1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Synthesize TLB refill handlers at runtime. 7 * 8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki 10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 11 * Copyright (C) 2008, 2009 Cavium Networks, Inc. 12 * Copyright (C) 2011 MIPS Technologies, Inc. 13 * 14 * ... and the days got worse and worse and now you see 15 * I've gone completly out of my mind. 16 * 17 * They're coming to take me a away haha 18 * they're coming to take me a away hoho hihi haha 19 * to the funny farm where code is beautiful all the time ... 20 * 21 * (Condolences to Napoleon XIV) 22 */ 23 24 #include <linux/bug.h> 25 #include <linux/kernel.h> 26 #include <linux/types.h> 27 #include <linux/smp.h> 28 #include <linux/string.h> 29 #include <linux/init.h> 30 #include <linux/cache.h> 31 32 #include <asm/cacheflush.h> 33 #include <asm/cpu-type.h> 34 #include <asm/pgtable.h> 35 #include <asm/war.h> 36 #include <asm/uasm.h> 37 #include <asm/setup.h> 38 39 /* 40 * TLB load/store/modify handlers. 41 * 42 * Only the fastpath gets synthesized at runtime, the slowpath for 43 * do_page_fault remains normal asm. 44 */ 45 extern void tlb_do_page_fault_0(void); 46 extern void tlb_do_page_fault_1(void); 47 48 struct work_registers { 49 int r1; 50 int r2; 51 int r3; 52 }; 53 54 struct tlb_reg_save { 55 unsigned long a; 56 unsigned long b; 57 } ____cacheline_aligned_in_smp; 58 59 static struct tlb_reg_save handler_reg_save[NR_CPUS]; 60 61 static inline int r45k_bvahwbug(void) 62 { 63 /* XXX: We should probe for the presence of this bug, but we don't. */ 64 return 0; 65 } 66 67 static inline int r4k_250MHZhwbug(void) 68 { 69 /* XXX: We should probe for the presence of this bug, but we don't. */ 70 return 0; 71 } 72 73 static inline int __maybe_unused bcm1250_m3_war(void) 74 { 75 return BCM1250_M3_WAR; 76 } 77 78 static inline int __maybe_unused r10000_llsc_war(void) 79 { 80 return R10000_LLSC_WAR; 81 } 82 83 static int use_bbit_insns(void) 84 { 85 switch (current_cpu_type()) { 86 case CPU_CAVIUM_OCTEON: 87 case CPU_CAVIUM_OCTEON_PLUS: 88 case CPU_CAVIUM_OCTEON2: 89 case CPU_CAVIUM_OCTEON3: 90 return 1; 91 default: 92 return 0; 93 } 94 } 95 96 static int use_lwx_insns(void) 97 { 98 switch (current_cpu_type()) { 99 case CPU_CAVIUM_OCTEON2: 100 case CPU_CAVIUM_OCTEON3: 101 return 1; 102 default: 103 return 0; 104 } 105 } 106 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ 107 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 108 static bool scratchpad_available(void) 109 { 110 return true; 111 } 112 static int scratchpad_offset(int i) 113 { 114 /* 115 * CVMSEG starts at address -32768 and extends for 116 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines. 117 */ 118 i += 1; /* Kernel use starts at the top and works down. */ 119 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768; 120 } 121 #else 122 static bool scratchpad_available(void) 123 { 124 return false; 125 } 126 static int scratchpad_offset(int i) 127 { 128 BUG(); 129 /* Really unreachable, but evidently some GCC want this. */ 130 return 0; 131 } 132 #endif 133 /* 134 * Found by experiment: At least some revisions of the 4kc throw under 135 * some circumstances a machine check exception, triggered by invalid 136 * values in the index register. Delaying the tlbp instruction until 137 * after the next branch, plus adding an additional nop in front of 138 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows 139 * why; it's not an issue caused by the core RTL. 140 * 141 */ 142 static int m4kc_tlbp_war(void) 143 { 144 return (current_cpu_data.processor_id & 0xffff00) == 145 (PRID_COMP_MIPS | PRID_IMP_4KC); 146 } 147 148 /* Handle labels (which must be positive integers). */ 149 enum label_id { 150 label_second_part = 1, 151 label_leave, 152 label_vmalloc, 153 label_vmalloc_done, 154 label_tlbw_hazard_0, 155 label_split = label_tlbw_hazard_0 + 8, 156 label_tlbl_goaround1, 157 label_tlbl_goaround2, 158 label_nopage_tlbl, 159 label_nopage_tlbs, 160 label_nopage_tlbm, 161 label_smp_pgtable_change, 162 label_r3000_write_probe_fail, 163 label_large_segbits_fault, 164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 165 label_tlb_huge_update, 166 #endif 167 }; 168 169 UASM_L_LA(_second_part) 170 UASM_L_LA(_leave) 171 UASM_L_LA(_vmalloc) 172 UASM_L_LA(_vmalloc_done) 173 /* _tlbw_hazard_x is handled differently. */ 174 UASM_L_LA(_split) 175 UASM_L_LA(_tlbl_goaround1) 176 UASM_L_LA(_tlbl_goaround2) 177 UASM_L_LA(_nopage_tlbl) 178 UASM_L_LA(_nopage_tlbs) 179 UASM_L_LA(_nopage_tlbm) 180 UASM_L_LA(_smp_pgtable_change) 181 UASM_L_LA(_r3000_write_probe_fail) 182 UASM_L_LA(_large_segbits_fault) 183 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 184 UASM_L_LA(_tlb_huge_update) 185 #endif 186 187 static int hazard_instance; 188 189 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance) 190 { 191 switch (instance) { 192 case 0 ... 7: 193 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance); 194 return; 195 default: 196 BUG(); 197 } 198 } 199 200 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance) 201 { 202 switch (instance) { 203 case 0 ... 7: 204 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance); 205 break; 206 default: 207 BUG(); 208 } 209 } 210 211 /* 212 * pgtable bits are assigned dynamically depending on processor feature 213 * and statically based on kernel configuration. This spits out the actual 214 * values the kernel is using. Required to make sense from disassembled 215 * TLB exception handlers. 216 */ 217 static void output_pgtable_bits_defines(void) 218 { 219 #define pr_define(fmt, ...) \ 220 pr_debug("#define " fmt, ##__VA_ARGS__) 221 222 pr_debug("#include <asm/asm.h>\n"); 223 pr_debug("#include <asm/regdef.h>\n"); 224 pr_debug("\n"); 225 226 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT); 227 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT); 228 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT); 229 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT); 230 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT); 231 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 232 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT); 233 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT); 234 #endif 235 if (cpu_has_rixi) { 236 #ifdef _PAGE_NO_EXEC_SHIFT 237 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT); 238 #endif 239 #ifdef _PAGE_NO_READ_SHIFT 240 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT); 241 #endif 242 } 243 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT); 244 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT); 245 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT); 246 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT); 247 pr_debug("\n"); 248 } 249 250 static inline void dump_handler(const char *symbol, const u32 *handler, int count) 251 { 252 int i; 253 254 pr_debug("LEAF(%s)\n", symbol); 255 256 pr_debug("\t.set push\n"); 257 pr_debug("\t.set noreorder\n"); 258 259 for (i = 0; i < count; i++) 260 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]); 261 262 pr_debug("\t.set\tpop\n"); 263 264 pr_debug("\tEND(%s)\n", symbol); 265 } 266 267 /* The only general purpose registers allowed in TLB handlers. */ 268 #define K0 26 269 #define K1 27 270 271 /* Some CP0 registers */ 272 #define C0_INDEX 0, 0 273 #define C0_ENTRYLO0 2, 0 274 #define C0_TCBIND 2, 2 275 #define C0_ENTRYLO1 3, 0 276 #define C0_CONTEXT 4, 0 277 #define C0_PAGEMASK 5, 0 278 #define C0_BADVADDR 8, 0 279 #define C0_ENTRYHI 10, 0 280 #define C0_EPC 14, 0 281 #define C0_XCONTEXT 20, 0 282 283 #ifdef CONFIG_64BIT 284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) 285 #else 286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) 287 #endif 288 289 /* The worst case length of the handler is around 18 instructions for 290 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. 291 * Maximum space available is 32 instructions for R3000 and 64 292 * instructions for R4000. 293 * 294 * We deliberately chose a buffer size of 128, so we won't scribble 295 * over anything important on overflow before we panic. 