xref: /openbmc/linux/arch/mips/net/bpf_jit_comp.c (revision 2d2f5f1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Just-In-Time compiler for eBPF bytecode on MIPS.
4  * Implementation of JIT functions common to 32-bit and 64-bit CPUs.
5  *
6  * Copyright (c) 2021 Anyfi Networks AB.
7  * Author: Johan Almbladh <johan.almbladh@gmail.com>
8  *
9  * Based on code and ideas from
10  * Copyright (c) 2017 Cavium, Inc.
11  * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
12  * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
13  */
14 
15 /*
16  * Code overview
17  * =============
18  *
19  * - bpf_jit_comp.h
20  *   Common definitions and utilities.
21  *
22  * - bpf_jit_comp.c
23  *   Implementation of JIT top-level logic and exported JIT API functions.
24  *   Implementation of internal operations shared by 32-bit and 64-bit code.
25  *   JMP and ALU JIT control code, register control code, shared ALU and
26  *   JMP/JMP32 JIT operations.
27  *
28  * - bpf_jit_comp32.c
29  *   Implementation of functions to JIT prologue, epilogue and a single eBPF
30  *   instruction for 32-bit MIPS CPUs. The functions use shared operations
31  *   where possible, and implement the rest for 32-bit MIPS such as ALU64
32  *   operations.
33  *
34  * - bpf_jit_comp64.c
35  *   Ditto, for 64-bit MIPS CPUs.
36  *
37  * Zero and sign extension
38  * ========================
39  * 32-bit MIPS instructions on 64-bit MIPS registers use sign extension,
40  * but the eBPF instruction set mandates zero extension. We let the verifier
41  * insert explicit zero-extensions after 32-bit ALU operations, both for
42  * 32-bit and 64-bit MIPS JITs. Conditional JMP32 operations on 64-bit MIPs
43  * are JITed with sign extensions inserted when so expected.
44  *
45  * ALU operations
46  * ==============
47  * ALU operations on 32/64-bit MIPS and ALU64 operations on 64-bit MIPS are
48  * JITed in the following steps. ALU64 operations on 32-bit MIPS are more
49  * complicated and therefore only processed by special implementations in
50  * step (3).
51  *
52  * 1) valid_alu_i:
53  *    Determine if an immediate operation can be emitted as such, or if
54  *    we must fall back to the register version.
55  *
56  * 2) rewrite_alu_i:
57  *    Convert BPF operation and immediate value to a canonical form for
58  *    JITing. In some degenerate cases this form may be a no-op.
59  *
60  * 3) emit_alu_{i,i64,r,64}:
61  *    Emit instructions for an ALU or ALU64 immediate or register operation.
62  *
63  * JMP operations
64  * ==============
65  * JMP and JMP32 operations require an JIT instruction offset table for
66  * translating the jump offset. This table is computed by dry-running the
67  * JIT without actually emitting anything. However, the computed PC-relative
68  * offset may overflow the 18-bit offset field width of the native MIPS
69  * branch instruction. In such cases, the long jump is converted into the
70  * following sequence.
71  *
72  *    <branch> !<cond> +2    Inverted PC-relative branch
73  *    nop                    Delay slot
74  *    j <offset>             Unconditional absolute long jump
75  *    nop                    Delay slot
76  *
77  * Since this converted sequence alters the offset table, all offsets must
78  * be re-calculated. This may in turn trigger new branch conversions, so
79  * the process is repeated until no further changes are made. Normally it
80  * completes in 1-2 iterations. If JIT_MAX_ITERATIONS should reached, we
81  * fall back to converting every remaining jump operation. The branch
82  * conversion is independent of how the JMP or JMP32 condition is JITed.
83  *
84  * JMP32 and JMP operations are JITed as follows.
85  *
86  * 1) setup_jmp_{i,r}:
87  *    Convert jump conditional and offset into a form that can be JITed.
88  *    This form may be a no-op, a canonical form, or an inverted PC-relative
89  *    jump if branch conversion is necessary.
90  *
91  * 2) valid_jmp_i:
92  *    Determine if an immediate operations can be emitted as such, or if
93  *    we must fall back to the register version. Applies to JMP32 for 32-bit
94  *    MIPS, and both JMP and JMP32 for 64-bit MIPS.
95  *
96  * 3) emit_jmp_{i,i64,r,r64}:
97  *    Emit instructions for an JMP or JMP32 immediate or register operation.
98  *
99  * 4) finish_jmp_{i,r}:
100  *    Emit any instructions needed to finish the jump. This includes a nop
101  *    for the delay slot if a branch was emitted, and a long absolute jump
102  *    if the branch was converted.
