1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * A small micro-assembler. It is intentionally kept simple, does only 7 * support a subset of instructions, and does not try to hide pipeline 8 * effects like branch delay slots. 9 * 10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 11 * Copyright (C) 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 19 #include <asm/inst.h> 20 #include <asm/elf.h> 21 #include <asm/bugs.h> 22 #define UASM_ISA _UASM_ISA_CLASSIC 23 #include <asm/uasm.h> 24 25 #define RS_MASK 0x1f 26 #define RS_SH 21 27 #define RT_MASK 0x1f 28 #define RT_SH 16 29 #define SCIMM_MASK 0xfffff 30 #define SCIMM_SH 6 31 32 /* This macro sets the non-variable bits of an instruction. */ 33 #define M(a, b, c, d, e, f) \ 34 ((a) << OP_SH \ 35 | (b) << RS_SH \ 36 | (c) << RT_SH \ 37 | (d) << RD_SH \ 38 | (e) << RE_SH \ 39 | (f) << FUNC_SH) 40 41 /* This macro sets the non-variable bits of an R6 instruction. */ 42 #define M6(a, b, c, d, e) \ 43 ((a) << OP_SH \ 44 | (b) << RS_SH \ 45 | (c) << RT_SH \ 46 | (d) << SIMM9_SH \ 47 | (e) << FUNC_SH) 48 49 #include "uasm.c" 50 51 static const struct insn const insn_table[insn_invalid] = { 52 [insn_addiu] = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 53 [insn_addu] = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD}, 54 [insn_and] = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD}, 55 [insn_andi] = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM}, 56 [insn_bbit0] = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, 57 [insn_bbit1] = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, 58 [insn_beq] = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, 59 [insn_beql] = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, 60 [insn_bgez] = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM}, 61 [insn_bgezl] = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM}, 62 [insn_bgtz] = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM}, 63 [insn_blez] = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM}, 64 [insn_bltz] = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM}, 65 [insn_bltzl] = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM}, 66 [insn_bne] = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, 67 [insn_break] = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM}, 68 #ifndef CONFIG_CPU_MIPSR6 69 [insn_cache] = {M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 70 #else 71 [insn_cache] = {M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9}, 72 #endif 73 [insn_cfc1] = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD}, 74 [insn_cfcmsa] = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE}, 75 [insn_ctc1] = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD}, 76 [insn_ctcmsa] = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE}, 77 [insn_daddiu] = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 78 [insn_daddu] = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD}, 79 [insn_ddivu] = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT}, 80 [insn_di] = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT}, 81 [insn_dins] = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE}, 82 [insn_dinsm] = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE}, 83 [insn_dinsu] = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE}, 84 [insn_divu] = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT}, 85 [insn_dmfc0] = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET}, 86 [insn_dmtc0] = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET}, 87 [insn_dmultu] = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT}, 88 [insn_drotr] = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE}, 89 [insn_drotr32] = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE}, 90 [insn_dsbh] = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD}, 91 [insn_dshd] = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD}, 92 [insn_dsll] = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE}, 93 [insn_dsll32] = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE}, 94 [insn_dsllv] = {M(spec_op, 0, 0, 0, 0, dsllv_op), RS | RT | RD}, 95 [insn_dsra] = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE}, 96 [insn_dsra32] = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE}, 97 [insn_dsrav] = {M(spec_op, 0, 0, 0, 0, dsrav_op), RS | RT | RD}, 98 [insn_dsrl] = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE}, 99 [insn_dsrl32] = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE}, 100 [insn_dsrlv] = {M(spec_op, 0, 0, 0, 0, dsrlv_op), RS | RT | RD}, 101 [insn_dsubu] = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD}, 102 [insn_eret] = {M(cop0_op, cop_op, 0, 0, 0, eret_op), 0}, 103 [insn_ext] = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE}, 104 [insn_ins] = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE}, 105 [insn_j] = {M(j_op, 0, 0, 0, 0, 0), JIMM}, 106 [insn_jal] = {M(jal_op, 0, 0, 0, 0, 0), JIMM}, 107 [insn_jalr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD}, 108 #ifndef CONFIG_CPU_MIPSR6 109 [insn_jr] = {M(spec_op, 0, 0, 0, 0, jr_op), RS}, 110 #else 111 [insn_jr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS}, 112 #endif 113 [insn_lb] = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 114 [insn_lbu] = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 115 [insn_ld] = {M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 116 [insn_lddir] = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD}, 117 [insn_ldpte] = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD}, 118 [insn_ldx] = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD}, 119 [insn_lh] = {M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 120 [insn_lhu] = {M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 121 #ifndef CONFIG_CPU_MIPSR6 122 [insn_ll] = {M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 123 [insn_lld] = {M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 124 #else 125 [insn_ll] = {M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9}, 126 [insn_lld] = {M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9}, 127 #endif 128 [insn_lui] = {M(lui_op, 0, 0, 0, 0, 0), RT | SIMM}, 129 [insn_lw] = {M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 130 [insn_lwu] = {M(lwu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 131 [insn_lwx] = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD}, 132 [insn_mfc0] = {M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET}, 133 [insn_mfhc0] = {M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET}, 134 [insn_mfhi] = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD}, 135 [insn_mflo] = {M(spec_op, 0, 0, 0, 0, mflo_op), RD}, 136 [insn_movn] = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD}, 137 [insn_movz] = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD}, 138 [insn_mtc0] = {M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET}, 139 [insn_mthc0] = {M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET}, 140 [insn_mthi] = {M(spec_op, 0, 0, 0, 0, mthi_op), RS}, 141 [insn_mtlo] = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS}, 142 #ifndef CONFIG_CPU_MIPSR6 143 [insn_mul] = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD}, 144 #else 145 [insn_mul] = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD}, 146 #endif 147 [insn_multu] = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT}, 148 [insn_nor] = {M(spec_op, 0, 0, 0, 0, nor_op), RS | RT | RD}, 149 [insn_or] = {M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD}, 150 [insn_ori] = {M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM}, 151 #ifndef CONFIG_CPU_MIPSR6 152 [insn_pref] = {M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 153 #else 154 [insn_pref] = {M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9}, 155 #endif 156 [insn_rfe] = {M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0}, 157 [insn_rotr] = {M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE}, 158 [insn_sb] = {M(sb_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 159 #ifndef CONFIG_CPU_MIPSR6 160 [insn_sc] = {M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 161 [insn_scd] = {M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 162 #else 163 [insn_sc] = {M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9}, 164 [insn_scd] = {M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9}, 165 #endif 166 [insn_sd] = {M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 167 [insn_sh] = {M(sh_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 168 [insn_sll] = {M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE}, 169 [insn_sllv] = {M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD}, 170 [insn_slt] = {M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD}, 171 [insn_slti] = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 172 [insn_sltiu] = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 173 [insn_sltu] = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD}, 174 [insn_sra] = {M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE}, 175 [insn_srl] = {M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE}, 176 [insn_srlv] = {M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD}, 177 [insn_subu] = {M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD}, 178 [insn_sw] = {M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, 179 [insn_sync] = {M(spec_op, 0, 0, 0, 0, sync_op), RE}, 180 [insn_syscall] = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM}, 181 [insn_tlbp] = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0}, 182 [insn_tlbr] = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0}, 183 [insn_tlbwi] = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0}, 184 [insn_tlbwr] = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0}, 185 [insn_wait] = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM}, 186 [insn_wsbh] = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD}, 187 [insn_xor] = {M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD}, 188 [insn_xori] = {M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM}, 189 [insn_yield] = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD}, 190 }; 191 192 #undef M 193 194 static inline u32 build_bimm(s32 arg) 195 { 196 WARN(arg > 0x1ffff || arg < -0x20000, 197 KERN_WARNING "Micro-assembler field overflow\n"); 198 199 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); 200 201 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); 202 } 203 204 static inline u32 build_jimm(u32 arg) 205 { 206 WARN(arg & ~(JIMM_MASK << 2), 207 KERN_WARNING "Micro-assembler field overflow\n"); 208 209 return (arg >> 2) & JIMM_MASK; 210 } 211 212 /* 213 * The order of opcode arguments is implicitly left to right, 214 * starting with RS and ending with FUNC or IMM. 215 */ 216 static void build_insn(u32 **buf, enum opcode opc, ...) 217 { 218 const struct insn *ip; 219 va_list ap; 220 u32 op; 221 222 if (opc < 0 || opc >= insn_invalid || 223 (opc == insn_daddiu && r4k_daddiu_bug()) || 224 (insn_table[opc].match == 0 && insn_table[opc].fields == 0)) 225 panic("Unsupported Micro-assembler instruction %d", opc); 226 227 ip = &insn_table[opc]; 228 229 op = ip->match; 230 va_start(ap, opc); 231 if (ip->fields & RS) 232 op |= build_rs(va_arg(ap, u32)); 233 if (ip->fields & RT) 234 op |= build_rt(va_arg(ap, u32)); 235 if (ip->fields & RD) 236 op |= build_rd(va_arg(ap, u32)); 237 if (ip->fields & RE) 238 op |= build_re(va_arg(ap, u32)); 239 if (ip->fields & SIMM) 240 op |= build_simm(va_arg(ap, s32)); 241 if (ip->fields & UIMM) 242 op |= build_uimm(va_arg(ap, u32)); 243 if (ip->fields & BIMM) 244 op |= build_bimm(va_arg(ap, s32)); 245 if (ip->fields & JIMM) 246 op |= build_jimm(va_arg(ap, u32)); 247 if (ip->fields & FUNC) 248 op |= build_func(va_arg(ap, u32)); 249 if (ip->fields & SET) 250 op |= build_set(va_arg(ap, u32)); 251 if (ip->fields & SCIMM) 252 op |= build_scimm(va_arg(ap, u32)); 253 if (ip->fields & SIMM9) 254 op |= build_scimm9(va_arg(ap, u32)); 255 va_end(ap); 256 257 **buf = op; 258 (*buf)++; 259 } 260 261 static inline void 262 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) 263 { 264 long laddr = (long)lab->addr; 265 long raddr = (long)rel->addr; 266 267 switch (rel->type) { 268 case R_MIPS_PC16: 269 *rel->addr |= build_bimm(laddr - (raddr + 4)); 270 break; 271 272 default: 273 panic("Unsupported Micro-assembler relocation %d", 274 rel->type); 275 } 276 } 277