1 /* 2 * Carsten Langgaard, carstenl@mips.com 3 * Copyright (C) 2000, 2001, 2004 MIPS Technologies, Inc. 4 * Copyright (C) 2001 Ralf Baechle 5 * 6 * This program is free software; you can distribute it and/or modify it 7 * under the terms of the GNU General Public License (Version 2) as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * for more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program; if not, write to the Free Software Foundation, Inc., 17 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. 18 * 19 * Routines for generic manipulation of the interrupts found on the MIPS 20 * Malta board. 21 * The interrupt controller is located in the South Bridge a PIIX4 device 22 * with two internal 82C95 interrupt controllers. 23 */ 24 #include <linux/init.h> 25 #include <linux/irq.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kernel_stat.h> 31 #include <linux/kernel.h> 32 #include <linux/random.h> 33 34 #include <asm/traps.h> 35 #include <asm/i8259.h> 36 #include <asm/irq_cpu.h> 37 #include <asm/irq_regs.h> 38 #include <asm/mips-boards/malta.h> 39 #include <asm/mips-boards/maltaint.h> 40 #include <asm/mips-boards/piix4.h> 41 #include <asm/gt64120.h> 42 #include <asm/mips-boards/generic.h> 43 #include <asm/mips-boards/msc01_pci.h> 44 #include <asm/msc01_ic.h> 45 #include <asm/gic.h> 46 #include <asm/gcmpregs.h> 47 48 int gcmp_present = -1; 49 int gic_present; 50 static unsigned long _msc01_biu_base; 51 static unsigned long _gcmp_base; 52 static unsigned int ipi_map[NR_CPUS]; 53 54 static DEFINE_SPINLOCK(mips_irq_lock); 55 56 static inline int mips_pcibios_iack(void) 57 { 58 int irq; 59 u32 dummy; 60 61 /* 62 * Determine highest priority pending interrupt by performing 63 * a PCI Interrupt Acknowledge cycle. 64 */ 65 switch (mips_revision_sconid) { 66 case MIPS_REVISION_SCON_SOCIT: 67 case MIPS_REVISION_SCON_ROCIT: 68 case MIPS_REVISION_SCON_SOCITSC: 69 case MIPS_REVISION_SCON_SOCITSCP: 70 MSC_READ(MSC01_PCI_IACK, irq); 71 irq &= 0xff; 72 break; 73 case MIPS_REVISION_SCON_GT64120: 74 irq = GT_READ(GT_PCI0_IACK_OFS); 75 irq &= 0xff; 76 break; 77 case MIPS_REVISION_SCON_BONITO: 78 /* The following will generate a PCI IACK cycle on the 79 * Bonito controller. It's a little bit kludgy, but it 80 * was the easiest way to implement it in hardware at 81 * the given time. 82 */ 83 BONITO_PCIMAP_CFG = 0x20000; 84 85 /* Flush Bonito register block */ 86 dummy = BONITO_PCIMAP_CFG; 87 iob(); /* sync */ 88 89 irq = readl((u32 *)_pcictrl_bonito_pcicfg); 90 iob(); /* sync */ 91 irq &= 0xff; 92 BONITO_PCIMAP_CFG = 0; 93 break; 94 default: 95 printk(KERN_WARNING "Unknown system controller.\n"); 96 return -1; 97 } 98 return irq; 99 } 100 101 static inline int get_int(void) 102 { 103 unsigned long flags; 104 int irq; 105 spin_lock_irqsave(&mips_irq_lock, flags); 106 107 irq = mips_pcibios_iack(); 108 109 /* 110 * The only way we can decide if an interrupt is spurious 111 * is by checking the 8259 registers. This needs a spinlock 112 * on an SMP system, so leave it up to the generic code... 113 */ 114 115 spin_unlock_irqrestore(&mips_irq_lock, flags); 116 117 return irq; 118 } 119 120 static void