296 */ 297 static u32 tlb_handler[128]; 298 299 /* simply assume worst case size for labels and relocs */ 300 static struct uasm_label labels[128]; 301 static struct uasm_reloc relocs[128]; 302 303 static int check_for_high_segbits; 304 305 static unsigned int kscratch_used_mask; 306 307 static inline int __maybe_unused c0_kscratch(void) 308 { 309 switch (current_cpu_type()) { 310 case CPU_XLP: 311 case CPU_XLR: 312 return 22; 313 default: 314 return 31; 315 } 316 } 317 318 static int allocate_kscratch(void) 319 { 320 int r; 321 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask; 322 323 r = ffs(a); 324 325 if (r == 0) 326 return -1; 327 328 r--; /* make it zero based */ 329 330 kscratch_used_mask |= (1 << r); 331 332 return r; 333 } 334 335 static int scratch_reg; 336 static int pgd_reg; 337 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch}; 338 339 static struct work_registers build_get_work_registers(u32 **p) 340 { 341 struct work_registers r; 342 343 if (scratch_reg >= 0) { 344 /* Save in CPU local C0_KScratch? */ 345 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg); 346 r.r1 = K0; 347 r.r2 = K1; 348 r.r3 = 1; 349 return r; 350 } 351 352 if (num_possible_cpus() > 1) { 353 /* Get smp_processor_id */ 354 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG); 355 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT); 356 357 /* handler_reg_save index in K0 */ 358 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save))); 359 360 UASM_i_LA(p, K1, (long)&handler_reg_save); 361 UASM_i_ADDU(p, K0, K0, K1); 362 } else { 363 UASM_i_LA(p, K0, (long)&handler_reg_save); 364 } 365 /* K0 now points to save area, save $1 and $2 */ 366 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0); 367 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0); 368 369 r.r1 = K1; 370 r.r2 = 1; 371 r.r3 = 2; 372 return r; 373 } 374 375 static void build_restore_work_registers(u32 **p) 376 { 377 if (scratch_reg >= 0) { 378 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 379 return; 380 } 381 /* K0 already points to save area, restore $1 and $2 */ 382 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0); 383 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0); 384 } 385 386 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 387 388 /* 389 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current, 390 * we cannot do r3000 under these circumstances. 391 * 392 * Declare pgd_current here instead of including mmu_context.h to avoid type 393 * conflicts for tlbmiss_handler_setup_pgd 394 */ 395 extern unsigned long pgd_current[]; 396 397 /* 398 * The R3000 TLB handler is simple. 399 */ 400 static void build_r3000_tlb_refill_handler(void) 401 { 402 long pgdc = (long)pgd_current; 403 u32 *p; 404 405 memset(tlb_handler, 0, sizeof(tlb_handler)); 406 p = tlb_handler; 407 408 uasm_i_mfc0(&p, K0, C0_BADVADDR); 409 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ 410 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); 411 uasm_i_srl(&p, K0, K0, 22); /* load delay */ 412 uasm_i_sll(&p, K0, K0, 2); 413 uasm_i_addu(&p, K1, K1, K0); 414 uasm_i_mfc0(&p, K0, C0_CONTEXT); 415 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ 416 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ 417 uasm_i_addu(&p, K1, K1, K0); 418 uasm_i_lw(&p, K0, 0, K1); 419 uasm_i_nop(&p); /* load delay */ 420 uasm_i_mtc0(&p, K0, C0_ENTRYLO0); 421 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ 422 uasm_i_tlbwr(&p); /* cp0 delay */ 423 uasm_i_jr(&p, K1); 424 uasm_i_rfe(&p); /* branch delay */ 425 426 if (p > tlb_handler + 32) 427 panic("TLB refill handler space exceeded"); 428 429 pr_debug("Wrote TLB refill handler (%u instructions).\n", 430 (unsigned int)(p - tlb_handler)); 431 432 memcpy((void *)ebase, tlb_handler, 0x80); 433 434 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32); 435 } 436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 437 438 /* 439 * The R4000 TLB handler is much more complicated. We have two 440 * consecutive handler areas with 32 instructions space each. 441 * Since they aren't used at the same time, we can overflow in the 442 * other one.To keep things simple, we first assume linear space, 443 * then we relocate it to the final handler layout as needed. 444 */ 445 static u32 final_handler[64]; 446 447 /* 448 * Hazards 449 * 450 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: 451 * 2. A timing hazard exists for the TLBP instruction. 452 * 453 * stalling_instruction 454 * TLBP 455 * 456 * The JTLB is being read for the TLBP throughout the stall generated by the 457 * previous instruction. This is not really correct as the stalling instruction 458 * can modify the address used to access the JTLB. The failure symptom is that 459 * the TLBP instruction will use an address created for the stalling instruction 460 * and not the address held in C0_ENHI and thus report the wrong results. 461 * 462 * The software work-around is to not allow the instruction preceding the TLBP 463 * to stall - make it an NOP or some other instruction guaranteed not to stall. 464 * 465 * Errata 2 will not be fixed. This errata is also on the R5000. 466 * 467 * As if we MIPS hackers wouldn't know how to nop pipelines happy ... 468 */ 469 static void __maybe_unused build_tlb_probe_entry(u32 **p) 470 { 471 switch (current_cpu_type()) { 472 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ 473 case CPU_R4600: 474 case CPU_R4700: 475 case CPU_R5000: 476 case CPU_NEVADA: 477 uasm_i_nop(p); 478 uasm_i_tlbp(p); 479 break; 480 481 default: 482 uasm_i_tlbp(p); 483 break; 484 } 485 } 486 487 /* 488 * Write random or indexed TLB entry, and care about the hazards from 489 * the preceding mtc0 and for the following eret. 490 */ 491 enum tlb_write_entry { tlb_random, tlb_indexed }; 492 493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l, 494 struct uasm_reloc **r, 495 enum tlb_write_entry wmode) 496 { 497 void(*tlbw)(u32 **) = NULL; 498 499 switch (wmode) { 500 case tlb_random: tlbw = uasm_i_tlbwr; break; 501 case tlb_indexed: tlbw = uasm_i_tlbwi; break; 502 } 503 504 if (cpu_has_mips_r2) { 505 /* 506 * The architecture spec says an ehb is required here, 507 * but a number of cores do not have the hazard and 508 * using an ehb causes an expensive pipeline stall. 509 */ 510 switch (current_cpu_type()) { 511 case CPU_M14KC: 512 case CPU_74K: 513 break; 514 515 default: 516 uasm_i_ehb(p); 517 break; 518 } 519 tlbw(p); 520 return; 521 } 522 523 switch (current_cpu_type()) { 524 case CPU_R4000PC: 525 case CPU_R4000SC: 526 case CPU_R4000MC: 527 case CPU_R4400PC: 528 case CPU_R4400SC: 529 case CPU_R4400MC: 530 /* 531 * This branch uses up a mtc0 hazard nop slot and saves 532 * two nops after the tlbw instruction. 533 */ 534 uasm_bgezl_hazard(p, r, hazard_instance); 535 tlbw(p); 536 uasm_bgezl_label(l, p, hazard_instance); 537 hazard_instance++; 538 uasm_i_nop(p); 539 break; 540 541 case CPU_R4600: 542 case CPU_R4700: 543 uasm_i_nop(p); 544 tlbw(p); 545 uasm_i_nop(p); 546 break; 547 548 case CPU_R5000: 549 case CPU_NEVADA: 550 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 551 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 552 tlbw(p); 553 break; 554 555 case CPU_R4300: 556 case CPU_5KC: 557 case CPU_TX49XX: 558 case CPU_PR4450: 559 case CPU_XLR: 560 uasm_i_nop(p); 561 tlbw(p); 562 break; 563 564 case CPU_R10000: 565 case CPU_R12000: 566 case CPU_R14000: 567 case CPU_4KC: 568 case CPU_4KEC: 569 case CPU_M14KC: 570 case CPU_M14KEC: 571 case CPU_SB1: 572 case CPU_SB1A: 573 case CPU_4KSC: 574 case CPU_20KC: 575 case CPU_25KF: 576 case CPU_BMIPS32: 577 case CPU_BMIPS3300: 578 case CPU_BMIPS4350: 579 case CPU_BMIPS4380: 580 case CPU_BMIPS5000: 581 case CPU_LOONGSON2: 582 case CPU_R5500: 583 if (m4kc_tlbp_war()) 584 uasm_i_nop(p); 585 case CPU_ALCHEMY: 586 tlbw(p); 587 break; 588 589 case CPU_RM7000: 590 uasm_i_nop(p); 591 uasm_i_nop(p); 592 uasm_i_nop(p); 593 uasm_i_nop(p); 594 tlbw(p); 595 break; 596 597 case CPU_VR4111: 598 case CPU_VR4121: 599 case CPU_VR4122: 600 case CPU_VR4181: 601 case CPU_VR4181A: 602 uasm_i_nop(p); 603 uasm_i_nop(p); 604 tlbw(p); 605 uasm_i_nop(p); 606 uasm_i_nop(p); 607 break; 608 609 case CPU_VR4131: 610 case CPU_VR4133: 611 case CPU_R5432: 612 uasm_i_nop(p); 613 uasm_i_nop(p); 614 tlbw(p); 615 break; 616 617 case CPU_JZRISC: 618 tlbw(p); 619 uasm_i_nop(p); 620 break; 621 622 default: 623 panic("No TLB refill handler yet (CPU type: %d)", 624 current_cpu_data.cputype); 625 break; 626 } 627 } 628 629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p, 630 unsigned int reg) 631 { 632 if (cpu_has_rixi) { 633 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL)); 634 } else { 635 #ifdef CONFIG_64BIT_PHYS_ADDR 636 