103  */
104 
105 #include <linux/limits.h>
106 #include <linux/bitops.h>
107 #include <linux/errno.h>
108 #include <linux/filter.h>
109 #include <linux/bpf.h>
110 #include <linux/slab.h>
111 #include <asm/bitops.h>
112 #include <asm/cacheflush.h>
113 #include <asm/cpu-features.h>
114 #include <asm/isa-rev.h>
115 #include <asm/uasm.h>
116 
117 #include "bpf_jit_comp.h"
118 
119 /* Convenience macros for descriptor access */
120 #define CONVERTED(desc)	((desc) & JIT_DESC_CONVERT)
121 #define INDEX(desc)	((desc) & ~JIT_DESC_CONVERT)
122 
123 /*
124  * Push registers on the stack, starting at a given depth from the stack
125  * pointer and increasing. The next depth to be written is returned.
126  */
127 int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
128 {
129 	int reg;
130 
131 	for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
132 		if (mask & BIT(reg)) {
133 			if ((excl & BIT(reg)) == 0) {
134 				if (sizeof(long) == 4)
135 					emit(ctx, sw, reg, depth, MIPS_R_SP);
136 				else /* sizeof(long) == 8 */
137 					emit(ctx, sd, reg, depth, MIPS_R_SP);
138 			}
139 			depth += sizeof(long);
140 		}
141 
142 	ctx->stack_used = max((int)ctx->stack_used, depth);
143 	return depth;
144 }
145 
146 /*
147  * Pop registers from the stack, starting at a given depth from the stack
148  * pointer and increasing. The next depth to be read is returned.
149  */
150 int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
151 {
152 	int reg;
153 
154 	for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
155 		if (mask & BIT(reg)) {
156 			if ((excl & BIT(reg)) == 0) {
157 				if (sizeof(long) == 4)
158 					emit(ctx, lw, reg, depth, MIPS_R_SP);
159 				else /* sizeof(long) == 8 */
160 					emit(ctx, ld, reg, depth, MIPS_R_SP);
161 			}
162 			depth += sizeof(long);
163 		}
164 
165 	return depth;
166 }
167 
168 /* Compute the 28-bit jump target address from a BPF program location */
169 int get_target(struct jit_context *ctx, u32 loc)
170 {
171 	u32 index = INDEX(ctx->descriptors[loc]);
172 	unsigned long pc = (unsigned long)&ctx->target[ctx->jit_index];
173 	unsigned long addr = (unsigned long)&ctx->target[index];
174 
175 	if (!ctx->target)
176 		return 0;
177 
178 	if ((addr ^ pc) & ~MIPS_JMP_MASK)
179 		return -1;
180 
181 	return addr & MIPS_JMP_MASK;
182 }
183 
184 /* Compute the PC-relative offset to relative BPF program offset */
185 int get_offset(const struct jit_context *ctx, int off)
186 {
187 	return (INDEX(ctx->descriptors[ctx->bpf_index + off]) -
188 		ctx->jit_index - 1) * sizeof(u32);
189 }
190 
191 /* dst = imm (register width) */
192 void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm)
193 {
194 	if (imm >= -0x8000 && imm <= 0x7fff) {
195 		emit(ctx, addiu, dst, MIPS_R_ZERO, imm);
196 	} else {
197 		emit(ctx, lui, dst, (s16)((u32)imm >> 16));
198 		emit(ctx, ori, dst, dst, (u16)(imm & 0xffff));
199 	}
200 	clobber_reg(ctx, dst);
201 }
202 
203 /* dst = src (register width) */
204 void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src)
205 {
206 	emit(ctx, ori, dst, src, 0);
207 	clobber_reg(ctx, dst);
208 }
209 
210 /* Validate ALU immediate range */
211 bool valid_alu_i(u8 op, s32 imm)
212 {
213 	switch (BPF_OP(op)) {
214 	case BPF_NEG:
215 	case BPF_LSH:
216 	case BPF_RSH:
217 	case BPF_ARSH:
218 		/* All legal eBPF values are valid */
219 		return true;
220 	case BPF_ADD:
221 		if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS))