malta_hw0_irqdispatch(void) 121 { 122 int irq; 123 124 irq = get_int(); 125 if (irq < 0) { 126 /* interrupt has already been cleared */ 127 return; 128 } 129 130 do_IRQ(MALTA_INT_BASE + irq); 131 } 132 133 static void malta_ipi_irqdispatch(void) 134 { 135 int irq; 136 137 irq = gic_get_int(); 138 if (irq < 0) 139 return; /* interrupt has already been cleared */ 140 141 do_IRQ(MIPS_GIC_IRQ_BASE + irq); 142 } 143 144 static void corehi_irqdispatch(void) 145 { 146 unsigned int intedge, intsteer, pcicmd, pcibadaddr; 147 unsigned int pcimstat, intisr, inten, intpol; 148 unsigned int intrcause, datalo, datahi; 149 struct pt_regs *regs = get_irq_regs(); 150 151 printk(KERN_EMERG "CoreHI interrupt, shouldn't happen, we die here!\n"); 152 printk(KERN_EMERG "epc : %08lx\nStatus: %08lx\n" 153 "Cause : %08lx\nbadVaddr : %08lx\n", 154 regs->cp0_epc, regs->cp0_status, 155 regs->cp0_cause, regs->cp0_badvaddr); 156 157 /* Read all the registers and then print them as there is a 158 problem with interspersed printk's upsetting the Bonito controller. 159 Do it for the others too. 160 */ 161 162 switch (mips_revision_sconid) { 163 case MIPS_REVISION_SCON_SOCIT: 164 case MIPS_REVISION_SCON_ROCIT: 165 case MIPS_REVISION_SCON_SOCITSC: 166 case MIPS_REVISION_SCON_SOCITSCP: 167 ll_msc_irq(); 168 break; 169 case MIPS_REVISION_SCON_GT64120: 170 intrcause = GT_READ(GT_INTRCAUSE_OFS); 171 datalo = GT_READ(GT_CPUERR_ADDRLO_OFS); 172 datahi = GT_READ(GT_CPUERR_ADDRHI_OFS); 173 printk(KERN_EMERG "GT_INTRCAUSE = %08x\n", intrcause); 174 printk(KERN_EMERG "GT_CPUERR_ADDR = %02x%08x\n", 175 datahi, datalo); 176 break; 177 case MIPS_REVISION_SCON_BONITO: 178 pcibadaddr = BONITO_PCIBADADDR; 179 pcimstat = BONITO_PCIMSTAT; 180 intisr = BONITO_INTISR; 181 inten = BONITO_INTEN; 182 intpol = BONITO_INTPOL; 183 intedge = BONITO_INTEDGE; 184 intsteer = BONITO_INTSTEER; 185 pcicmd = BONITO_PCICMD; 186 printk(KERN_EMERG "BONITO_INTISR = %08x\n", intisr); 187 printk(KERN_EMERG "BONITO_INTEN = %08x\n", inten); 188 printk(KERN_EMERG "BONITO_INTPOL = %08x\n", intpol); 189 printk(KERN_EMERG "BONITO_INTEDGE = %08x\n", intedge); 190 printk(KERN_EMERG "BONITO_INTSTEER = %08x\n", intsteer); 191 printk(KERN_EMERG "BONITO_PCICMD = %08x\n", pcicmd); 192 printk(KERN_EMERG "BONITO_PCIBADADDR = %08x\n", pcibadaddr); 193 printk(KERN_EMERG "BONITO_PCIMSTAT = %08x\n", pcimstat); 194 break; 195 } 196 197 die("CoreHi interrupt", regs); 198 } 199 200 static inline int clz(unsigned long x) 201 { 202 __asm__( 203 " .set push \n" 204 " .set mips32 \n" 205 " clz %0, %1 \n" 206 " .set pop \n" 207 : "=r" (x) 208 : "r" (x)); 209 210 return x; 211 } 212 213 /* 214 * Version of ffs that only looks at bits 12..15. 