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL)); 637 #else 638 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL)); 639 #endif 640 } 641 } 642 643 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 644 645 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r, 646 unsigned int tmp, enum label_id lid, 647 int restore_scratch) 648 { 649 if (restore_scratch) { 650 /* Reset default page size */ 651 if (PM_DEFAULT_MASK >> 16) { 652 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 653 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 654 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 655 uasm_il_b(p, r, lid); 656 } else if (PM_DEFAULT_MASK) { 657 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 658 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 659 uasm_il_b(p, r, lid); 660 } else { 661 uasm_i_mtc0(p, 0, C0_PAGEMASK); 662 uasm_il_b(p, r, lid); 663 } 664 if (scratch_reg >= 0) 665 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 666 else 667 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 668 } else { 669 /* Reset default page size */ 670 if (PM_DEFAULT_MASK >> 16) { 671 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 672 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 673 uasm_il_b(p, r, lid); 674 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 675 } else if (PM_DEFAULT_MASK) { 676 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 677 uasm_il_b(p, r, lid); 678 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 679 } else { 680 uasm_il_b(p, r, lid); 681 uasm_i_mtc0(p, 0, C0_PAGEMASK); 682 } 683 } 684 } 685 686 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l, 687 struct uasm_reloc **r, 688 unsigned int tmp, 689 enum tlb_write_entry wmode, 690 int restore_scratch) 691 { 692 /* Set huge page tlb entry size */ 693 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); 694 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); 695 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 696 697 build_tlb_write_entry(p, l, r, wmode); 698 699 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch); 700 } 701 702 /* 703 * Check if Huge PTE is present, if so then jump to LABEL. 704 */ 705 static void 706 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, 707 unsigned int pmd, int lid) 708 { 709 UASM_i_LW(p, tmp, 0, pmd); 710 if (use_bbit_insns()) { 711 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid); 712 } else { 713 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); 714 uasm_il_bnez(p, r, tmp, lid); 715 } 716 } 717 718 static void build_huge_update_entries(u32 **p, unsigned int pte, 719 unsigned int tmp) 720 { 721 int small_sequence; 722 723 /* 724 * A huge PTE describes an area the size of the 725 * configured huge page size. This is twice the 726 * of the large TLB entry size we intend to use. 727 * A TLB entry half the size of the configured 728 * huge page size is configured into entrylo0 729 * and entrylo1 to cover the contiguous huge PTE 730 * address space. 731 */ 732 small_sequence = (HPAGE_SIZE >> 7) < 0x10000; 733 734 /* We can clobber tmp. It isn't used after this.*/ 735 if (!small_sequence) 736 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); 737 738 build_convert_pte_to_entrylo(p, pte); 739 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */ 740 /* convert to entrylo1 */ 741 if (small_sequence) 742 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); 743 else 744 UASM_i_ADDU(p, pte, pte, tmp); 745 746 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */ 747 } 748 749 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r, 750 struct uasm_label **l, 751 unsigned int pte, 752 unsigned int ptr) 753 { 754 #ifdef CONFIG_SMP 755 UASM_i_SC(p, pte, 0, ptr); 756 uasm_il_beqz(p, r, pte, label_tlb_huge_update); 757 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ 758 #else 759 UASM_i_SW(p, pte, 0, ptr); 760 #endif 761 build_huge_update_entries(p, pte, ptr); 762 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0); 763 } 764 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 765 766 #ifdef CONFIG_64BIT 767 /* 768 * TMP and PTR are scratch. 769 * TMP will be clobbered, PTR will hold the pmd entry. 770 */ 771 static void 772 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 773 unsigned int tmp, unsigned int ptr) 774 { 775 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 776 long pgdc = (long)pgd_current; 777 #endif 778 /* 779 * The vmalloc handling is not in the hotpath. 780 */ 781 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 782 783 if (check_for_high_segbits) { 784 /* 785 * The kernel currently implicitely assumes that the 786 * MIPS SEGBITS parameter for the processor is 787 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never 788 * allocate virtual addresses outside the maximum 789 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But 790 * that doesn't prevent user code from accessing the 791 * higher xuseg addresses. Here, we make sure that 792 * everything but the lower xuseg addresses goes down 793 * the module_alloc/vmalloc path. 794 */ 795 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 796 uasm_il_bnez(p, r, ptr, label_vmalloc); 797 } else { 798 uasm_il_bltz(p, r, tmp, label_vmalloc); 799 } 800 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ 801 802 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 803 if (pgd_reg != -1) { 804 /* pgd is in pgd_reg */ 805 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 806 } else { 807 /* 808 * &pgd << 11 stored in CONTEXT [23..63]. 809 */ 810 UASM_i_MFC0(p, ptr, C0_CONTEXT); 811 812 /* Clear lower 23 bits of context. */ 813 uasm_i_dins(p, ptr, 0, 0, 23); 814 815 /* 1 0 1 0 1 << 6 xkphys cached */ 816 uasm_i_ori(p, ptr, ptr, 0x540); 817 uasm_i_drotr(p, ptr, ptr, 11); 818 } 819 #elif defined(CONFIG_SMP) 820 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG); 821 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 822 UASM_i_LA_mostly(p, tmp, pgdc); 823 uasm_i_daddu(p, ptr, ptr, tmp); 824 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 825 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 826 #else 827 UASM_i_LA_mostly(p, ptr, pgdc); 828 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 829 #endif 830 831 uasm_l_vmalloc_done(l, *p); 832 833 /* get pgd offset in bytes */ 834 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3); 835 836 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); 837 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ 838 #ifndef __PAGETABLE_PMD_FOLDED 839 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 840 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ 841 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ 842 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); 843 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ 844 #endif 845 } 846 847 /* 848 * BVADDR is the faulting address, PTR is scratch. 849 * PTR will hold the pgd for vmalloc. 850 */ 851 static void 852 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 853 unsigned int bvaddr, unsigned int ptr, 854 enum vmalloc64_mode mode) 855 { 856 long swpd = (long)swapper_pg_dir; 857 int single_insn_swpd; 858 int did_vmalloc_branch = 0; 859 860 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd); 861 862 uasm_l_vmalloc(l, *p); 863 864 if (mode != not_refill && check_for_high_segbits) { 865 if (single_insn_swpd) { 866 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done); 867 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 868 did_vmalloc_branch = 1; 869 /* fall through */ 870 } else { 871 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault); 872 } 873 } 874 if (!did_vmalloc_branch) { 875 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) { 876 uasm_il_b(p, r, label_vmalloc_done); 877 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 878 } else { 879 UASM_i_LA_mostly(p, ptr, swpd); 880 uasm_il_b(p, r, label_vmalloc_done); 881 if (uasm_in_compat_space_p(swpd)) 882 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); 883 else 884 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); 885 } 886 } 887 if (mode != not_refill && check_for_high_segbits) { 888 uasm_l_large_segbits_fault(l, *p); 889 /* 890 * We get here if we are an xsseg address, or if we are 891 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary. 892 * 893 * Ignoring xsseg (assume disabled so would generate 894 * (address errors?), the only remaining possibility 895 * is the upper xuseg addresses. On processors with 896 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these 897 * addresses would have taken an address error. We try 898 * to mimic that here by taking a load/istream page 899 * fault. 