222 			return false;
223 		/* imm must be 16 bits */
224 		return imm >= -0x8000 && imm <= 0x7fff;
225 	case BPF_SUB:
226 		if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS))
227 			return false;
228 		/* -imm must be 16 bits */
229 		return imm >= -0x7fff && imm <= 0x8000;
230 	case BPF_AND:
231 	case BPF_OR:
232 	case BPF_XOR:
233 		/* imm must be 16 bits unsigned */
234 		return imm >= 0 && imm <= 0xffff;
235 	case BPF_MUL:
236 		/* imm must be zero or a positive power of two */
237 		return imm == 0 || (imm > 0 && is_power_of_2(imm));
238 	case BPF_DIV:
239 	case BPF_MOD:
240 		/* imm must be an 17-bit power of two */
241 		return (u32)imm <= 0x10000 && is_power_of_2((u32)imm);
242 	}
243 	return false;
244 }
245 
246 /* Rewrite ALU immediate operation */
247 bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val)
248 {
249 	bool act = true;
250 
251 	switch (BPF_OP(op)) {
252 	case BPF_LSH:
253 	case BPF_RSH:
254 	case BPF_ARSH:
255 	case BPF_ADD:
256 	case BPF_SUB:
257 	case BPF_OR:
258 	case BPF_XOR:
259 		/* imm == 0 is a no-op */
260 		act = imm != 0;
261 		break;
262 	case BPF_MUL:
263 		if (imm == 1) {
264 			/* dst * 1 is a no-op */
265 			act = false;
266 		} else if (imm == 0) {
267 			/* dst * 0 is dst & 0 */
268 			op = BPF_AND;
269 		} else {
270 			/* dst * (1 << n) is dst << n */
271 			op = BPF_LSH;
272 			imm = ilog2(abs(imm));
273 		}
274 		break;
275 	case BPF_DIV:
276 		if (imm == 1) {
277 			/* dst / 1 is a no-op */
278 			act = false;
279 		} else {
280 			/* dst / (1 << n) is dst >> n */
281 			op = BPF_RSH;
282 			imm = ilog2(imm);
283 		}
284 		break;
285 	case BPF_MOD:
286 		/* dst % (1 << n) is dst & ((1 << n) - 1) */
287 		op = BPF_AND;
288 		imm--;
289 		break;
290 	}
291 
292 	*alu = op;
293 	*val = imm;
294 	return act;
295 }
296 
297 /* ALU immediate operation (32-bit) */
298 void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op)
299 {
300 	switch (BPF_OP(op)) {
301 	/* dst = -dst */
302 	case BPF_NEG:
303 		emit(ctx, subu, dst, MIPS_R_ZERO, dst);
304 		break;
305 	/* dst = dst & imm */
306 	case BPF_AND:
307 		emit(ctx, andi, dst, dst, (u16)imm);
308 		break;
309 	/* dst = dst | imm */
310 	case BPF_OR:
311 		emit(ctx, ori, dst, dst, (u16)imm);
312 		break;
313 	/* dst = dst ^ imm */
314 	case BPF_XOR:
315 		emit(ctx, xori, dst, dst, (u16)imm);
316 		break;
317 	/* dst = dst << imm */
318 	case BPF_LSH:
319 		emit(ctx, sll, dst, dst, imm);
320 		break;
321 	/* dst = dst >> imm */
322 	case BPF_RSH:
323 		emit(ctx, srl, dst, dst, imm);
324 		break;
325 	/* dst = dst >> imm (arithmetic) */
326 	case BPF_ARSH:
327 		emit(ctx, sra, dst, dst, imm);
328 		break;
329 	/* dst = dst + imm */
330 	case BPF_ADD:
331 		emit(ctx, addiu, dst, dst, imm);
332 		break;
333 	/* dst = dst - imm */
334 	case BPF_SUB:
335 		emit(ctx, addiu, dst, dst, -imm);
336 		break;
337 	}
338 	clobber_reg(ctx, dst);
339 }
340 
341 /* ALU register operation (32-bit) */
342 void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op)
343 {
344 	switch (BPF_OP(op)) {
345 	/* dst = dst & src */
346 	case BPF_AND:
347 		emit(ctx, and, dst, dst, src);
348 		break;
349 	/* dst = dst | src */
350 	case BPF_OR:
351 		emit(ctx, or, dst, dst, src);
352 		break;
353 	/* dst = dst ^ src */
354 	case BPF_XOR:
355 		emit(ctx, xor, dst, dst, src);
356 		break;
357 	/* dst = dst << src */
358 	case BPF_LSH:
359 		emit(ctx, sllv, dst, dst, src);
360 		break;
361 	/* dst = dst >> src */