215 */ 216 static inline unsigned int irq_ffs(unsigned int pending) 217 { 218 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 219 return -clz(pending) + 31 - CAUSEB_IP; 220 #else 221 unsigned int a0 = 7; 222 unsigned int t0; 223 224 t0 = pending & 0xf000; 225 t0 = t0 < 1; 226 t0 = t0 << 2; 227 a0 = a0 - t0; 228 pending = pending << t0; 229 230 t0 = pending & 0xc000; 231 t0 = t0 < 1; 232 t0 = t0 << 1; 233 a0 = a0 - t0; 234 pending = pending << t0; 235 236 t0 = pending & 0x8000; 237 t0 = t0 < 1; 238 /* t0 = t0 << 2; */ 239 a0 = a0 - t0; 240 /* pending = pending << t0; */ 241 242 return a0; 243 #endif 244 } 245 246 /* 247 * IRQs on the Malta board look basically (barring software IRQs which we 248 * don't use at all and all external interrupt sources are combined together 249 * on hardware interrupt 0 (MIPS IRQ 2)) like: 250 * 251 * MIPS IRQ Source 252 * -------- ------ 253 * 0 Software (ignored) 254 * 1 Software (ignored) 255 * 2 Combined hardware interrupt (hw0) 256 * 3 Hardware (ignored) 257 * 4 Hardware (ignored) 258 * 5 Hardware (ignored) 259 * 6 Hardware (ignored) 260 * 7 R4k timer (what we use) 261 * 262 * We handle the IRQ according to _our_ priority which is: 263 * 264 * Highest ---- R4k Timer 265 * Lowest ---- Combined hardware interrupt 266 * 267 * then we just return, if multiple IRQs are pending then we will just take 268 * another exception, big deal. 269 */ 270 271 asmlinkage void plat_irq_dispatch(void) 272 { 273 unsigned int pending = read_c0_cause() & read_c0_status() & ST0_IM; 274 int irq; 275 276 irq = irq_ffs(pending); 277 278 if (irq == MIPSCPU_INT_I8259A) 279 malta_hw0_irqdispatch(); 280 else if (gic_present && ((1 << irq) & ipi_map[smp_processor_id()])) 281 malta_ipi_irqdispatch(); 282 else if (irq >= 0) 283 do_IRQ(MIPS_CPU_IRQ_BASE + irq); 284 else 285 spurious_interrupt(); 286 } 287 288 #ifdef CONFIG_MIPS_MT_SMP 289 290 291 #define GIC_MIPS_CPU_IPI_RESCHED_IRQ 3 292 #define GIC_MIPS_CPU_IPI_CALL_IRQ 4 293 294 #define MIPS_CPU_IPI_RESCHED_IRQ 0 /* SW int 0 for resched */ 295 #define C_RESCHED C_SW0 296 #define MIPS_CPU_IPI_CALL_IRQ 1 /* SW int 1 for resched */ 297 #define C_CALL C_SW1 298 static int cpu_ipi_resched_irq, cpu_ipi_call_irq; 299 300 static void ipi_resched_dispatch(void) 301 { 302 do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ); 303 } 304 305 static void ipi_call_dispatch(void) 306 { 307 do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ); 308 } 309 310 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 311 { 312 return IRQ_HANDLED; 313 } 314 315 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 316 { 317 smp_call_function_interrupt(); 318 319 return IRQ_HANDLED; 320 } 321 322 static struct irqaction irq_resched = { 323 .handler = ipi_resched_interrupt, 324 .flags = IRQF_DISABLED|IRQF_PERCPU, 325 .name = "IPI_resched" 326 }; 327 328 static struct irqaction irq_call = { 329 .handler = ipi_call_interrupt, 330 .flags = IRQF_DISABLED|IRQF_PERCPU, 331 .name = "IPI_call" 332 }; 333 #endif /* CONFIG_MIPS_MT_SMP */ 334 335 static struct irqaction i8259irq = { 336 .handler = no_action, 337 .name = "XT-PIC cascade" 338 }; 339 340 static struct irqaction corehi_irqaction = { 341 .handler = no_action, 342 .name = "CoreHi" 343 }; 344 345 static msc_irqmap_t __initdata msc_irqmap[] = { 346 {MSC01C_INT_TMR, MSC01_IRQ_EDGE, 0}, 347 {MSC01C_INT_PCI, MSC01_IRQ_LEVEL, 0}, 348 }; 349 static int __initdata msc_nr_irqs = ARRAY_SIZE(msc_irqmap); 350 351 static msc_irqmap_t __initdata msc_eicirqmap[] = { 352 {MSC01E_INT_SW0, MSC01_IRQ_LEVEL, 0}, 353 {MSC01E_INT_SW1, MSC01_IRQ_LEVEL, 0}, 354 {MSC01E_INT_I8259A, MSC01_IRQ_LEVEL, 