900 */ 901 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0); 902 uasm_i_jr(p, ptr); 903 904 if (mode == refill_scratch) { 905 if (scratch_reg >= 0) 906 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 907 else 908 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 909 } else { 910 uasm_i_nop(p); 911 } 912 } 913 } 914 915 #else /* !CONFIG_64BIT */ 916 917 /* 918 * TMP and PTR are scratch. 919 * TMP will be clobbered, PTR will hold the pgd entry. 920 */ 921 static void __maybe_unused 922 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) 923 { 924 long pgdc = (long)pgd_current; 925 926 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ 927 #ifdef CONFIG_SMP 928 uasm_i_mfc0(p, ptr, SMP_CPUID_REG); 929 UASM_i_LA_mostly(p, tmp, pgdc); 930 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 931 uasm_i_addu(p, ptr, tmp, ptr); 932 #else 933 UASM_i_LA_mostly(p, ptr, pgdc); 934 #endif 935 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 936 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 937 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ 938 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); 939 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ 940 } 941 942 #endif /* !CONFIG_64BIT */ 943 944 static void build_adjust_context(u32 **p, unsigned int ctx) 945 { 946 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; 947 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); 948 949 switch (current_cpu_type()) { 950 case CPU_VR41XX: 951 case CPU_VR4111: 952 case CPU_VR4121: 953 case CPU_VR4122: 954 case CPU_VR4131: 955 case CPU_VR4181: 956 case CPU_VR4181A: 957 case CPU_VR4133: 958 shift += 2; 959 break; 960 961 default: 962 break; 963 } 964 965 if (shift) 966 UASM_i_SRL(p, ctx, ctx, shift); 967 uasm_i_andi(p, ctx, ctx, mask); 968 } 969 970 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) 971 { 972 /* 973 * Bug workaround for the Nevada. It seems as if under certain 974 * circumstances the move from cp0_context might produce a 975 * bogus result when the mfc0 instruction and its consumer are 976 * in a different cacheline or a load instruction, probably any 977 * memory reference, is between them. 978 */ 979 switch (current_cpu_type()) { 980 case CPU_NEVADA: 981 UASM_i_LW(p, ptr, 0, ptr); 982 GET_CONTEXT(p, tmp); /* get context reg */ 983 break; 984 985 default: 986 GET_CONTEXT(p, tmp); /* get context reg */ 987 UASM_i_LW(p, ptr, 0, ptr); 988 break; 989 } 990 991 build_adjust_context(p, tmp); 992 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ 993 } 994 995 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) 996 { 997 /* 998 * 64bit address support (36bit on a 32bit CPU) in a 32bit 999 * Kernel is a special case. Only a few CPUs use it. 1000 */ 1001 #ifdef CONFIG_64BIT_PHYS_ADDR 1002 if (cpu_has_64bits) { 1003 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */ 1004 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ 1005 if (cpu_has_rixi) { 1006 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1007 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1008 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); 1009 } else { 1010 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */ 1011 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1012 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */ 1013 } 1014 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1015 } else { 1016 int pte_off_even = sizeof(pte_t) / 2; 1017 int pte_off_odd = pte_off_even + sizeof(pte_t); 1018 1019 /* The pte entries are pre-shifted */ 1020 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */ 1021 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1022 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */ 1023 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1024 } 1025 #else 1026 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */ 1027 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ 1028 if (r45k_bvahwbug()) 1029 build_tlb_probe_entry(p); 1030 if (cpu_has_rixi) { 1031 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1032 if (r4k_250MHZhwbug()) 1033 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1034 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1035 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); 1036 } else { 1037 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */ 1038 if (r4k_250MHZhwbug()) 1039 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1040 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1041 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */ 1042 if (r45k_bvahwbug()) 1043 uasm_i_mfc0(p, tmp, C0_INDEX); 1044 } 1045 if (r4k_250MHZhwbug()) 1046 UASM_i_MTC0(p, 0, C0_ENTRYLO1); 1047 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1048 #endif 1049 } 1050 1051 struct mips_huge_tlb_info { 1052 int huge_pte; 1053 int restore_scratch; 1054 }; 1055 1056 static struct mips_huge_tlb_info 1057 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l, 1058 struct uasm_reloc **r, unsigned int tmp, 1059 unsigned int ptr, int c0_scratch_reg) 1060 { 1061 struct mips_huge_tlb_info rv; 1062 unsigned int even, odd; 1063 int vmalloc_branch_delay_filled = 0; 1064 const int scratch = 1; /* Our extra working register */ 1065 1066 rv.huge_pte = scratch; 1067 rv.restore_scratch = 0; 1068 1069 if (check_for_high_segbits) { 1070 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1071 1072 if (pgd_reg != -1) 1073 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1074 else 1075 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1076 1077 if (c0_scratch_reg >= 0) 1078 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1079 else 1080 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1081 1082 uasm_i_dsrl_safe(p, scratch, tmp, 1083 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1084 uasm_il_bnez(p, r, scratch, label_vmalloc); 1085 1086 if (pgd_reg == -1) { 1087 vmalloc_branch_delay_filled = 1; 1088 /* Clear lower 23 bits of context. */ 1089 uasm_i_dins(p, ptr, 0, 0, 23); 1090 } 1091 } else { 1092 if (pgd_reg != -1) 1093 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1094 else 1095 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1096 1097 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1098 1099 if (c0_scratch_reg >= 0) 1100 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1101 else 1102 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1103 1104 if (pgd_reg == -1) 1105 /* Clear lower 23 bits of context. */ 1106 uasm_i_dins(p, ptr, 0, 0, 23); 1107 1108 uasm_il_bltz(p, r, tmp, label_vmalloc); 1109 } 1110 1111 if (pgd_reg == -1) { 1112 vmalloc_branch_delay_filled = 1; 1113 /* 1 0 1 0 1 << 6 xkphys cached */ 1114 uasm_i_ori(p, ptr, ptr, 0x540); 1115 uasm_i_drotr(p, ptr, ptr, 11); 1116 } 1117 1118 #ifdef __PAGETABLE_PMD_FOLDED 1119 #define LOC_PTEP scratch 1120 #else 1121 #define LOC_PTEP ptr 1122 #endif 1123 1124 if (!vmalloc_branch_delay_filled) 1125 /* get pgd offset in bytes */ 1126 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1127 1128 uasm_l_vmalloc_done(l, *p); 1129 1130 /* 1131 * tmp ptr 1132 * fall-through case = badvaddr *pgd_current 1133 * vmalloc case = badvaddr swapper_pg_dir 1134 */ 1135 1136 if (vmalloc_branch_delay_filled) 1137 /* get pgd offset in bytes */ 1138 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1139 1140 #ifdef __PAGETABLE_PMD_FOLDED 1141 GET_CONTEXT(p, tmp); /* get context reg */ 1142 #endif 1143 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3); 1144 1145 if (use_lwx_insns()) { 1146 UASM_i_LWX(p, LOC_PTEP, scratch, ptr); 1147 } else { 1148 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */ 1149 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */ 1150 } 1151 1152 #ifndef __PAGETABLE_PMD_FOLDED 1153 /* get pmd offset in bytes */ 1154 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3); 1155 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3); 1156 GET_CONTEXT(p, tmp); /* get context reg */ 1157 1158 if (use_lwx_insns()) { 1159 UASM_i_LWX(p, scratch, scratch, ptr); 1160 } else { 1161 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ 1162 UASM_i_LW(p, scratch, 0, ptr); 1163 } 1164 #endif 1165 /* Adjust the context during the load latency. */ 1166 build_adjust_context(p, tmp); 1167 1168 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1169 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update); 1170 /* 1171 * The in the LWX case we don't want to do the load in the 1172 * delay slot. It cannot issue in the same cycle and may be 1173 * speculative and unneeded. 