362 	case BPF_RSH:
363 		emit(ctx, srlv, dst, dst, src);
364 		break;
365 	/* dst = dst >> src (arithmetic) */
366 	case BPF_ARSH:
367 		emit(ctx, srav, dst, dst, src);
368 		break;
369 	/* dst = dst + src */
370 	case BPF_ADD:
371 		emit(ctx, addu, dst, dst, src);
372 		break;
373 	/* dst = dst - src */
374 	case BPF_SUB:
375 		emit(ctx, subu, dst, dst, src);
376 		break;
377 	/* dst = dst * src */
378 	case BPF_MUL:
379 		if (cpu_has_mips32r1 || cpu_has_mips32r6) {
380 			emit(ctx, mul, dst, dst, src);
381 		} else {
382 			emit(ctx, multu, dst, src);
383 			emit(ctx, mflo, dst);
384 		}
385 		break;
386 	/* dst = dst / src */
387 	case BPF_DIV:
388 		if (cpu_has_mips32r6) {
389 			emit(ctx, divu_r6, dst, dst, src);
390 		} else {
391 			emit(ctx, divu, dst, src);
392 			emit(ctx, mflo, dst);
393 		}
394 		break;
395 	/* dst = dst % src */
396 	case BPF_MOD:
397 		if (cpu_has_mips32r6) {
398 			emit(ctx, modu, dst, dst, src);
399 		} else {
400 			emit(ctx, divu, dst, src);
401 			emit(ctx, mfhi, dst);
402 		}
403 		break;
404 	}
405 	clobber_reg(ctx, dst);
406 }
407 
408 /* Atomic read-modify-write (32-bit) */
409 void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code)
410 {
411 	LLSC_sync(ctx);
412 	emit(ctx, ll, MIPS_R_T9, off, dst);
413 	switch (code) {
414 	case BPF_ADD:
415 	case BPF_ADD | BPF_FETCH:
416 		emit(ctx, addu, MIPS_R_T8, MIPS_R_T9, src);
417 		break;
418 	case BPF_AND:
419 	case BPF_AND | BPF_FETCH:
420 		emit(ctx, and, MIPS_R_T8, MIPS_R_T9, src);
421 		break;
422 	case BPF_OR:
423 	case BPF_OR | BPF_FETCH:
424 		emit(ctx, or, MIPS_R_T8, MIPS_R_T9, src);
425 		break;
426 	case BPF_XOR:
427 	case BPF_XOR | BPF_FETCH:
428 		emit(ctx, xor, MIPS_R_T8, MIPS_R_T9, src);
429 		break;
430 	case BPF_XCHG:
431 		emit(ctx, move, MIPS_R_T8, src);
432 		break;
433 	}
434 	emit(ctx, sc, MIPS_R_T8, off, dst);
435 	emit(ctx, LLSC_beqz, MIPS_R_T8, -16 - LLSC_offset);
436 	emit(ctx, nop); /* Delay slot */
437 
438 	if (code & BPF_FETCH) {
439 		emit(ctx, move, src, MIPS_R_T9);
440 		clobber_reg(ctx, src);
441 	}
442 }
443 
444 /* Atomic compare-and-exchange (32-bit) */
445 void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off)
446 {
447 	LLSC_sync(ctx);
448 	emit(ctx, ll, MIPS_R_T9, off, dst);
449 	emit(ctx, bne, MIPS_R_T9, res, 12);
450 	emit(ctx, move, MIPS_R_T8, src);     /* Delay slot */
451 	emit(ctx, sc, MIPS_R_T8, off, dst);
452 	emit(ctx, LLSC_beqz, MIPS_R_T8, -20 - LLSC_offset);
453 	emit(ctx, move, res, MIPS_R_T9);     /* Delay slot */
454 	clobber_reg(ctx, res);
455 }
456 
457 /* Swap bytes and truncate a register word or half word */
458 void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width)
459 {
460 	u8 tmp = MIPS_R_T8;
461 	u8 msk = MIPS_R_T9;
462 
463 	switch (width) {
464 	/* Swap bytes in a word */
465 	case 32:
466 		if (cpu_has_mips32r2 || cpu_has_mips32r6) {
467 			emit(ctx, wsbh, dst, dst);
468 			emit(ctx, rotr, dst, dst, 16);
469 		} else {
470 			emit(ctx, sll, tmp, dst, 16);    /* tmp  = dst << 16 */
471 			emit(ctx, srl, dst, dst, 16);    /* dst = dst >> 16  */
472 			emit(ctx, or, dst, dst, tmp);    /* dst = dst | tmp  */
473 
474 			emit(ctx, lui, msk, 0xff);       /* msk = 0x00ff0000 */
475 			emit(ctx, ori, msk, msk, 0xff);  /* msk = msk | 0xff */
476 
477 			emit(ctx, and, tmp, dst, msk);   /* tmp = dst & msk  */
478 			emit(ctx, sll, tmp, tmp, 8);     /* tmp = tmp << 8   */
479 			emit(ctx, srl, dst, dst, 8);     /* dst = dst >> 8   */