0}, 355 {MSC01E_INT_SMI, MSC01_IRQ_LEVEL, 0}, 356 {MSC01E_INT_COREHI, MSC01_IRQ_LEVEL, 0}, 357 {MSC01E_INT_CORELO, MSC01_IRQ_LEVEL, 0}, 358 {MSC01E_INT_TMR, MSC01_IRQ_EDGE, 0}, 359 {MSC01E_INT_PCI, MSC01_IRQ_LEVEL, 0}, 360 {MSC01E_INT_PERFCTR, MSC01_IRQ_LEVEL, 0}, 361 {MSC01E_INT_CPUCTR, MSC01_IRQ_LEVEL, 0} 362 }; 363 364 static int __initdata msc_nr_eicirqs = ARRAY_SIZE(msc_eicirqmap); 365 366 #if defined(CONFIG_MIPS_MT_SMP) 367 /* 368 * This GIC specific tabular array defines the association between External 369 * Interrupts and CPUs/Core Interrupts. The nature of the External 370 * Interrupts is also defined here - polarity/trigger. 371 */ 372 static struct gic_intr_map gic_intr_map[] = { 373 { GIC_EXT_INTR(0), X, X, X, X, 0 }, 374 { GIC_EXT_INTR(1), X, X, X, X, 0 }, 375 { GIC_EXT_INTR(2), X, X, X, X, 0 }, 376 { GIC_EXT_INTR(3), 0, GIC_CPU_INT0, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 377 { GIC_EXT_INTR(4), 0, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 378 { GIC_EXT_INTR(5), 0, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 379 { GIC_EXT_INTR(6), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 380 { GIC_EXT_INTR(7), 0, GIC_CPU_INT4, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 381 { GIC_EXT_INTR(8), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 382 { GIC_EXT_INTR(9), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 383 { GIC_EXT_INTR(10), X, X, X, X, 0 }, 384 { GIC_EXT_INTR(11), X, X, X, X, 0 }, 385 { GIC_EXT_INTR(12), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 386 { GIC_EXT_INTR(13), 0, GIC_MAP_TO_NMI_MSK, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 387 { GIC_EXT_INTR(14), 0, GIC_MAP_TO_NMI_MSK, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, 388 { GIC_EXT_INTR(15), X, X, X, X, 0 }, 389 { GIC_EXT_INTR(16), 0, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 390 { GIC_EXT_INTR(17), 0, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 391 { GIC_EXT_INTR(18), 1, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 392 { GIC_EXT_INTR(19), 1, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 393 { GIC_EXT_INTR(20), 2, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 394 { GIC_EXT_INTR(21), 2, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 395 { GIC_EXT_INTR(22), 3, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 396 { GIC_EXT_INTR(23), 3, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 }, 397 }; 398 #endif 399 400 /* 401 * GCMP needs to be detected before any SMP initialisation 402 */ 403 static int __init gcmp_probe(unsigned long addr, unsigned long size) 404 { 405 if (gcmp_present >= 0) 406 return gcmp_present; 407 408 _gcmp_base = (unsigned long) ioremap_nocache(GCMP_BASE_ADDR, GCMP_ADDRSPACE_SZ); 409 _msc01_biu_base = (unsigned long) ioremap_nocache(MSC01_BIU_REG_BASE, MSC01_BIU_ADDRSPACE_SZ); 410 gcmp_present = (GCMPGCB(GCMPB) & GCMP_GCB_GCMPB_GCMPBASE_MSK) == GCMP_BASE_ADDR; 411 412 if (gcmp_present) 413 printk(KERN_DEBUG "GCMP present\n"); 414 return gcmp_present; 415 } 416 417 #if defined(CONFIG_MIPS_MT_SMP) 418 static void __init fill_ipi_map(void) 419 { 420 int