xref: /openbmc/linux/arch/mips/pci/msi-octeon.c (revision 5497b23e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009, 2010 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13 
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-sli-defs.h>
19 #include <asm/octeon/cvmx-pexp-defs.h>
20 #include <asm/octeon/pci-octeon.h>
21 
22 /*
23  * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
24  * in use.
25  */
26 static u64 msi_free_irq_bitmask[4];
27 
28 /*
29  * Each bit in msi_multiple_irq_bitmask tells that the device using
30  * this bit in msi_free_irq_bitmask is also using the next bit. This
31  * is used so we can disable all of the MSI interrupts when a device
32  * uses multiple.
33  */
34 static u64 msi_multiple_irq_bitmask[4];
35 
36 /*
37  * This lock controls updates to msi_free_irq_bitmask and
38  * msi_multiple_irq_bitmask.
39  */
40 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
41 
42 /*
43  * Number of MSI IRQs used. This variable is set up in
44  * the module init time.
45  */
46 static int msi_irq_size;
47 
48 /**
49  * Called when a driver request MSI interrupts instead of the
50  * legacy INT A-D. This routine will allocate multiple interrupts
51  * for MSI devices that support them. A device can override this by
52  * programming the MSI control bits [6:4] before calling
53  * pci_enable_msi().
54  *
55  * @dev:    Device requesting MSI interrupts
56  * @desc:   MSI descriptor
57  *
58  * Returns 0 on success.
59  */
60 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
61 {
62 	struct msi_msg msg;
63 	u16 control;
64 	int configured_private_bits;
65 	int request_private_bits;
66 	int irq = 0;
67 	int irq_step;
68 	u64 search_mask;
69 	int index;
70 
71 	/*
72 	 * Read the MSI config to figure out how many IRQs this device
73 	 * wants.  Most devices only want 1, which will give
74 	 * configured_private_bits and request_private_bits equal 0.
75 	 */
76 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
77 
78 	/*
79 	 * If the number of private bits has been configured then use
80 	 * that value instead of the requested number. This gives the
81 	 * driver the chance to override the number of interrupts
82 	 * before calling pci_enable_msi().
83 	 */
84 	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85 	if (configured_private_bits == 0) {
86 		/* Nothing is configured, so use the hardware requested size */
87 		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88 	} else {
89 		/*
90 		 * Use the number of configured bits, assuming the
91 		 * driver wanted to override the hardware request
92 		 * value.
93 		 */
94 		request_private_bits = configured_private_bits;
95 	}
96 
97 	/*
98 	 * The PCI 2.3 spec mandates that there are at most 32
99 	 * interrupts. If this device asks for more, only give it one.
100 	 */
101 	if (request_private_bits > 5)
102 		request_private_bits = 0;
103 
104 try_only_one:
105 	/*
106 	 * The IRQs have to be aligned on a power of two based on the
107 	 * number being requested.
108 	 */
109 	irq_step = 1 << request_private_bits;
110 
111 	/* Mask with one bit for each IRQ */
112 	search_mask = (1 << irq_step) - 1;
113 
114 	/*
115 	 * We're going to search msi_free_irq_bitmask_lock for zero
116 	 * bits. This represents an MSI interrupt number that isn't in
117 	 * use.
