 7 */ 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 #include <linux/msi.h> 11 #include <linux/spinlock.h> 12 #include <linux/interrupt.h> 13 14 #include <asm/octeon/octeon.h> 15 #include <asm/octeon/cvmx-npi-defs.h> 16 #include <asm/octeon/cvmx-pci-defs.h> 17 #include <asm/octeon/cvmx-npei-defs.h> 18 #include <asm/octeon/cvmx-pexp-defs.h> 19 #include <asm/octeon/pci-octeon.h> 20 21 /* 22 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is 23 * in use. 24 */ 25 static u64 msi_free_irq_bitmask[4]; 26 27 /* 28 * Each bit in msi_multiple_irq_bitmask tells that the device using 29 * this bit in msi_free_irq_bitmask is also using the next bit. This 30 * is used so we can disable all of the MSI interrupts when a device 31 * uses multiple. 32 */ 33 static u64 msi_multiple_irq_bitmask[4]; 34 35 /* 36 * This lock controls updates to msi_free_irq_bitmask and 37 * msi_multiple_irq_bitmask. 38 */ 39 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock); 40 41 /* 42 * Number of MSI IRQs used. This variable is set up in 43 * the module init time. 44 */ 45 static int msi_irq_size; 46 47 /** 48 * Called when a driver request MSI interrupts instead of the 49 * legacy INT A-D. This routine will allocate multiple interrupts 50 * for MSI devices that support them. A device can override this by 51 * programming the MSI control bits [6:4] before calling 52 * pci_enable_msi(). 53 * 54 * @dev: Device requesting MSI interrupts 55 * @desc: MSI descriptor 56 * 57 * Returns 0 on success. 58 */ 59 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) 60 { 61 struct msi_msg msg; 62 u16 control; 63 int configured_private_bits; 64 int request_private_bits; 65 int irq = 0; 66 int irq_step; 67 u64 search_mask; 68 int index; 69 70 /* 71 * Read the MSI config to figure out how many IRQs this device 72 * wants. Most devices only want 1, which will give 73 * configured_private_bits and request_private_bits equal 0. 74 */ 75 pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS, 76 &control); 77 78 /* 79 * If the number of private bits has been configured then use 80 * that value instead of the requested number. This gives the 81 * driver the chance to override the number of interrupts 82 * before calling pci_enable_msi(). 83 */ 84 configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4; 85 if (configured_private_bits == 0) { 86 /* Nothing is configured, so use the hardware requested size */ 87 request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1; 88 } else { 89 /* 90 * Use the number of configured bits, assuming the 91 * driver wanted to override the hardware request 92 * value. 93 */ 94 request_private_bits = configured_private_bits; 95 } 96 97 /* 98 * The PCI 2.3 spec mandates that there are at most 32 99 * interrupts. If this device asks for more, only give it one. 100 */ 101 if (request_private_bits > 5) 102 request_private_bits = 0; 103 104 try_only_one: 105 /* 106 * The IRQs have to be aligned on a power of two based on the 107 * number being requested. 108 */ 109 irq_step = 1 << request_private_bits; 110 111 /* Mask with one bit for each IRQ */ 112 search_mask = (1 << irq_step) - 1; 113 114 /* 115 * We're going to search msi_free_irq_bitmask_lock for zero 116 * bits. This represents an MSI interrupt number that isn't in 117 * use. 118 */ 119 spin_lock(&msi_free_irq_bitmask_lock); 120 for (index = 0; index < msi_irq_size/64; index++) { 121 for (irq = 0; irq < 64; irq += irq_step) { 122 if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) { 123 msi_free_irq_bitmask[index] |= search_mask << irq; 124 msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq; 125 goto msi_irq_allocated; 126 } 127 } 128 } 129 msi_irq_allocated: 130 spin_unlock(&msi_free_irq_bitmask_lock); 131 132 /* Make sure the search for available interrupts didn't fail */ 133 if (irq >= 64) { 134 if (request_private_bits) { 135 pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one", 136 1 << request_private_bits); 137 request_private_bits = 0; 138 goto try_only_one; 139 } else 140 panic("arch_setup_msi_irq: Unable to find a free MSI interrupt"); 141 } 142 143 /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */ 144 irq += index*64; 145 irq += OCTEON_IRQ_MSI_BIT0; 146 147 switch (octeon_dma_bar_type) { 148 case OCTEON_DMA_BAR_TYPE_SMALL: 149 /* When not using big bar, Bar 0 is based at 128MB */ 150 msg.address_lo = 151 ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff; 152 msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32; 