i; 421 422 for (i = 0; i < ARRAY_SIZE(gic_intr_map); i++) { 423 if (gic_intr_map[i].ipiflag && (gic_intr_map[i].cpunum != X)) 424 ipi_map[gic_intr_map[i].cpunum] |= 425 (1 << (gic_intr_map[i].pin + 2)); 426 } 427 } 428 #endif 429 430 void __init arch_init_irq(void) 431 { 432 int gic_present, gcmp_present; 433 434 init_i8259_irqs(); 435 436 if (!cpu_has_veic) 437 mips_cpu_irq_init(); 438 439 gcmp_present = gcmp_probe(GCMP_BASE_ADDR, GCMP_ADDRSPACE_SZ); 440 if (gcmp_present) { 441 GCMPGCB(GICBA) = GIC_BASE_ADDR | GCMP_GCB_GICBA_EN_MSK; 442 gic_present = 1; 443 } else { 444 _msc01_biu_base = (unsigned long) ioremap_nocache(MSC01_BIU_REG_BASE, MSC01_BIU_ADDRSPACE_SZ); 445 gic_present = (REG(_msc01_biu_base, MSC01_SC_CFG) & 446 MSC01_SC_CFG_GICPRES_MSK) >> MSC01_SC_CFG_GICPRES_SHF; 447 } 448 if (gic_present) 449 printk(KERN_DEBUG "GIC present\n"); 450 451 switch (mips_revision_sconid) { 452 case MIPS_REVISION_SCON_SOCIT: 453 case MIPS_REVISION_SCON_ROCIT: 454 if (cpu_has_veic) 455 init_msc_irqs(MIPS_MSC01_IC_REG_BASE, 456 MSC01E_INT_BASE, msc_eicirqmap, 457 msc_nr_eicirqs); 458 else 459 init_msc_irqs(MIPS_MSC01_IC_REG_BASE, 460 MSC01C_INT_BASE, msc_irqmap, 461 msc_nr_irqs); 462 break; 463 464 case MIPS_REVISION_SCON_SOCITSC: 465 case MIPS_REVISION_SCON_SOCITSCP: 466 if (cpu_has_veic) 467 init_msc_irqs(MIPS_SOCITSC_IC_REG_BASE, 468 MSC01E_INT_BASE, msc_eicirqmap, 469 msc_nr_eicirqs); 470 else 471 init_msc_irqs(MIPS_SOCITSC_IC_REG_BASE, 472 MSC01C_INT_BASE, msc_irqmap, 473 msc_nr_irqs); 474 } 475 476 if (cpu_has_veic) { 477 set_vi_handler(MSC01E_INT_I8259A, malta_hw0_irqdispatch); 478 set_vi_handler(MSC01E_INT_COREHI, corehi_irqdispatch); 479 setup_irq(MSC01E_INT_BASE+MSC01E_INT_I8259A, &i8259irq); 480 setup_irq(MSC01E_INT_BASE+MSC01E_INT_COREHI, &corehi_irqaction); 481 } else if (cpu_has_vint) { 482 set_vi_handler(MIPSCPU_INT_I8259A, malta_hw0_irqdispatch); 483 set_vi_handler(MIPSCPU_INT_COREHI, corehi_irqdispatch); 484 #ifdef CONFIG_MIPS_MT_SMTC 485 setup_irq_smtc(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq, 486 (0x100 << MIPSCPU_INT_I8259A)); 487 setup_irq_smtc(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI, 488 &corehi_irqaction, (0x100 << MIPSCPU_INT_COREHI)); 489 /* 490 * Temporary hack to ensure that the subsidiary device 491 * interrupts coing in via the i8259A, but associated 492 * with low IRQ numbers, will restore the Status.IM 493 * value associated with the i8259A. 494 */ 495 { 496 int i; 497 498 for (i = 0; i < 16; i++) 499 irq_hwmask[i] = (0x100 << MIPSCPU_INT_I8259A); 500 } 501 #else /* Not SMTC */ 502 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq); 503 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI, 504 &corehi_irqaction); 505 #endif /* CONFIG_MIPS_MT_SMTC */ 506 } else { 507 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq); 508 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI, 509 &corehi_irqaction); 510 } 511 512 #if defined(CONFIG_MIPS_MT_SMP) 513 if (gic_present) { 514 /* FIXME */ 515 int i; 516 struct { 517 unsigned int resched; 518 unsigned int call; 519 } ipiirq[] = { 520 { 521 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE0, 