480 			emit(ctx, and, dst, dst, msk);   /* dst = dst & msk  */
481 			emit(ctx, or, dst, dst, tmp);    /* reg = dst | tmp  */
482 		}
483 		break;
484 	/* Swap bytes in a half word */
485 	case 16:
486 		if (cpu_has_mips32r2 || cpu_has_mips32r6) {
487 			emit(ctx, wsbh, dst, dst);
488 			emit(ctx, andi, dst, dst, 0xffff);
489 		} else {
490 			emit(ctx, andi, tmp, dst, 0xff00); /* t = d & 0xff00 */
491 			emit(ctx, srl, tmp, tmp, 8);       /* t = t >> 8     */
492 			emit(ctx, andi, dst, dst, 0x00ff); /* d = d & 0x00ff */
493 			emit(ctx, sll, dst, dst, 8);       /* d = d << 8     */
494 			emit(ctx, or,  dst, dst, tmp);     /* d = d | t      */
495 		}
496 		break;
497 	}
498 	clobber_reg(ctx, dst);
499 }
500 
501 /* Validate jump immediate range */
502 bool valid_jmp_i(u8 op, s32 imm)
503 {
504 	switch (op) {
505 	case JIT_JNOP:
506 		/* Immediate value not used */
507 		return true;
508 	case BPF_JEQ:
509 	case BPF_JNE:
510 		/* No immediate operation */
511 		return false;
512 	case BPF_JSET:
513 	case JIT_JNSET:
514 		/* imm must be 16 bits unsigned */
515 		return imm >= 0 && imm <= 0xffff;
516 	case BPF_JGE:
517 	case BPF_JLT:
518 	case BPF_JSGE:
519 	case BPF_JSLT:
520 		/* imm must be 16 bits */
521 		return imm >= -0x8000 && imm <= 0x7fff;
522 	case BPF_JGT:
523 	case BPF_JLE:
524 	case BPF_JSGT:
525 	case BPF_JSLE:
526 		/* imm + 1 must be 16 bits */
527 		return imm >= -0x8001 && imm <= 0x7ffe;
528 	}
529 	return false;
530 }
531 
532 /* Invert a conditional jump operation */
533 static u8 invert_jmp(u8 op)
534 {
535 	switch (op) {
536 	case BPF_JA: return JIT_JNOP;
537 	case BPF_JEQ: return BPF_JNE;
538 	case BPF_JNE: return BPF_JEQ;
539 	case BPF_JSET: return JIT_JNSET;
540 	case BPF_JGT: return BPF_JLE;
541 	case BPF_JGE: return BPF_JLT;
542 	case BPF_JLT: return BPF_JGE;
543 	case BPF_JLE: return BPF_JGT;
544 	case BPF_JSGT: return BPF_JSLE;
545 	case BPF_JSGE: return BPF_JSLT;
546 	case BPF_JSLT: return BPF_JSGE;
547 	case BPF_JSLE: return BPF_JSGT;
548 	}
549 	return 0;
550 }
551 
552 /* Prepare a PC-relative jump operation */
553 static void setup_jmp(struct jit_context *ctx, u8 bpf_op,
554 		      s16 bpf_off, u8 *jit_op, s32 *jit_off)
555 {
556 	u32 *descp = &ctx->descriptors[ctx->bpf_index];
557 	int op = bpf_op;
558 	int offset = 0;
559 
560 	/* Do not compute offsets on the first pass */
561 	if (INDEX(*descp) == 0)
562 		goto done;
563 
564 	/* Skip jumps never taken */
565 	if (bpf_op == JIT_JNOP)
566 		goto done;
567 
568 	/* Convert jumps always taken */
569 	if (bpf_op == BPF_JA)
570 		*descp |= JIT_DESC_CONVERT;
571 
572 	/*
573 	 * Current ctx->jit_index points to the start of the branch preamble.
574 	 * Since the preamble differs among different branch conditionals,
575 	 * the current index cannot be used to compute the branch offset.
576 	 * Instead, we use the offset table value for the next instruction,
577 	 * which gives the index immediately after the branch delay slot.
578 	 */
579 	if (!CONVERTED(*descp)) {
580 		int target = ctx->bpf_index + bpf_off + 1;
581 		int origin = ctx->bpf_index + 1;
582 
583 		offset = (INDEX(ctx->descriptors[target]) -
584 			  INDEX(ctx->descriptors[origin]) + 1) * sizeof(u32);
585 	}
586 
587 	/*
588 	 * The PC-relative branch offset field on MIPS is 18 bits signed,
589 	 * so if the computed offset is larger than this we generate a an
590 	 * absolute jump that we skip with an inverted conditional branch.