1174 */ 1175 if (use_lwx_insns()) 1176 uasm_i_nop(p); 1177 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 1178 1179 1180 /* build_update_entries */ 1181 if (use_lwx_insns()) { 1182 even = ptr; 1183 odd = tmp; 1184 UASM_i_LWX(p, even, scratch, tmp); 1185 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t)); 1186 UASM_i_LWX(p, odd, scratch, tmp); 1187 } else { 1188 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */ 1189 even = tmp; 1190 odd = ptr; 1191 UASM_i_LW(p, even, 0, ptr); /* get even pte */ 1192 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */ 1193 } 1194 if (cpu_has_rixi) { 1195 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL)); 1196 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1197 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1198 } else { 1199 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL)); 1200 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1201 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1202 } 1203 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */ 1204 1205 if (c0_scratch_reg >= 0) { 1206 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1207 build_tlb_write_entry(p, l, r, tlb_random); 1208 uasm_l_leave(l, *p); 1209 rv.restore_scratch = 1; 1210 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) { 1211 build_tlb_write_entry(p, l, r, tlb_random); 1212 uasm_l_leave(l, *p); 1213 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1214 } else { 1215 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1216 build_tlb_write_entry(p, l, r, tlb_random); 1217 uasm_l_leave(l, *p); 1218 rv.restore_scratch = 1; 1219 } 1220 1221 uasm_i_eret(p); /* return from trap */ 1222 1223 return rv; 1224 } 1225 1226 /* 1227 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception 1228 * because EXL == 0. If we wrap, we can also use the 32 instruction 1229 * slots before the XTLB refill exception handler which belong to the 1230 * unused TLB refill exception. 1231 */ 1232 #define MIPS64_REFILL_INSNS 32 1233 1234 static void build_r4000_tlb_refill_handler(void) 1235 { 1236 u32 *p = tlb_handler; 1237 struct uasm_label *l = labels; 1238 struct uasm_reloc *r = relocs; 1239 u32 *f; 1240 unsigned int final_len; 1241 struct mips_huge_tlb_info htlb_info __maybe_unused; 1242 enum vmalloc64_mode vmalloc_mode __maybe_unused; 1243 1244 memset(tlb_handler, 0, sizeof(tlb_handler)); 1245 memset(labels, 0, sizeof(labels)); 1246 memset(relocs, 0, sizeof(relocs)); 1247 memset(final_handler, 0, sizeof(final_handler)); 1248 1249 if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) { 1250 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1, 1251 scratch_reg); 1252 vmalloc_mode = refill_scratch; 1253 } else { 1254 htlb_info.huge_pte = K0; 1255 htlb_info.restore_scratch = 0; 1256 vmalloc_mode = refill_noscratch; 1257 /* 1258 * create the plain linear handler 1259 */ 1260 if (bcm1250_m3_war()) { 1261 unsigned int segbits = 44; 1262 1263 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1264 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1265 uasm_i_xor(&p, K0, K0, K1); 1266 uasm_i_dsrl_safe(&p, K1, K0, 62); 1267 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1268 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1269 uasm_i_or(&p, K0, K0, K1); 1270 uasm_il_bnez(&p, &r, K0, label_leave); 1271 /* No need for uasm_i_nop */ 1272 } 1273 1274 #ifdef CONFIG_64BIT 1275 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 1276 #else 1277 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 1278 #endif 1279 1280 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1281 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); 1282 #endif 1283 1284 build_get_ptep(&p, K0, K1); 1285 build_update_entries(&p, K0, K1); 1286 build_tlb_write_entry(&p, &l, &r, tlb_random); 1287 uasm_l_leave(&l, p); 1288 uasm_i_eret(&p); /* return from trap */ 1289 } 1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1291 uasm_l_tlb_huge_update(&l, p); 1292 build_huge_update_entries(&p, htlb_info.huge_pte, K1); 1293 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random, 1294 htlb_info.restore_scratch); 1295 #endif 1296 1297 #ifdef CONFIG_64BIT 1298 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode); 1299 #endif 1300 1301 /* 1302 * Overflow check: For the 64bit handler, we need at least one 1303 * free instruction slot for the wrap-around branch. In worst 1304 * case, if the intended insertion point is a delay slot, we 1305 * need three, with the second nop'ed and the third being 1306 * unused. 1307 */ 1308 /* Loongson2 ebase is different than r4k, we have more space */ 1309 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2) 1310 if ((p - tlb_handler) > 64) 1311 panic("TLB refill handler space exceeded"); 1312 #else 1313 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) 1314 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) 1315 && uasm_insn_has_bdelay(relocs, 1316 tlb_handler + MIPS64_REFILL_INSNS - 3))) 1317 panic("TLB refill handler space exceeded"); 1318 #endif 1319 1320 /* 1321 * Now fold the handler in the TLB refill handler space. 1322 */ 1323 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2) 1324 f = final_handler; 1325 /* Simplest case, just copy the handler. */ 1326 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1327 final_len = p - tlb_handler; 1328 #else /* CONFIG_64BIT */ 1329 f = final_handler + MIPS64_REFILL_INSNS; 1330 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { 1331 /* Just copy the handler. */ 1332 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1333 final_len = p - tlb_handler; 1334 } else { 1335 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1336 const enum label_id ls = label_tlb_huge_update; 1337 #else 1338 const enum label_id ls = label_vmalloc; 1339 #endif 1340 u32 *split; 1341 int ov = 0; 1342 int i; 1343 1344 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) 1345 ; 1346 BUG_ON(i == ARRAY_SIZE(labels)); 1347 split = labels[i].addr; 1348 1349 /* 1350 * See if we have overflown one way or the other. 1351 */ 1352 if (split > tlb_handler + MIPS64_REFILL_INSNS || 1353 split < p - MIPS64_REFILL_INSNS) 1354 ov = 1; 1355 1356 if (ov) { 1357 /* 1358 * Split two instructions before the end. One 1359 * for the branch and one for the instruction 1360 * in the delay slot. 1361 */ 1362 split = tlb_handler + MIPS64_REFILL_INSNS - 2; 1363 1364 /* 1365 * If the branch would fall in a delay slot, 1366 * we must back up an additional instruction 1367 * so that it is no longer in a delay slot. 1368 */ 1369 if (uasm_insn_has_bdelay(relocs, split - 1)) 1370 split--; 1371 } 1372 /* Copy first part of the handler. */ 1373 uasm_copy_handler(relocs, labels, tlb_handler, split, f); 1374 f += split - tlb_handler; 1375 1376 if (ov) { 1377 /* Insert branch. */ 1378 uasm_l_split(&l, final_handler); 1379 uasm_il_b(&f, &r, label_split); 1380 if (uasm_insn_has_bdelay(relocs, split)) 1381 uasm_i_nop(&f); 1382 else { 1383 uasm_copy_handler(relocs, labels, 1384 split, split + 1, f); 1385 uasm_move_labels(labels, f, f + 1, -1); 1386 f++; 1387 split++; 1388 } 1389 } 1390 1391 /* Copy the rest of the handler. */ 1392 uasm_copy_handler(relocs, labels, split, p, final_handler); 1393 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + 1394 (p - split); 1395 } 1396 #endif /* CONFIG_64BIT */ 1397 1398 uasm_resolve_relocs(relocs, labels); 1399 pr_debug("Wrote TLB refill handler (%u instructions).\n", 1400 final_len); 1401 1402 memcpy((void *)ebase, final_handler, 0x100); 1403 1404 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64); 1405 } 1406 1407 extern u32 handle_tlbl[], handle_tlbl_end[]; 1408 extern u32 handle_tlbs[], handle_tlbs_end[]; 1409 extern u32 handle_tlbm[], handle_tlbm_end[]; 1410 1411 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 1412 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[]; 1413 1414 static void build_r4000_setup_pgd(void) 1415 { 1416 const int a0 = 4; 1417 const int a1 = 5; 1418 u32 *p = tlbmiss_handler_setup_pgd; 1419 const int tlbmiss_handler_setup_pgd_size = 1420 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd; 1421 struct uasm_label *l = labels; 1422 struct uasm_reloc *r = relocs; 1423 1424 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size * 1425 sizeof(tlbmiss_handler_setup_pgd[0])); 1426 memset(labels, 0, sizeof(labels)); 1427 memset(relocs, 0, sizeof(relocs)); 1428 1429 pgd_reg = allocate_kscratch(); 1430 1431 if (pgd_reg == -1) { 1432 /* PGD << 11 in c0_Context */ 1433 /* 1434 * If it is a ckseg0 address, convert to a physical 1435 * address. Shifting right by 29 and adding 4 will 1436 * result in zero for these addresses. 