522 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE0}, 523 { 524 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE1, 525 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE1 526 }, { 527 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE2, 528 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE2 529 }, { 530 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE3, 531 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE3 532 } 533 }; 534 fill_ipi_map(); 535 gic_init(GIC_BASE_ADDR, GIC_ADDRSPACE_SZ, gic_intr_map, ARRAY_SIZE(gic_intr_map), MIPS_GIC_IRQ_BASE); 536 if (!gcmp_present) { 537 /* Enable the GIC */ 538 i = REG(_msc01_biu_base, MSC01_SC_CFG); 539 REG(_msc01_biu_base, MSC01_SC_CFG) = 540 (i | (0x1 << MSC01_SC_CFG_GICENA_SHF)); 541 pr_debug("GIC Enabled\n"); 542 } 543 544 /* set up ipi interrupts */ 545 if (cpu_has_vint) { 546 set_vi_handler(MIPSCPU_INT_IPI0, malta_ipi_irqdispatch); 547 set_vi_handler(MIPSCPU_INT_IPI1, malta_ipi_irqdispatch); 548 } 549 /* Argh.. this really needs sorting out.. */ 550 printk("CPU%d: status register was %08x\n", smp_processor_id(), read_c0_status()); 551 write_c0_status(read_c0_status() | STATUSF_IP3 | STATUSF_IP4); 552 printk("CPU%d: status register now %08x\n", smp_processor_id(), read_c0_status()); 553 write_c0_status(0x1100dc00); 554 printk("CPU%d: status register frc %08x\n", smp_processor_id(), read_c0_status()); 555 for (i = 0; i < ARRAY_SIZE(ipiirq); i++) { 556 setup_irq(MIPS_GIC_IRQ_BASE + ipiirq[i].resched, &irq_resched); 557 setup_irq(MIPS_GIC_IRQ_BASE + ipiirq[i].call, &irq_call); 558 559 set_irq_handler(MIPS_GIC_IRQ_BASE + ipiirq[i].resched, handle_percpu_irq); 560 set_irq_handler(MIPS_GIC_IRQ_BASE + ipiirq[i].call, handle_percpu_irq); 561 } 562 } else { 563 /* set up ipi interrupts */ 564 if (cpu_has_veic) { 565 set_vi_handler (MSC01E_INT_SW0, ipi_resched_dispatch); 566 set_vi_handler (MSC01E_INT_SW1, ipi_call_dispatch); 567 cpu_ipi_resched_irq = MSC01E_INT_SW0; 568 cpu_ipi_call_irq = MSC01E_INT_SW1; 569 } else { 570 if (cpu_has_vint) { 571 set_vi_handler (MIPS_CPU_IPI_RESCHED_IRQ, ipi_resched_dispatch); 572 set_vi_handler (MIPS_CPU_IPI_CALL_IRQ, ipi_call_dispatch); 573 } 574 cpu_ipi_resched_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ; 575 cpu_ipi_call_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ; 576 } 577 578 setup_irq(cpu_ipi_resched_irq, &irq_resched); 579 setup_irq(cpu_ipi_call_irq, &irq_call); 580 581 set_irq_handler(cpu_ipi_resched_irq, handle_percpu_irq); 582 set_irq_handler(cpu_ipi_call_irq, handle_percpu_irq); 583 } 584 #endif 585 } 586 587 void malta_be_init(void) 588 { 589 if (gcmp_present) { 590 /* Could change CM error mask register */ 591 } 592 } 593 594 595 static char *tr[8] = { 596 "mem", "gcr", "gic", "mmio", 597 "0x04", "0x05", "0x06", "0x07" 598 }; 599 600 static char *mcmd[32] = { 601 [0x00] = "0x00", 602 [0x01] = "Legacy Write", 603 [0x02] = "Legacy Read", 604 [0x03] = "0x03", 605 [0x04] = "0x04", 606 [0x05] = "0x05", 607 [0x06] = "0x06", 608 [0x07] = "0x07", 609 [0x08] = "Coherent Read Own", 610 [0x09] = "Coherent Read Share", 611 [0x0a] = "Coherent Read Discard", 612 [0x0b] = "Coherent Ready Share Always", 613 [0x0c] = "Coherent Upgrade", 614 [0x0d] = "Coherent Writeback", 615 [0x0e] = "0x0e", 616 [0x0f] = "0x0f", 617 [0x10] = "Coherent Copyback", 618 [0x11] = "Coherent Copyback Invalidate", 619 [0x12] = "Coherent Invalidate", 620 [0x13] = "Coherent Write Invalidate", 621 [0x14] = "Coherent Completion Sync", 622 [0x15] = "0x15", 623 [0x16] = "0x16", 624 [0x17] = "0x17", 625 [0x18] = "0x18", 626 [0x19] = "0x19", 627 [0x1a] = "0x1a", 628 [0x1b] = "0x1b", 629 [0x1c] = "0x1c", 630 [0x1d] = "0x1d", 631 [0x1e] = "0x1e", 632 [0x1f] = "0x1f" 633 }; 634 635 static char *core[8] = { 636 "Invalid/OK", "Invalid/Data", 637 "Shared/OK", "Shared/Data", 638 "Modified/OK", "Modified/Data", 639 "Exclusive/OK", "Exclusive/Data" 640 }; 641 642 static char *causes[32] = { 643 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR", 644 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07", 645 "0x08", "0x09", "0x0a", "0x0b", 646 "0x0c", "0x0d", "0x0e", "0x0f", 647 "0x10", "0x11", "0x12", "0x13", 648 "0x14", "0x15", "0x16", "INTVN_WR_ERR", 649 "INTVN_RD_ERR", "0x19", "0x1a", "0x1b", 650 "0x1c", "0x1d", "0x1e", "0x1f" 651 }; 652 653 int malta_be_handler(struct pt_regs *regs, int is_fixup) 654 { 655 /* This duplicates the handling in do_be which seems wrong */ 656 int retval = is_fixup ? MIPS_BE_FIXUP : MIPS_BE_FATAL; 657 658 if (gcmp_present) { 659 unsigned long cm_error = GCMPGCB(GCMEC); 660 unsigned long cm_addr = GCMPGCB(GCMEA); 661 unsigned long cm_other = GCMPGCB(GCMEO); 662 unsigned long cause, ocause; 663 char buf[256]; 664 665 cause = (cm_error & GCMP_GCB_GMEC_ERROR_TYPE_MSK); 666 if (cause != 0) { 667 cause >>= GCMP_GCB_GMEC_ERROR_TYPE_SHF; 668 if (cause < 16) { 669 unsigned long cca_bits = (cm_error >> 15) & 7; 670 unsigned long tr_bits = (cm_error >> 12) & 7; 671 unsigned long mcmd_bits = (cm_error >> 7) & 0x1f; 672 unsigned long stag_bits = (cm_error >> 3) & 15; 673 unsigned long sport_bits = (cm_error >> 0) & 7; 674 675 snprintf(buf, sizeof(buf), 676 "CCA=%lu TR=%s MCmd=%s STag=%lu " 677 "SPort=%lu\n", 678 cca_bits, tr[tr_bits], mcmd[mcmd_bits], 679 stag_bits, sport_bits); 680 } else { 681 /* glob state & sresp together */ 682 unsigned long c3_bits = (cm_error >> 18) & 7; 683 unsigned long c2_bits = (cm_error >> 15) & 7; 684 unsigned long c1_bits = (cm_error >> 12) & 7; 685 unsigned long c0_bits = (cm_error >> 9) & 7; 686 unsigned long sc_bit = (cm_error >> 8) & 1; 687 unsigned long mcmd_bits = (cm_error >> 3) & 0x1f; 688 unsigned long sport_bits = (cm_error >> 0) & 7; 689 snprintf(buf, sizeof(buf), 690 "C3=%s C2=%s C1=%s C0=%s SC=%s " 691 "MCmd=%s SPort=%lu\n", 692 core[c3_bits], core[c2_bits], 693 core[c1_bits], core[c0_bits], 694 sc_bit ? "True" : "False", 695 mcmd[mcmd_bits], sport_bits); 696 } 697 698 ocause = (cm_other & GCMP_GCB_GMEO_ERROR_2ND_MSK) >> 699 GCMP_GCB_GMEO_ERROR_2ND_SHF; 700 701 printk("CM_ERROR=%08lx %s <%s>\n", cm_error, 702 causes[cause], buf); 703 printk("CM_ADDR =%08lx\n", cm_addr); 704 printk("CM_OTHER=%08lx %s\n", cm_other, causes[ocause]); 705 706 /* reprime cause register */ 707 GCMPGCB(GCMEC) = 0; 708 } 709 } 710 711 return retval; 712 } 713