591 	 */
592 	if (CONVERTED(*descp) || offset < -0x20000 || offset > 0x1ffff) {
593 		offset = 3 * sizeof(u32);
594 		op = invert_jmp(bpf_op);
595 		ctx->changes += !CONVERTED(*descp);
596 		*descp |= JIT_DESC_CONVERT;
597 	}
598 
599 done:
600 	*jit_off = offset;
601 	*jit_op = op;
602 }
603 
604 /* Prepare a PC-relative jump operation with immediate conditional */
605 void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width,
606 		 u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
607 {
608 	bool always = false;
609 	bool never = false;
610 
611 	switch (bpf_op) {
612 	case BPF_JEQ:
613 	case BPF_JNE:
614 		break;
615 	case BPF_JSET:
616 	case BPF_JLT:
617 		never = imm == 0;
618 		break;
619 	case BPF_JGE:
620 		always = imm == 0;
621 		break;
622 	case BPF_JGT:
623 		never = (u32)imm == U32_MAX;
624 		break;
625 	case BPF_JLE:
626 		always = (u32)imm == U32_MAX;
627 		break;
628 	case BPF_JSGT:
629 		never = imm == S32_MAX && width == 32;
630 		break;
631 	case BPF_JSGE:
632 		always = imm == S32_MIN && width == 32;
633 		break;
634 	case BPF_JSLT:
635 		never = imm == S32_MIN && width == 32;
636 		break;
637 	case BPF_JSLE:
638 		always = imm == S32_MAX && width == 32;
639 		break;
640 	}
641 
642 	if (never)
643 		bpf_op = JIT_JNOP;
644 	if (always)
645 		bpf_op = BPF_JA;
646 	setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
647 }
648 
649 /* Prepare a PC-relative jump operation with register conditional */
650 void setup_jmp_r(struct jit_context *ctx, bool same_reg,
651 		 u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
652 {
653 	switch (bpf_op) {
654 	case BPF_JSET:
655 		break;
656 	case BPF_JEQ:
657 	case BPF_JGE:
658 	case BPF_JLE:
659 	case BPF_JSGE:
660 	case BPF_JSLE:
661 		if (same_reg)
662 			bpf_op = BPF_JA;
663 		break;
664 	case BPF_JNE:
665 	case BPF_JLT:
666 	case BPF_JGT:
667 	case BPF_JSGT:
668 	case BPF_JSLT:
669 		if (same_reg)
670 			bpf_op = JIT_JNOP;
671 		break;
672 	}
673 	setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
674 }
675 
676 /* Finish a PC-relative jump operation */
677 int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off)
678 {
679 	/* Emit conditional branch delay slot */
680 	if (jit_op != JIT_JNOP)
681 		emit(ctx, nop);
682 	/*
683 	 * Emit an absolute long jump with delay slot,
684 	 * if the PC-relative branch was converted.
685 	 */
686 	if (CONVERTED(ctx->descriptors[ctx->bpf_index])) {
687 		int target = get_target(ctx, ctx->bpf_index + bpf_off + 1);
688 
689 		if (target < 0)
690 			return -1;
691 		emit(ctx, j, target);
692 		emit(ctx, nop);
693 	}
694 	return 0;
695 }
696 
697 /* Jump immediate (32-bit) */
698 void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op)
699 {
700 	switch (op) {
701 	/* No-op, used internally for branch optimization */
702 	case JIT_JNOP:
703 		break;
704 	/* PC += off if dst & imm */
705 	case BPF_JSET:
706 		emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
707 		emit(ctx, bnez, MIPS_R_T9, off);
708 		break;
709 	/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
710 	case JIT_JNSET:
711 		emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
712 		emit(ctx, beqz, MIPS_R_T9, off);
713 		break;
714 	/* PC += off if dst > imm */
715 	case BPF_JGT:
716 		emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
717 		emit(ctx, beqz, MIPS_R_T9, off);
718 		break;
719 	/* PC += off if dst >= imm */
720 	case BPF_JGE:
721 		emit(ctx, sltiu, MIPS_R_T9, dst, imm);
722 		emit(ctx, beqz, MIPS_R_T9, off);
723 		break;
724 	/* PC += off if dst < imm */
725 	case BPF_JLT:
726 		emit(ctx, sltiu, MIPS_R_T9, dst, imm);
727 		emit(ctx, bnez, MIPS_R_T9, off);
728 		break;
729 	/* PC += off if dst <= imm */
730 	case BPF_JLE:
731 		emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
732 		emit(ctx, bnez, MIPS_R_T9, off);
733 		break;
734 	/* PC += off if dst > imm (signed) */
735 	case BPF_JSGT:
736 		emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
737 		emit(ctx, beqz, MIPS_R_T9, off);
738 		break;
739 	/* PC += off if dst >= imm (signed) */
740 	case BPF_JSGE:
741 		emit(ctx, slti, MIPS_R_T9, dst, imm);
742 		emit(ctx, beqz, MIPS_R_T9, off);
743 		break;
744 	/* PC += off if dst < imm (signed) */
745 	case BPF_JSLT:
746 		emit(ctx, slti, MIPS_R_T9, dst, imm);
747 		emit(ctx, bnez, MIPS_R_T9, off);
748 		break;
749 	/* PC += off if dst <= imm (signed) */
750 	case BPF_JSLE:
751 		emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
752 		emit(ctx, bnez, MIPS_R_T9, off);
753 		break;
754 	}
755 }
756 
757 /* Jump register (32-bit) */
