1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * A small micro-assembler. It is intentionally kept simple, does only 7 * support a subset of instructions, and does not try to hide pipeline 8 * effects like branch delay slots. 9 * 10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 11 * Copyright (C) 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 19 #include <asm/inst.h> 20 #include <asm/elf.h> 21 #include <asm/bugs.h> 22 #define UASM_ISA _UASM_ISA_CLASSIC 23 #include <asm/uasm.h> 24 25 #define RS_MASK 0x1f 26 #define RS_SH 21 27 #define RT_MASK 0x1f 28 #define RT_SH 16 29 #define SCIMM_MASK 0xfffff 30 #define SCIMM_SH 6 31 32 /* This macro sets the non-variable bits of an instruction. */ 33 #define M(a, b, c, d, e, f) \ 34 ((a) << OP_SH \ 35 | (b) << RS_SH \ 36 | (c) << RT_SH \ 37 | (d) << RD_SH \ 38 | (e) << RE_SH \ 39 | (f) << FUNC_SH) 40 41 /* Define these when we are not the ISA the kernel is being compiled with. */ 42 #ifdef CONFIG_CPU_MICROMIPS 43 #define CL_uasm_i_b(buf, off) ISAOPC(_beq)(buf, 0, 0, off) 44 #define CL_uasm_i_beqz(buf, rs, off) ISAOPC(_beq)(buf, rs, 0, off) 45 #define CL_uasm_i_beqzl(buf, rs, off) ISAOPC(_beql)(buf, rs, 0, off) 46 #define CL_uasm_i_bnez(buf, rs, off) ISAOPC(_bne)(buf, rs, 0, off) 47 #endif 48 49 #include "uasm.c" 50 51 static struct insn insn_table[] = { 52 { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 53 { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD }, 54 { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, 55 { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD }, 56 { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 57 { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 58 { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 59 { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 60 { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM }, 61 { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM }, 62 { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM }, 63 { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM }, 64 { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 65 { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 66 { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 67 { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD }, 68 { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE }, 69 { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE }, 70 { insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT }, 71 { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET}, 72 { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET}, 73 { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE }, 74 { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE }, 75 { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE }, 76 { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE }, 77 { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE }, 78 { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE }, 79 { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE }, 80 { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD }, 81 { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 }, 82 { insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE }, 83 { insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE }, 84 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM }, 85 { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM }, 86 { insn_jalr, M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD }, 87 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM }, 88 { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS }, 89 { insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 90 { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 91 { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD }, 92 { insn_lh, M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 93 { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 94 { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 95 { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM }, 96 { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 97 { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD }, 98 { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET}, 99 { insn_mfhi, M(spec_op, 0, 0, 0, 0, mfhi_op), RD }, 100 { insn_mflo, M(spec_op, 0, 0, 0, 0, mflo_op), RD }, 101 { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET}, 102 { insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD}, 103 { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, 104 { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD }, 105 { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 106 { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 }, 107 { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE }, 108 { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 109 { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 110 { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 111 { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE }, 112 { insn_sllv, M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD }, 113 { insn_slt, M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD }, 114 { insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 115 { insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD }, 116 { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE }, 117 { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE }, 118 { insn_srlv, M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD }, 119 { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD }, 120 { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 121 { insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE }, 122 { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM}, 123 { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 }, 124 { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 }, 125 { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 }, 126 { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 }, 127 { insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM }, 128 { insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD }, 129 { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, 130 { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD }, 131 { insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD }, 132 { insn_invalid, 0, 0 } 133 }; 134 135 #undef M 136 137 static inline u32 build_bimm(s32 arg) 138 { 139 WARN(arg > 0x1ffff || arg < -0x20000, 140 KERN_WARNING "Micro-assembler field overflow\n"); 141 142 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); 143 144 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); 145 } 146 147 static inline u32 build_jimm(u32 arg) 148 { 149 WARN(arg & ~(JIMM_MASK << 2), 150 KERN_WARNING "Micro-assembler field overflow\n"); 151 152 return (arg >> 2) & JIMM_MASK; 153 } 154 155 /* 156 * The order of opcode arguments is implicitly left to right, 157 * starting with RS and ending with FUNC or IMM. 158 */ 159 static void build_insn(u32 **buf, enum opcode opc, ...) 160 { 161 struct insn *ip = NULL; 162 unsigned int i; 163 va_list ap; 164 u32 op; 165 166 for (i = 0; insn_table[i].opcode != insn_invalid; i++) 167 if (insn_table[i].opcode == opc) { 168 ip = &insn_table[i]; 169 break; 170 } 171 172 if (!ip || (opc == insn_daddiu && r4k_daddiu_bug())) 173 panic("Unsupported Micro-assembler instruction %d", opc); 174 175 op = ip->match; 176 va_start(ap, opc); 177 if (ip->fields & RS) 178 op |= build_rs(va_arg(ap, u32)); 179 if (ip->fields & RT) 180 op |= build_rt(va_arg(ap, u32)); 181 if (ip->fields & RD) 182 op |= build_rd(va_arg(ap, u32)); 183 if (ip->fields & RE) 184 op |= build_re(va_arg(ap, u32)); 185 if (ip->fields & SIMM) 186 op |= build_simm(va_arg(ap, s32)); 187 if (ip->fields & UIMM) 188 op |= build_uimm(va_arg(ap, u32)); 189 if (ip->fields & BIMM) 190 op |= build_bimm(va_arg(ap, s32)); 191 if (ip->fields & JIMM) 192 op |= build_jimm(va_arg(ap, u32)); 193 if (ip->fields & FUNC) 194 op |= build_func(va_arg(ap, u32)); 195 if (ip->fields & SET) 196 op |= build_set(va_arg(ap, u32)); 197 if (ip->fields & SCIMM) 198 op |= build_scimm(va_arg(ap, u32)); 199 va_end(ap); 200 201 **buf = op; 202 (*buf)++; 203 } 204 205 static inline void 206 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) 207 { 208 long laddr = (long)lab->addr; 209 long raddr = (long)rel->addr; 210 211 switch (rel->type) { 212 case R_MIPS_PC16: 213 *rel->addr |= build_bimm(laddr - (raddr + 4)); 214 break; 215 216 default: 217 panic("Unsupported Micro-assembler relocation %d", 218 rel->type); 219 } 220 } 221