153 case OCTEON_DMA_BAR_TYPE_BIG: 154 /* When using big bar, Bar 0 is based at 0 */ 155 msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff; 156 msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32; 157 break; 158 case OCTEON_DMA_BAR_TYPE_PCIE: 159 /* When using PCIe, Bar 0 is based at 0 */ 160 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */ 161 msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff; 162 msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32; 163 break; 164 default: 165 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type"); 166 } 167 msg.data = irq - OCTEON_IRQ_MSI_BIT0; 168 169 /* Update the number of IRQs the device has available to it */ 170 control &= ~PCI_MSI_FLAGS_QSIZE; 171 control |= request_private_bits << 4; 172 pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS, 173 control); 174 175 irq_set_msi_desc(irq, desc); 176 write_msi_msg(irq, &msg); 177 return 0; 178 } 179 180 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) 181 { 182 struct msi_desc *entry; 183 int ret; 184 185 /* 186 * MSI-X is not supported. 187 */ 188 if (type == PCI_CAP_ID_MSIX) 189 return -EINVAL; 190 191 /* 192 * If an architecture wants to support multiple MSI, it needs to 193 * override arch_setup_msi_irqs() 194 */ 195 if (type == PCI_CAP_ID_MSI && nvec > 1) 196 return 1; 197 198 list_for_each_entry(entry, &dev->msi_list, list) { 199 ret = arch_setup_msi_irq(dev, entry); 200 if (ret < 0) 201 return ret; 202 if (ret > 0) 203 return -ENOSPC; 204 } 205 206 return 0; 207 } 208 209 /** 210 * Called when a device no longer needs its MSI interrupts. All 211 * MSI interrupts for the device are freed. 212 * 213 * @irq: The devices first irq number. There may be multple in sequence. 214 */ 215 void arch_teardown_msi_irq(unsigned int irq) 216 { 217 int number_irqs; 218 u64 bitmask; 219 int index = 0; 220 int irq0; 221 222 if ((irq < OCTEON_IRQ_MSI_BIT0) 223 || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0)) 224 panic("arch_teardown_msi_irq: Attempted to teardown illegal " 225 "MSI interrupt (%d)", irq); 226 227 irq -= OCTEON_IRQ_MSI_BIT0; 228 index = irq / 64; 229 irq0 = irq % 64; 230 231 /* 232 * Count the number of IRQs we need to free by looking at the 233 * msi_multiple_irq_bitmask. Each bit set means that the next 234 * IRQ is also owned by this device. 235 */ 236 number_irqs = 0; 237 while ((irq0 + number_irqs < 64) && 238 (msi_multiple_irq_bitmask[index] 239 & (1ull << (irq0 + number_irqs)))) 240 number_irqs++; 241 number_irqs++; 242 /* Mask with one bit for each IRQ */ 243 bitmask = (1 << number_irqs) - 1; 244 /* Shift the mask to the correct bit location */ 245 bitmask <<= irq0; 246 if ((msi_free_irq_bitmask[index] & bitmask) != bitmask) 247 panic("arch_teardown_msi_irq: Attempted to teardown MSI " 248 "interrupt (%d) not in use", irq); 249 250 /* Checks are done, update the in use bitmask */ 251 spin_lock(&msi_free_irq_bitmask_lock); 252 msi_free_irq_bitmask[index] &= ~bitmask; 253 msi_multiple_irq_bitmask[index] &= ~bitmask; 254 spin_unlock(&msi_free_irq_bitmask_lock); 255 } 256 257 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock); 258 259 static u64 msi_rcv_reg[4]; 260 static u64 mis_ena_reg[4]; 261 262 static void octeon_irq_msi_enable_pcie(struct irq_data *data) 263 { 264 u64 en; 265 unsigned long flags; 266 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; 267 int irq_index = msi_number >> 6; 268 int irq_bit = msi_number & 0x3f; 269 270 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); 271 en = cvmx_read_csr(mis_ena_reg[irq_index]); 272 en |= 1ull << irq_bit; 273 cvmx_write_csr(mis_ena_reg[irq_index], en); 274 cvmx_read_csr(mis_ena_reg[irq_index]); 275 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); 276 } 277 278 static void octeon_irq_msi_disable_pcie(struct irq_data *data) 279 { 280 u64 en; 281 unsigned long flags; 282 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; 283 int irq_index = msi_number >> 6; 284 int irq_bit = msi_number & 0x3f; 285 286 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); 287 en = cvmx_read_csr(mis_ena_reg[irq_index]); 288 en &= ~(1ull << irq_bit); 289 cvmx_write_csr(mis_ena_reg[irq_index], en); 290 cvmx_read_csr(mis_ena_reg[irq_index]); 291 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); 292 } 293 294 static struct irq_chip octeon_irq_chip_msi_pcie = { 295 .name = "MSI", 296 .irq_enable = octeon_irq_msi_enable_pcie, 297 .irq_disable = octeon_irq_msi_disable_pcie, 298 }; 299 300 