758 void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op)
759 {
760 	switch (op) {
761 	/* No-op, used internally for branch optimization */
762 	case JIT_JNOP:
763 		break;
764 	/* PC += off if dst == src */
765 	case BPF_JEQ:
766 		emit(ctx, beq, dst, src, off);
767 		break;
768 	/* PC += off if dst != src */
769 	case BPF_JNE:
770 		emit(ctx, bne, dst, src, off);
771 		break;
772 	/* PC += off if dst & src */
773 	case BPF_JSET:
774 		emit(ctx, and, MIPS_R_T9, dst, src);
775 		emit(ctx, bnez, MIPS_R_T9, off);
776 		break;
777 	/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
778 	case JIT_JNSET:
779 		emit(ctx, and, MIPS_R_T9, dst, src);
780 		emit(ctx, beqz, MIPS_R_T9, off);
781 		break;
782 	/* PC += off if dst > src */
783 	case BPF_JGT:
784 		emit(ctx, sltu, MIPS_R_T9, src, dst);
785 		emit(ctx, bnez, MIPS_R_T9, off);
786 		break;
787 	/* PC += off if dst >= src */
788 	case BPF_JGE:
789 		emit(ctx, sltu, MIPS_R_T9, dst, src);
790 		emit(ctx, beqz, MIPS_R_T9, off);
791 		break;
792 	/* PC += off if dst < src */
793 	case BPF_JLT:
794 		emit(ctx, sltu, MIPS_R_T9, dst, src);
795 		emit(ctx, bnez, MIPS_R_T9, off);
796 		break;
797 	/* PC += off if dst <= src */
798 	case BPF_JLE:
799 		emit(ctx, sltu, MIPS_R_T9, src, dst);
800 		emit(ctx, beqz, MIPS_R_T9, off);
801 		break;
802 	/* PC += off if dst > src (signed) */
803 	case BPF_JSGT:
804 		emit(ctx, slt, MIPS_R_T9, src, dst);
805 		emit(ctx, bnez, MIPS_R_T9, off);
806 		break;
807 	/* PC += off if dst >= src (signed) */
808 	case BPF_JSGE:
809 		emit(ctx, slt, MIPS_R_T9, dst, src);
810 		emit(ctx, beqz, MIPS_R_T9, off);
811 		break;
812 	/* PC += off if dst < src (signed) */
813 	case BPF_JSLT:
814 		emit(ctx, slt, MIPS_R_T9, dst, src);
815 		emit(ctx, bnez, MIPS_R_T9, off);
816 		break;
817 	/* PC += off if dst <= src (signed) */
818 	case BPF_JSLE:
819 		emit(ctx, slt, MIPS_R_T9, src, dst);
820 		emit(ctx, beqz, MIPS_R_T9, off);
821 		break;
822 	}
823 }
824 
825 /* Jump always */
826 int emit_ja(struct jit_context *ctx, s16 off)
827 {
828 	int target = get_target(ctx, ctx->bpf_index + off + 1);
829 
830 	if (target < 0)
831 		return -1;
832 	emit(ctx, j, target);
833 	emit(ctx, nop);
834 	return 0;
835 }
836 
837 /* Jump to epilogue */
838 int emit_exit(struct jit_context *ctx)
839 {
840 	int target = get_target(ctx, ctx->program->len);
841 
842 	if (target < 0)
843 		return -1;
844 	emit(ctx, j, target);
845 	emit(ctx, nop);
846 	return 0;
847 }
848 
849 /* Build the program body from eBPF bytecode */
850 static int build_body(struct jit_context *ctx)
851 {
852 	const struct bpf_prog *prog = ctx->program;
853 	unsigned int i;
854 
855 	ctx->stack_used = 0;
856 	for (i = 0; i < prog->len; i++) {
857 		const struct bpf_insn *insn = &prog->insnsi[i];
858 		u32 *descp = &ctx->descriptors[i];
859 		int ret;
860 
861 		access_reg(ctx, insn->src_reg);
862 		access_reg(ctx, insn->dst_reg);
863 
864 		ctx->bpf_index = i;
865 		if (ctx->target == NULL) {
866 			ctx->changes += INDEX(*descp) != ctx->jit_index;
867 			*descp &= JIT_DESC_CONVERT;
868 			*descp |= ctx->jit_index;
869 		}
870 
871 		ret = build_insn(insn, ctx);
872 		if (ret < 0)
873 			return ret;
874 
875 		if (ret > 0) {
876 			i++;
877 			if (ctx->target == NULL)
878 				descp[1] = ctx->jit_index;
879 		}
880 	}
881 
882 	/* Store the end offset, where the epilogue begins */
883 	ctx->descriptors[prog->len] = ctx->jit_index;
884 	return 0;
885 }
886 
887 /* Set the branch conversion flag on all instructions */
888 static void set_convert_flag(struct jit_context *ctx, bool enable)
889 {
890 	const struct bpf_prog *prog = ctx->program;
891 	u32 flag = enable ? JIT_DESC_CONVERT : 0;
892 	unsigned int i;
893 
894 	for (i = 0; i <= prog->len; i++)
895 		ctx->descriptors[i] = INDEX(ctx->descriptors[i]) | flag;
896 }
897 
898 static void jit_fill_hole(void *area, unsigned int size)
899 {
900 	u32 *p;
901 
902 	/* We are guaranteed to have aligned memory. */
903 	for (p = area; size >= sizeof(u32); size -= sizeof(u32))
904 		uasm_i_break(&p, BRK_BUG); /* Increments p */
905 }
906 
907 bool bpf_jit_needs_zext(void)
908 {
909 	return true;
910 }
911 
912 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
913 {
914 	struct bpf_prog *tmp, *orig_prog = prog;
915 	struct bpf_binary_header *header = NULL;
916 	struct jit_context ctx;
917 	bool tmp_blinded = false;
918 	unsigned int tmp_idx;
919 	unsigned int image_size;
920 	u8 *image_ptr;
921 	int tries;
922 
923 	/*
924 	 * If BPF JIT was not enabled then we must fall back to
925 	 * the interpreter.