1437 * 1438 */ 1439 UASM_i_SRA(&p, a1, a0, 29); 1440 UASM_i_ADDIU(&p, a1, a1, 4); 1441 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1); 1442 uasm_i_nop(&p); 1443 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29); 1444 uasm_l_tlbl_goaround1(&l, p); 1445 UASM_i_SLL(&p, a0, a0, 11); 1446 uasm_i_jr(&p, 31); 1447 UASM_i_MTC0(&p, a0, C0_CONTEXT); 1448 } else { 1449 /* PGD in c0_KScratch */ 1450 uasm_i_jr(&p, 31); 1451 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1452 } 1453 if (p >= tlbmiss_handler_setup_pgd_end) 1454 panic("tlbmiss_handler_setup_pgd space exceeded"); 1455 1456 uasm_resolve_relocs(relocs, labels); 1457 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n", 1458 (unsigned int)(p - tlbmiss_handler_setup_pgd)); 1459 1460 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd, 1461 tlbmiss_handler_setup_pgd_size); 1462 } 1463 #endif 1464 1465 static void 1466 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) 1467 { 1468 #ifdef CONFIG_SMP 1469 # ifdef CONFIG_64BIT_PHYS_ADDR 1470 if (cpu_has_64bits) 1471 uasm_i_lld(p, pte, 0, ptr); 1472 else 1473 # endif 1474 UASM_i_LL(p, pte, 0, ptr); 1475 #else 1476 # ifdef CONFIG_64BIT_PHYS_ADDR 1477 if (cpu_has_64bits) 1478 uasm_i_ld(p, pte, 0, ptr); 1479 else 1480 # endif 1481 UASM_i_LW(p, pte, 0, ptr); 1482 #endif 1483 } 1484 1485 static void 1486 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, 1487 unsigned int mode) 1488 { 1489 #ifdef CONFIG_64BIT_PHYS_ADDR 1490 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); 1491 #endif 1492 1493 uasm_i_ori(p, pte, pte, mode); 1494 #ifdef CONFIG_SMP 1495 # ifdef CONFIG_64BIT_PHYS_ADDR 1496 if (cpu_has_64bits) 1497 uasm_i_scd(p, pte, 0, ptr); 1498 else 1499 # endif 1500 UASM_i_SC(p, pte, 0, ptr); 1501 1502 if (r10000_llsc_war()) 1503 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); 1504 else 1505 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1506 1507 # ifdef CONFIG_64BIT_PHYS_ADDR 1508 if (!cpu_has_64bits) { 1509 /* no uasm_i_nop needed */ 1510 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); 1511 uasm_i_ori(p, pte, pte, hwmode); 1512 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); 1513 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1514 /* no uasm_i_nop needed */ 1515 uasm_i_lw(p, pte, 0, ptr); 1516 } else 1517 uasm_i_nop(p); 1518 # else 1519 uasm_i_nop(p); 1520 # endif 1521 #else 1522 # ifdef CONFIG_64BIT_PHYS_ADDR 1523 if (cpu_has_64bits) 1524 uasm_i_sd(p, pte, 0, ptr); 1525 else 1526 # endif 1527 UASM_i_SW(p, pte, 0, ptr); 1528 1529 # ifdef CONFIG_64BIT_PHYS_ADDR 1530 if (!cpu_has_64bits) { 1531 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); 1532 uasm_i_ori(p, pte, pte, hwmode); 1533 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); 1534 uasm_i_lw(p, pte, 0, ptr); 1535 } 1536 # endif 1537 #endif 1538 } 1539 1540 /* 1541 * Check if PTE is present, if not then jump to LABEL. PTR points to 1542 * the page table where this PTE is located, PTE will be re-loaded 1543 * with it's original value. 1544 */ 1545 static void 1546 build_pte_present(u32 **p, struct uasm_reloc **r, 1547 int pte, int ptr, int scratch, enum label_id lid) 1548 { 1549 int t = scratch >= 0 ? scratch : pte; 1550 1551 if (cpu_has_rixi) { 1552 if (use_bbit_insns()) { 1553 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid); 1554 uasm_i_nop(p); 1555 } else { 1556 uasm_i_andi(p, t, pte, _PAGE_PRESENT); 1557 uasm_il_beqz(p, r, t, lid); 1558 if (pte == t) 1559 /* You lose the SMP race :-(*/ 1560 iPTE_LW(p, pte, ptr); 1561 } 1562 } else { 1563 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ); 1564 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ); 1565 uasm_il_bnez(p, r, t, lid); 1566 if (pte == t) 1567 /* You lose the SMP race :-(*/ 1568 iPTE_LW(p, pte, ptr); 1569 } 1570 } 1571 1572 /* Make PTE valid, store result in PTR. */ 1573 static void 1574 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, 1575 unsigned int ptr) 1576 { 1577 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; 1578 1579 iPTE_SW(p, r, pte, ptr, mode); 1580 } 1581 1582 /* 1583 * Check if PTE can be written to, if not branch to LABEL. Regardless 1584 * restore PTE with value from PTR when done. 1585 */ 1586 static void 1587 build_pte_writable(u32 **p, struct uasm_reloc **r, 1588 unsigned int pte, unsigned int ptr, int scratch, 1589 enum label_id lid) 1590 { 1591 int t = scratch >= 0 ? scratch : pte; 1592 1593 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE); 1594 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE); 1595 uasm_il_bnez(p, r, t, lid); 1596 if (pte == t) 1597 /* You lose the SMP race :-(*/ 1598 iPTE_LW(p, pte, ptr); 1599 else 1600 uasm_i_nop(p); 1601 } 1602 1603 /* Make PTE writable, update software status bits as well, then store 1604 * at PTR. 1605 */ 1606 static void 1607 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, 1608 unsigned int ptr) 1609 { 1610 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID 1611 | _PAGE_DIRTY); 1612 1613 iPTE_SW(p, r, pte, ptr, mode); 1614 } 1615 1616 /* 1617 * Check if PTE can be modified, if not branch to LABEL. Regardless 1618 * restore PTE with value from PTR when done. 1619 */ 1620 static void 1621 build_pte_modifiable(u32 **p, struct uasm_reloc **r, 1622 unsigned int pte, unsigned int ptr, int scratch, 1623 enum label_id lid) 1624 { 1625 if (use_bbit_insns()) { 1626 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid); 1627 uasm_i_nop(p); 1628 } else { 1629 int t = scratch >= 0 ? scratch : pte; 1630 uasm_i_andi(p, t, pte, _PAGE_WRITE); 1631 uasm_il_beqz(p, r, t, lid); 1632 if (pte == t) 1633 /* You lose the SMP race :-(*/ 1634 iPTE_LW(p, pte, ptr); 1635 } 1636 } 1637 1638 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1639 1640 1641 /* 1642 * R3000 style TLB load/store/modify handlers. 1643 */ 1644 1645 /* 1646 * This places the pte into ENTRYLO0 and writes it with tlbwi. 1647 * Then it returns. 1648 */ 1649 static void 1650 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) 1651 { 1652 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1653 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ 1654 uasm_i_tlbwi(p); 1655 uasm_i_jr(p, tmp); 1656 uasm_i_rfe(p); /* branch delay */ 1657 } 1658 1659 /* 1660 * This places the pte into ENTRYLO0 and writes it with tlbwi 1661 * or tlbwr as appropriate. This is because the index register 1662 * may have the probe fail bit set as a result of a trap on a 1663 * kseg2 access, i.e. without refill. Then it returns. 1664 */ 1665 static void 1666 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, 1667 struct uasm_reloc **r, unsigned int pte, 1668 unsigned int tmp) 1669 { 1670 uasm_i_mfc0(p, tmp, C0_INDEX); 1671 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1672 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ 1673 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ 1674 uasm_i_tlbwi(p); /* cp0 delay */ 1675 uasm_i_jr(p, tmp); 1676 uasm_i_rfe(p); /* branch delay */ 1677 uasm_l_r3000_write_probe_fail(l, *p); 1678 uasm_i_tlbwr(p); /* cp0 delay */ 1679 uasm_i_jr(p, tmp); 1680 uasm_i_rfe(p); /* branch delay */ 1681 } 1682 1683 static void 1684 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, 1685 unsigned int ptr) 1686 { 1687 long pgdc = (long)pgd_current; 1688 1689 uasm_i_mfc0(p, pte, C0_BADVADDR); 1690 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ 1691 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 1692 uasm_i_srl(p, pte, pte, 22); /* load delay */ 1693 uasm_i_sll(p, pte, pte, 2); 1694 uasm_i_addu(p, ptr, ptr, pte); 1695 uasm_i_mfc0(p, pte, C0_CONTEXT); 1696 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ 1697 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ 1698 uasm_i_addu(p, ptr, ptr, pte); 1699 uasm_i_lw(p, pte, 0, ptr); 1700 uasm_i_tlbp(p); /* load delay */ 1701 } 1702 1703 static void build_r3000_tlb_load_handler(void) 