static void octeon_irq_msi_enable_pci(struct irq_data *data) 301 { 302 /* 303 * Octeon PCI doesn't have the ability to mask/unmask MSI 304 * interrupts individually. Instead of masking/unmasking them 305 * in groups of 16, we simple assume MSI devices are well 306 * behaved. MSI interrupts are always enable and the ACK is 307 * assumed to be enough 308 */ 309 } 310 311 static void octeon_irq_msi_disable_pci(struct irq_data *data) 312 { 313 /* See comment in enable */ 314 } 315 316 static struct irq_chip octeon_irq_chip_msi_pci = { 317 .name = "MSI", 318 .irq_enable = octeon_irq_msi_enable_pci, 319 .irq_disable = octeon_irq_msi_disable_pci, 320 }; 321 322 /* 323 * Called by the interrupt handling code when an MSI interrupt 324 * occurs. 325 */ 326 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits) 327 { 328 int irq; 329 int bit; 330 331 bit = fls64(msi_bits); 332 if (bit) { 333 bit--; 334 /* Acknowledge it first. */ 335 cvmx_write_csr(msi_rcv_reg[index], 1ull << bit); 336 337 irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index; 338 do_IRQ(irq); 339 return IRQ_HANDLED; 340 } 341 return IRQ_NONE; 342 } 343 344 #define OCTEON_MSI_INT_HANDLER_X(x) \ 345 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \ 346 { \ 347 u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \ 348 return __octeon_msi_do_interrupt((x), msi_bits); \ 349 } 350 351 /* 352 * Create octeon_msi_interrupt{0-3} function body 353 */ 354 OCTEON_MSI_INT_HANDLER_X(0); 355 OCTEON_MSI_INT_HANDLER_X(1); 356 OCTEON_MSI_INT_HANDLER_X(2); 357 OCTEON_MSI_INT_HANDLER_X(3); 358 359 /* 360 * Initializes the MSI interrupt handling code 361 */ 362 int __init octeon_msi_initialize(void) 363 { 364 int irq; 365 struct irq_chip *msi; 366 367 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) { 368 msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0; 369 msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1; 370 msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2; 371 msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3; 372 mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0; 373 mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1; 374 mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2; 375 mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3; 376 msi = &octeon_irq_chip_msi_pcie; 377 } else { 378 msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV; 379 #define INVALID_GENERATE_ADE 0x8700000000000000ULL; 380 msi_rcv_reg[1] = INVALID_GENERATE_ADE; 381 msi_rcv_reg[2] = INVALID_GENERATE_ADE; 382 msi_rcv_reg[3] = INVALID_GENERATE_ADE; 383 mis_ena_reg[0] = INVALID_GENERATE_ADE; 384 mis_ena_reg[1] = INVALID_GENERATE_ADE; 385 mis_ena_reg[2] = INVALID_GENERATE_ADE; 386 mis_ena_reg[3] = INVALID_GENERATE_ADE; 387 msi = &octeon_irq_chip_msi_pci; 388 } 389 390 for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++) 391 irq_set_chip_and_handler(irq, msi, handle_simple_irq); 392 393 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) { 394 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, 395 0, "MSI[0:63]", octeon_msi_interrupt0)) 396 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); 397 398 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1, 399 0, "MSI[64:127]", octeon_msi_interrupt1)) 400 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); 401 402 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2, 403 0, "MSI[127:191]", octeon_msi_interrupt2)) 404 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); 405 406 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3, 407 0, "MSI[192:255]", octeon_msi_interrupt3)) 408 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); 409 410 msi_irq_size = 256; 411 } else if (octeon_is_pci_host()) { 412 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, 413 0, "MSI[0:15]", octeon_msi_interrupt0)) 414 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); 415 416 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0, 417 0, "MSI[16:31]", octeon_msi_interrupt0)) 418 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); 419 420 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0, 421 0, "MSI[32:47]", octeon_msi_interrupt0)) 422 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); 423 424 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0, 425 0, "MSI[48:63]", octeon_msi_interrupt0)) 426 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); 427 msi_irq_size = 64; 428 } 429 return 0; 430 } 431 subsys_initcall(octeon_msi_initialize); 432