118 	 */
119 	spin_lock(&msi_free_irq_bitmask_lock);
120 	for (index = 0; index < msi_irq_size/64; index++) {
121 		for (irq = 0; irq < 64; irq += irq_step) {
122 			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123 				msi_free_irq_bitmask[index] |= search_mask << irq;
124 				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125 				goto msi_irq_allocated;
126 			}
127 		}
128 	}
129 msi_irq_allocated:
130 	spin_unlock(&msi_free_irq_bitmask_lock);
131 
132 	/* Make sure the search for available interrupts didn't fail */
133 	if (irq >= 64) {
134 		if (request_private_bits) {
135 			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136 			       1 << request_private_bits);
137 			request_private_bits = 0;
138 			goto try_only_one;
139 		} else
140 			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141 	}
142 
143 	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144 	irq += index*64;
145 	irq += OCTEON_IRQ_MSI_BIT0;
146 
147 	switch (octeon_dma_bar_type) {
148 	case OCTEON_DMA_BAR_TYPE_SMALL:
149 		/* When not using big bar, Bar 0 is based at 128MB */
150 		msg.address_lo =
151 			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152 		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153 		break;
154 	case OCTEON_DMA_BAR_TYPE_BIG:
155 		/* When using big bar, Bar 0 is based at 0 */
156 		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
157 		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
158 		break;
159 	case OCTEON_DMA_BAR_TYPE_PCIE:
160 		/* When using PCIe, Bar 0 is based at 0 */
161 		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
162 		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
163 		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
164 		break;
165 	case OCTEON_DMA_BAR_TYPE_PCIE2:
166 		/* When using PCIe2, Bar 0 is based at 0 */
167 		msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
168 		msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
169 		break;
170 	default:
171 		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
172 	}
173 	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
174 
175 	/* Update the number of IRQs the device has available to it */
176 	control &= ~PCI_MSI_FLAGS_QSIZE;
177 	control |= request_private_bits << 4;
178 	pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
179 
180 	irq_set_msi_desc(irq, desc);
181 	pci_write_msi_msg(irq, &msg);
182 	return 0;
183 }
184 
185 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
186 {
187 	struct msi_desc *entry;
188 	int ret;
189 
190 	/*
191 	 * MSI-X is not supported.
192 	 */
193 	if (type == PCI_CAP_ID_MSIX)
194 		return -EINVAL;
195 
196 	/*
197 	 * If an architecture wants to support multiple MSI, it needs to
198 	 * override arch_setup_msi_irqs()
199 	 */
200 	if (type == PCI_CAP_ID_MSI && nvec > 1)
201 		return 1;
202 
203 	for_each_pci_msi_entry(entry, dev) {
204 		ret = arch_setup_msi_irq(dev, entry);
205 		if (ret < 0)
206 			return ret;
207 		if (ret > 0)
208 			return -ENOSPC;
209 	}
210 
211 	return 0;
212 }
213 
214 /**
215  * Called when a device no longer needs its MSI interrupts. All
216  * MSI interrupts for the device are freed.
217  *
218  * @irq:    The devices first irq number. There may be multple in sequence.
219  */
220 void arch_teardown_msi_irq(unsigned int irq)
221 {
222 	int number_irqs;
223 	u64 bitmask;
224 	int index = 0;
225 	int irq0;
226 
227 	if ((irq < OCTEON_IRQ_MSI_BIT0)
228 		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
229 		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
230 		      "MSI interrupt (%d)", irq);
231 
232 	irq -= OCTEON_IRQ_MSI_BIT0;
233 	index = irq / 64;
234 	irq0 = irq % 64;
235 
236 	/*
237 	 * Count the number of IRQs we need to free by looking at the
238 	 * msi_multiple_irq_bitmask. Each bit set means that the next
239 	 * IRQ is also owned by this device.
240 	 */
241 	number_irqs = 0;
242 	while ((irq0 + number_irqs < 64) &&
243 	       (msi_multiple_irq_bitmask[index]
244 		& (1ull << (irq0 + number_irqs))))
245 		number_irqs++;
246 	number_irqs++;
247 	/* Mask with one bit for each IRQ */
248 	bitmask = (1 << number_irqs) - 1;
249 	/* Shift the mask to the correct bit location */
250 	bitmask <<= irq0;
251 	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
252 		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
253 		      "interrupt (%d) not in use", irq);
254 
255 	/* Checks are done, update the in use bitmask */
256 	spin_lock(&msi_free_irq_bitmask_lock);
257 	msi_free_irq_bitmask[index] &= ~bitmask;
258 	msi_multiple_irq_bitmask[index] &= ~bitmask;
259 	spin_unlock(&msi_free_irq_bitmask_lock);
260 }
261 
262 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
263 
264 static u64 msi_rcv_reg[4];
265 static u64 mis_ena_reg[4];
266 
267 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
268 {
269 	u64 en;
270 	unsigned long flags;
271 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
272 	int irq_index = msi_number >> 6;
273 	int irq_bit = msi_number & 0x3f;
274 
275 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
276 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
277 	en |= 1ull << irq_bit;
278 	cvmx_write_csr(mis_ena_reg[irq_index], en);
279 	cvmx_read_csr(mis_ena_reg[irq_index]);
280 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
281 }
282 
283 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