1704 { 1705 u32 *p = handle_tlbl; 1706 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1707 struct uasm_label *l = labels; 1708 struct uasm_reloc *r = relocs; 1709 1710 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1711 memset(labels, 0, sizeof(labels)); 1712 memset(relocs, 0, sizeof(relocs)); 1713 1714 build_r3000_tlbchange_handler_head(&p, K0, K1); 1715 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl); 1716 uasm_i_nop(&p); /* load delay */ 1717 build_make_valid(&p, &r, K0, K1); 1718 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1719 1720 uasm_l_nopage_tlbl(&l, p); 1721 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 1722 uasm_i_nop(&p); 1723 1724 if (p >= handle_tlbl_end) 1725 panic("TLB load handler fastpath space exceeded"); 1726 1727 uasm_resolve_relocs(relocs, labels); 1728 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 1729 (unsigned int)(p - handle_tlbl)); 1730 1731 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size); 1732 } 1733 1734 static void build_r3000_tlb_store_handler(void) 1735 { 1736 u32 *p = handle_tlbs; 1737 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 1738 struct uasm_label *l = labels; 1739 struct uasm_reloc *r = relocs; 1740 1741 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 1742 memset(labels, 0, sizeof(labels)); 1743 memset(relocs, 0, sizeof(relocs)); 1744 1745 build_r3000_tlbchange_handler_head(&p, K0, K1); 1746 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs); 1747 uasm_i_nop(&p); /* load delay */ 1748 build_make_write(&p, &r, K0, K1); 1749 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1750 1751 uasm_l_nopage_tlbs(&l, p); 1752 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1753 uasm_i_nop(&p); 1754 1755 if (p >= handle_tlbs_end) 1756 panic("TLB store handler fastpath space exceeded"); 1757 1758 uasm_resolve_relocs(relocs, labels); 1759 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 1760 (unsigned int)(p - handle_tlbs)); 1761 1762 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size); 1763 } 1764 1765 static void build_r3000_tlb_modify_handler(void) 1766 { 1767 u32 *p = handle_tlbm; 1768 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 1769 struct uasm_label *l = labels; 1770 struct uasm_reloc *r = relocs; 1771 1772 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 1773 memset(labels, 0, sizeof(labels)); 1774 memset(relocs, 0, sizeof(relocs)); 1775 1776 build_r3000_tlbchange_handler_head(&p, K0, K1); 1777 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm); 1778 uasm_i_nop(&p); /* load delay */ 1779 build_make_write(&p, &r, K0, K1); 1780 build_r3000_pte_reload_tlbwi(&p, K0, K1); 1781 1782 uasm_l_nopage_tlbm(&l, p); 1783 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1784 uasm_i_nop(&p); 1785 1786 if (p >= handle_tlbm_end) 1787 panic("TLB modify handler fastpath space exceeded"); 1788 1789 uasm_resolve_relocs(relocs, labels); 1790 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 1791 (unsigned int)(p - handle_tlbm)); 1792 1793 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size); 1794 } 1795 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 1796 1797 /* 1798 * R4000 style TLB load/store/modify handlers. 1799 */ 1800 static struct work_registers 1801 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, 1802 struct uasm_reloc **r) 1803 { 1804 struct work_registers wr = build_get_work_registers(p); 1805 1806 #ifdef CONFIG_64BIT 1807 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */ 1808 #else 1809 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */ 1810 #endif 1811 1812 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1813 /* 1814 * For huge tlb entries, pmd doesn't contain an address but 1815 * instead contains the tlb pte. Check the PAGE_HUGE bit and 1816 * see if we need to jump to huge tlb processing. 1817 */ 1818 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update); 1819 #endif 1820 1821 UASM_i_MFC0(p, wr.r1, C0_BADVADDR); 1822 UASM_i_LW(p, wr.r2, 0, wr.r2); 1823 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); 1824 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2); 1825 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1); 1826 1827 #ifdef CONFIG_SMP 1828 uasm_l_smp_pgtable_change(l, *p); 1829 #endif 1830 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */ 1831 if (!m4kc_tlbp_war()) 1832 build_tlb_probe_entry(p); 1833 return wr; 1834 } 1835 1836 static void 1837 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, 1838 struct uasm_reloc **r, unsigned int tmp, 1839 unsigned int ptr) 1840 { 1841 uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); 1842 uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); 1843 build_update_entries(p, tmp, ptr); 1844 build_tlb_write_entry(p, l, r, tlb_indexed); 1845 uasm_l_leave(l, *p); 1846 build_restore_work_registers(p); 1847 uasm_i_eret(p); /* return from trap */ 1848 1849 #ifdef CONFIG_64BIT 1850 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill); 1851 #endif 1852 } 1853 1854 static void build_r4000_tlb_load_handler(void) 1855 { 1856 u32 *p = handle_tlbl; 1857 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1858 struct uasm_label *l = labels; 1859 struct uasm_reloc *r = relocs; 1860 struct work_registers wr; 1861 1862 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1863 memset(labels, 0, sizeof(labels)); 1864 memset(relocs, 0, sizeof(relocs)); 1865 1866 if (bcm1250_m3_war()) { 1867 unsigned int segbits = 44; 1868 1869 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1870 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1871 uasm_i_xor(&p, K0, K0, K1); 1872 uasm_i_dsrl_safe(&p, K1, K0, 62); 1873 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1874 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1875 uasm_i_or(&p, K0, K0, K1); 1876 uasm_il_bnez(&p, &r, K0, label_leave); 1877 /* No need for uasm_i_nop */ 1878 } 1879 1880 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 1881 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 1882 if (m4kc_tlbp_war()) 1883 build_tlb_probe_entry(&p); 1884 1885 if (cpu_has_rixi) { 1886 /* 1887 * If the page is not _PAGE_VALID, RI or XI could not 1888 * have triggered it. Skip the expensive test.. 1889 */ 1890 if (use_bbit_insns()) { 1891 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 1892 label_tlbl_goaround1); 1893 } else { 1894 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 1895 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1); 1896 } 1897 uasm_i_nop(&p); 1898 1899 uasm_i_tlbr(&p); 1900 1901 switch (current_cpu_type()) { 1902 default: 1903 if (cpu_has_mips_r2) { 1904 uasm_i_ehb(&p); 1905 1906 case CPU_CAVIUM_OCTEON: 1907 case CPU_CAVIUM_OCTEON_PLUS: 1908 case CPU_CAVIUM_OCTEON2: 1909 break; 1910 } 1911 } 1912 1913 /* Examine entrylo 0 or 1 based on ptr. */ 1914 if (use_bbit_insns()) { 1915 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 1916 } else { 1917 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 1918 uasm_i_beqz(&p, wr.r3, 8); 1919 } 1920 /* load it in the delay slot*/ 1921 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 1922 /* load it if ptr is odd */ 1923 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 1924 /* 1925 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 1926 * XI must have triggered it. 1927 */ 1928 if (use_bbit_insns()) { 1929 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl); 1930 uasm_i_nop(&p); 1931 uasm_l_tlbl_goaround1(&l, p); 1932 } else { 1933 uasm_i_andi(&p, wr.r3, wr.r3, 2); 1934 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl); 1935 uasm_i_nop(&p); 1936 } 1937 uasm_l_tlbl_goaround1(&l, p); 1938 } 1939 build_make_valid(&p, &r, wr.r1, wr.r2); 1940 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 1941 1942 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1943 /* 1944 * This is the entry point when build_r4000_tlbchange_handler_head 1945 * spots a huge page. 1946 */ 1947 uasm_l_tlb_huge_update(&l, p); 1948 iPTE_LW(&p, wr.r1, wr.r2); 1949 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 1950 build_tlb_probe_entry(&p); 1951 1952 if (cpu_has_rixi) { 1953 /* 1954 * If the page is not _PAGE_VALID, RI or XI could not 1955 * have triggered it. Skip the expensive test.. 1956 */ 1957 if (use_bbit_insns()) { 1958 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 1959 label_tlbl_goaround2); 1960 } else { 1961 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 