926 	 */
927 	if (!prog->jit_requested)
928 		return orig_prog;
929 	/*
930 	 * If constant blinding was enabled and we failed during blinding
931 	 * then we must fall back to the interpreter. Otherwise, we save
932 	 * the new JITed code.
933 	 */
934 	tmp = bpf_jit_blind_constants(prog);
935 	if (IS_ERR(tmp))
936 		return orig_prog;
937 	if (tmp != prog) {
938 		tmp_blinded = true;
939 		prog = tmp;
940 	}
941 
942 	memset(&ctx, 0, sizeof(ctx));
943 	ctx.program = prog;
944 
945 	/*
946 	 * Not able to allocate memory for descriptors[], then
947 	 * we must fall back to the interpreter
948 	 */
949 	ctx.descriptors = kcalloc(prog->len + 1, sizeof(*ctx.descriptors),
950 				  GFP_KERNEL);
951 	if (ctx.descriptors == NULL)
952 		goto out_err;
953 
954 	/* First pass discovers used resources */
955 	if (build_body(&ctx) < 0)
956 		goto out_err;
957 	/*
958 	 * Second pass computes instruction offsets.
959 	 * If any PC-relative branches are out of range, a sequence of
960 	 * a PC-relative branch + a jump is generated, and we have to
961 	 * try again from the beginning to generate the new offsets.
962 	 * This is done until no additional conversions are necessary.
963 	 * The last two iterations are done with all branches being
964 	 * converted, to guarantee offset table convergence within a
965 	 * fixed number of iterations.
966 	 */
967 	ctx.jit_index = 0;
968 	build_prologue(&ctx);
969 	tmp_idx = ctx.jit_index;
970 
971 	tries = JIT_MAX_ITERATIONS;
972 	do {
973 		ctx.jit_index = tmp_idx;
974 		ctx.changes = 0;
975 		if (tries == 2)
976 			set_convert_flag(&ctx, true);
977 		if (build_body(&ctx) < 0)
978 			goto out_err;
979 	} while (ctx.changes > 0 && --tries > 0);
980 
981 	if (WARN_ONCE(ctx.changes > 0, "JIT offsets failed to converge"))
982 		goto out_err;
983 
984 	build_epilogue(&ctx, MIPS_R_RA);
985 
986 	/* Now we know the size of the structure to make */
987 	image_size = sizeof(u32) * ctx.jit_index;
988 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
989 				      sizeof(u32), jit_fill_hole);
990 	/*
991 	 * Not able to allocate memory for the structure then
992 	 * we must fall back to the interpretation
993 	 */
994 	if (header == NULL)
995 		goto out_err;
996 
997 	/* Actual pass to generate final JIT code */
998 	ctx.target = (u32 *)image_ptr;
999 	ctx.jit_index = 0;
1000 
1001 	/*
1002 	 * If building the JITed code fails somehow,
1003 	 * we fall back to the interpretation.
1004 	 */
1005 	build_prologue(&ctx);
1006 	if (build_body(&ctx) < 0)
1007 		goto out_err;
1008 	build_epilogue(&ctx, MIPS_R_RA);
1009 
1010 	/* Populate line info meta data */
1011 	set_convert_flag(&ctx, false);
1012 	bpf_prog_fill_jited_linfo(prog, &ctx.descriptors[1]);
1013 
1014 	/* Set as read-only exec and flush instruction cache */
1015 	bpf_jit_binary_lock_ro(header);
1016 	flush_icache_range((unsigned long)header,
1017 			   (unsigned long)&ctx.target[ctx.jit_index]);
1018 
1019 	if (bpf_jit_enable > 1)
1020 		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
1021 
1022 	prog->bpf_func = (void *)ctx.target;
1023 	prog->jited = 1;
1024 	prog->jited_len = image_size;
1025 
1026 out:
1027 	if (tmp_blinded)
1028 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1029 					   tmp : orig_prog);
1030 	kfree(ctx.descriptors);
1031 	return prog;
1032 
1033 out_err:
1034 	prog = orig_prog;
1035 	if (header)
1036 		bpf_jit_binary_free(header);
1037 	goto out;
1038 }
1039