284 {
285 	u64 en;
286 	unsigned long flags;
287 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
288 	int irq_index = msi_number >> 6;
289 	int irq_bit = msi_number & 0x3f;
290 
291 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
292 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
293 	en &= ~(1ull << irq_bit);
294 	cvmx_write_csr(mis_ena_reg[irq_index], en);
295 	cvmx_read_csr(mis_ena_reg[irq_index]);
296 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
297 }
298 
299 static struct irq_chip octeon_irq_chip_msi_pcie = {
300 	.name = "MSI",
301 	.irq_enable = octeon_irq_msi_enable_pcie,
302 	.irq_disable = octeon_irq_msi_disable_pcie,
303 };
304 
305 static void octeon_irq_msi_enable_pci(struct irq_data *data)
306 {
307 	/*
308 	 * Octeon PCI doesn't have the ability to mask/unmask MSI
309 	 * interrupts individually. Instead of masking/unmasking them
310 	 * in groups of 16, we simple assume MSI devices are well
311 	 * behaved. MSI interrupts are always enable and the ACK is
312 	 * assumed to be enough
313 	 */
314 }
315 
316 static void octeon_irq_msi_disable_pci(struct irq_data *data)
317 {
318 	/* See comment in enable */
319 }
320 
321 static struct irq_chip octeon_irq_chip_msi_pci = {
322 	.name = "MSI",
323 	.irq_enable = octeon_irq_msi_enable_pci,
324 	.irq_disable = octeon_irq_msi_disable_pci,
325 };
326 
327 /*
328  * Called by the interrupt handling code when an MSI interrupt
329  * occurs.
330  */
331 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
332 {
333 	int irq;
334 	int bit;
335 
336 	bit = fls64(msi_bits);
337 	if (bit) {
338 		bit--;
339 		/* Acknowledge it first. */
340 		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
341 
342 		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
343 		do_IRQ(irq);
344 		return IRQ_HANDLED;
345 	}
346 	return IRQ_NONE;
347 }
348 
349 #define OCTEON_MSI_INT_HANDLER_X(x)					\
350 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
351 {									\
352 	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
353 	return __octeon_msi_do_interrupt((x), msi_bits);		\
354 }
355 
356 /*
357  * Create octeon_msi_interrupt{0-3} function body
358  */
359 OCTEON_MSI_INT_HANDLER_X(0);
360 OCTEON_MSI_INT_HANDLER_X(1);
361 OCTEON_MSI_INT_HANDLER_X(2);
362 OCTEON_MSI_INT_HANDLER_X(3);
363 
364 /*
365  * Initializes the MSI interrupt handling code
366  */
367 int __init octeon_msi_initialize(void)
368 {
369 	int irq;
370 	struct irq_chip *msi;
371 
372 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
373 		return 0;
374 	} else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
375 		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
376 		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
377 		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
378 		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
379 		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
380 		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
381 		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
382 		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
383 		msi = &octeon_irq_chip_msi_pcie;
384 	} else {
385 		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
386 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
387 		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
388 		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
389 		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
390 		mis_ena_reg[0] = INVALID_GENERATE_ADE;
391 		mis_ena_reg[1] = INVALID_GENERATE_ADE;
392 		mis_ena_reg[2] = INVALID_GENERATE_ADE;
393 		mis_ena_reg[3] = INVALID_GENERATE_ADE;
394 		msi = &octeon_irq_chip_msi_pci;
395 	}
396 
397 	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
398 		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
399 
400 	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
401 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
402 				0, "MSI[0:63]", octeon_msi_interrupt0))
403 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
404 
405 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
406 				0, "MSI[64:127]", octeon_msi_interrupt1))
407 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
408 
409 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
410 				0, "MSI[127:191]", octeon_msi_interrupt2))
411 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
412 
413 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
414 				0, "MSI[192:255]", octeon_msi_interrupt3))
415 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
416 
417 		msi_irq_size = 256;
418 	} else if (octeon_is_pci_host()) {
419 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
420 				0, "MSI[0:15]", octeon_msi_interrupt0))
421 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
422 
423 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
424 				0, "MSI[16:31]", octeon_msi_interrupt0))
425 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
426 
427 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
428 				0, "MSI[32:47]", octeon_msi_interrupt0))
429 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
430 
431 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
432 				0, "MSI[48:63]", octeon_msi_interrupt0))
433 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
434 		msi_irq_size = 64;
435 	}
436 	return 0;
437 }
438 subsys_initcall(octeon_msi_initialize);
439