1962 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 1963 } 1964 uasm_i_nop(&p); 1965 1966 uasm_i_tlbr(&p); 1967 1968 switch (current_cpu_type()) { 1969 default: 1970 if (cpu_has_mips_r2) { 1971 uasm_i_ehb(&p); 1972 1973 case CPU_CAVIUM_OCTEON: 1974 case CPU_CAVIUM_OCTEON_PLUS: 1975 case CPU_CAVIUM_OCTEON2: 1976 break; 1977 } 1978 } 1979 1980 /* Examine entrylo 0 or 1 based on ptr. */ 1981 if (use_bbit_insns()) { 1982 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 1983 } else { 1984 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 1985 uasm_i_beqz(&p, wr.r3, 8); 1986 } 1987 /* load it in the delay slot*/ 1988 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 1989 /* load it if ptr is odd */ 1990 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 1991 /* 1992 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 1993 * XI must have triggered it. 1994 */ 1995 if (use_bbit_insns()) { 1996 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2); 1997 } else { 1998 uasm_i_andi(&p, wr.r3, wr.r3, 2); 1999 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2000 } 2001 if (PM_DEFAULT_MASK == 0) 2002 uasm_i_nop(&p); 2003 /* 2004 * We clobbered C0_PAGEMASK, restore it. On the other branch 2005 * it is restored in build_huge_tlb_write_entry. 2006 */ 2007 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0); 2008 2009 uasm_l_tlbl_goaround2(&l, p); 2010 } 2011 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID)); 2012 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2013 #endif 2014 2015 uasm_l_nopage_tlbl(&l, p); 2016 build_restore_work_registers(&p); 2017 #ifdef CONFIG_CPU_MICROMIPS 2018 if ((unsigned long)tlb_do_page_fault_0 & 1) { 2019 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0)); 2020 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0)); 2021 uasm_i_jr(&p, K0); 2022 } else 2023 #endif 2024 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 2025 uasm_i_nop(&p); 2026 2027 if (p >= handle_tlbl_end) 2028 panic("TLB load handler fastpath space exceeded"); 2029 2030 uasm_resolve_relocs(relocs, labels); 2031 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 2032 (unsigned int)(p - handle_tlbl)); 2033 2034 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size); 2035 } 2036 2037 static void build_r4000_tlb_store_handler(void) 2038 { 2039 u32 *p = handle_tlbs; 2040 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 2041 struct uasm_label *l = labels; 2042 struct uasm_reloc *r = relocs; 2043 struct work_registers wr; 2044 2045 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 2046 memset(labels, 0, sizeof(labels)); 2047 memset(relocs, 0, sizeof(relocs)); 2048 2049 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2050 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2051 if (m4kc_tlbp_war()) 2052 build_tlb_probe_entry(&p); 2053 build_make_write(&p, &r, wr.r1, wr.r2); 2054 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2055 2056 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2057 /* 2058 * This is the entry point when 2059 * build_r4000_tlbchange_handler_head spots a huge page. 2060 */ 2061 uasm_l_tlb_huge_update(&l, p); 2062 iPTE_LW(&p, wr.r1, wr.r2); 2063 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2064 build_tlb_probe_entry(&p); 2065 uasm_i_ori(&p, wr.r1, wr.r1, 2066 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2067 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2068 #endif 2069 2070 uasm_l_nopage_tlbs(&l, p); 2071 build_restore_work_registers(&p); 2072 #ifdef CONFIG_CPU_MICROMIPS 2073 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2074 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2075 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2076 uasm_i_jr(&p, K0); 2077 } else 2078 #endif 2079 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2080 uasm_i_nop(&p); 2081 2082 if (p >= handle_tlbs_end) 2083 panic("TLB store handler fastpath space exceeded"); 2084 2085 uasm_resolve_relocs(relocs, labels); 2086 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 2087 (unsigned int)(p - handle_tlbs)); 2088 2089 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size); 2090 } 2091 2092 static void build_r4000_tlb_modify_handler(void) 2093 { 2094 u32 *p = handle_tlbm; 2095 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 2096 struct uasm_label *l = labels; 2097 struct uasm_reloc *r = relocs; 2098 struct work_registers wr; 2099 2100 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 2101 memset(labels, 0, sizeof(labels)); 2102 memset(relocs, 0, sizeof(relocs)); 2103 2104 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2105 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2106 if (m4kc_tlbp_war()) 2107 build_tlb_probe_entry(&p); 2108 /* Present and writable bits set, set accessed and dirty bits. */ 2109 build_make_write(&p, &r, wr.r1, wr.r2); 2110 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2111 2112 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2113 /* 2114 * This is the entry point when 2115 * build_r4000_tlbchange_handler_head spots a huge page. 2116 */ 2117 uasm_l_tlb_huge_update(&l, p); 2118 iPTE_LW(&p, wr.r1, wr.r2); 2119 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2120 build_tlb_probe_entry(&p); 2121 uasm_i_ori(&p, wr.r1, wr.r1, 2122 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2123 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2124 #endif 2125 2126 uasm_l_nopage_tlbm(&l, p); 2127 build_restore_work_registers(&p); 2128 #ifdef CONFIG_CPU_MICROMIPS 2129 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2130 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2131 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2132 uasm_i_jr(&p, K0); 2133 } else 2134 #endif 2135 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2136 uasm_i_nop(&p); 2137 2138 if (p >= handle_tlbm_end) 2139 panic("TLB modify handler fastpath space exceeded"); 2140 2141 uasm_resolve_relocs(relocs, labels); 2142 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 2143 (unsigned int)(p - handle_tlbm)); 2144 2145 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size); 2146 } 2147 2148 static void flush_tlb_handlers(void) 2149 { 2150 local_flush_icache_range((unsigned long)handle_tlbl, 2151 (unsigned long)handle_tlbl_end); 2152 local_flush_icache_range((unsigned long)handle_tlbs, 2153 (unsigned long)handle_tlbs_end); 2154 local_flush_icache_range((unsigned long)handle_tlbm, 2155 (unsigned long)handle_tlbm_end); 2156 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 2157 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd, 2158 (unsigned long)tlbmiss_handler_setup_pgd_end); 2159 #endif 2160 } 2161 2162 void build_tlb_refill_handler(void) 2163 { 2164 /* 2165 * The refill handler is generated per-CPU, multi-node systems 2166 * may have local storage for it. The other handlers are only 2167 * needed once. 2168 */ 2169 static int run_once = 0; 2170 2171 output_pgtable_bits_defines(); 2172 2173 #ifdef CONFIG_64BIT 2174 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 2175 #endif 2176 2177 switch (current_cpu_type()) { 2178 case CPU_R2000: 2179 case CPU_R3000: 2180 case CPU_R3000A: 2181 case CPU_R3081E: 2182 case CPU_TX3912: 2183 case CPU_TX3922: 2184 case CPU_TX3927: 2185 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 2186 if (cpu_has_local_ebase) 2187 build_r3000_tlb_refill_handler(); 2188 if (!run_once) { 2189 if (!cpu_has_local_ebase) 2190 build_r3000_tlb_refill_handler(); 2191 build_r3000_tlb_load_handler(); 2192 build_r3000_tlb_store_handler(); 2193 build_r3000_tlb_modify_handler(); 2194 flush_tlb_handlers(); 2195 run_once++; 2196 } 2197 #else 2198 panic("No R3000 TLB refill handler"); 2199 #endif 2200 break; 2201 2202 case CPU_R6000: 2203 case CPU_R6000A: 2204 panic("No R6000 TLB refill handler yet"); 2205 break; 2206 2207 case CPU_R8000: 2208 panic("No R8000 TLB refill handler yet"); 2209 break; 2210 2211 default: 2212 if (!run_once) { 2213 scratch_reg = allocate_kscratch(); 2214 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 2215 build_r4000_setup_pgd(); 2216 #endif 2217 build_r4000_tlb_load_handler(); 2218 build_r4000_tlb_store_handler(); 2219 build_r4000_tlb_modify_handler(); 2220 if (!cpu_has_local_ebase) 2221 build_r4000_tlb_refill_handler(); 2222 flush_tlb_handlers(); 2223 run_once++; 2224 } 2225 if (cpu_has_local_ebase) 2226 build_r4000_tlb_refill_handler(); 2227 } 2228 } 2229