xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision f7777dcc)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38 
39 /*
40  * TLB load/store/modify handlers.
41  *
42  * Only the fastpath gets synthesized at runtime, the slowpath for
43  * do_page_fault remains normal asm.
44  */
45 extern void tlb_do_page_fault_0(void);
46 extern void tlb_do_page_fault_1(void);
47 
48 struct work_registers {
49 	int r1;
50 	int r2;
51 	int r3;
52 };
53 
54 struct tlb_reg_save {
55 	unsigned long a;
56 	unsigned long b;
57 } ____cacheline_aligned_in_smp;
58 
59 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60 
61 static inline int r45k_bvahwbug(void)
62 {
63 	/* XXX: We should probe for the presence of this bug, but we don't. */
64 	return 0;
65 }
66 
67 static inline int r4k_250MHZhwbug(void)
68 {
69 	/* XXX: We should probe for the presence of this bug, but we don't. */
70 	return 0;
71 }
72 
73 static inline int __maybe_unused bcm1250_m3_war(void)
74 {
75 	return BCM1250_M3_WAR;
76 }
77 
78 static inline int __maybe_unused r10000_llsc_war(void)
79 {
80 	return R10000_LLSC_WAR;
81 }
82 
83 static int use_bbit_insns(void)
84 {
85 	switch (current_cpu_type()) {
86 	case CPU_CAVIUM_OCTEON:
87 	case CPU_CAVIUM_OCTEON_PLUS:
88 	case CPU_CAVIUM_OCTEON2:
89 	case CPU_CAVIUM_OCTEON3:
90 		return 1;
91 	default:
92 		return 0;
93 	}
94 }
95 
96 static int use_lwx_insns(void)
97 {
98 	switch (current_cpu_type()) {
99 	case CPU_CAVIUM_OCTEON2:
100 	case CPU_CAVIUM_OCTEON3:
101 		return 1;
102 	default:
103 		return 0;
104 	}
105 }
106 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
107     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
108 static bool scratchpad_available(void)
109 {
110 	return true;
111 }
112 static int scratchpad_offset(int i)
113 {
114 	/*
115 	 * CVMSEG starts at address -32768 and extends for
116 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
117 	 */
118 	i += 1; /* Kernel use starts at the top and works down. */
119 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
120 }
121 #else
122 static bool scratchpad_available(void)
123 {
124 	return false;
125 }
126 static int scratchpad_offset(int i)
127 {
128 	BUG();
129 	/* Really unreachable, but evidently some GCC want this. */
130 	return 0;
131 }
132 #endif
133 /*
134  * Found by experiment: At least some revisions of the 4kc throw under
135  * some circumstances a machine check exception, triggered by invalid
136  * values in the index register.  Delaying the tlbp instruction until
137  * after the next branch,  plus adding an additional nop in front of
138  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
139  * why; it's not an issue caused by the core RTL.
140  *
141  */
142 static int m4kc_tlbp_war(void)
143 {
144 	return (current_cpu_data.processor_id & 0xffff00) ==
145 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
146 }
147 
148 /* Handle labels (which must be positive integers). */
149 enum label_id {
150 	label_second_part = 1,
151 	label_leave,
152 	label_vmalloc,
153 	label_vmalloc_done,
154 	label_tlbw_hazard_0,
155 	label_split = label_tlbw_hazard_0 + 8,
156 	label_tlbl_goaround1,
157 	label_tlbl_goaround2,
158 	label_nopage_tlbl,
159 	label_nopage_tlbs,
160 	label_nopage_tlbm,
161 	label_smp_pgtable_change,
162 	label_r3000_write_probe_fail,
163 	label_large_segbits_fault,
164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
165 	label_tlb_huge_update,
166 #endif
167 };
168 
169 UASM_L_LA(_second_part)
170 UASM_L_LA(_leave)
171 UASM_L_LA(_vmalloc)
172 UASM_L_LA(_vmalloc_done)
173 /* _tlbw_hazard_x is handled differently.  */
174 UASM_L_LA(_split)
175 UASM_L_LA(_tlbl_goaround1)
176 UASM_L_LA(_tlbl_goaround2)
177 UASM_L_LA(_nopage_tlbl)
178 UASM_L_LA(_nopage_tlbs)
179 UASM_L_LA(_nopage_tlbm)
180 UASM_L_LA(_smp_pgtable_change)
181 UASM_L_LA(_r3000_write_probe_fail)
182 UASM_L_LA(_large_segbits_fault)
183 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
184 UASM_L_LA(_tlb_huge_update)
185 #endif
186 
187 static int hazard_instance;
188 
189 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
190 {
191 	switch (instance) {
192 	case 0 ... 7:
193 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
194 		return;
195 	default:
196 		BUG();
197 	}
198 }
199 
200 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
201 {
202 	switch (instance) {
203 	case 0 ... 7:
204 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
205 		break;
206 	default:
207 		BUG();
208 	}
209 }
210 
211 /*
212  * pgtable bits are assigned dynamically depending on processor feature
213  * and statically based on kernel configuration.  This spits out the actual
214  * values the kernel is using.	Required to make sense from disassembled
215  * TLB exception handlers.
216  */
217 static void output_pgtable_bits_defines(void)
218 {
219 #define pr_define(fmt, ...)					\
220 	pr_debug("#define " fmt, ##__VA_ARGS__)
221 
222 	pr_debug("#include <asm/asm.h>\n");
223 	pr_debug("#include <asm/regdef.h>\n");
224 	pr_debug("\n");
225 
226 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
227 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
228 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
229 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
230 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
231 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
232 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
233 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
234 #endif
235 	if (cpu_has_rixi) {
236 #ifdef _PAGE_NO_EXEC_SHIFT
237 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
238 #endif
239 #ifdef _PAGE_NO_READ_SHIFT
240 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
241 #endif
242 	}
243 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
244 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
245 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
246 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
247 	pr_debug("\n");
248 }
249 
250 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
251 {
252 	int i;
253 
254 	pr_debug("LEAF(%s)\n", symbol);
255 
256 	pr_debug("\t.set push\n");
257 	pr_debug("\t.set noreorder\n");
258 
259 	for (i = 0; i < count; i++)
260 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
261 
262 	pr_debug("\t.set\tpop\n");
263 
264 	pr_debug("\tEND(%s)\n", symbol);
265 }
266 
267 /* The only general purpose registers allowed in TLB handlers. */
268 #define K0		26
269 #define K1		27
270 
271 /* Some CP0 registers */
272 #define C0_INDEX	0, 0
273 #define C0_ENTRYLO0	2, 0
274 #define C0_TCBIND	2, 2
275 #define C0_ENTRYLO1	3, 0
276 #define C0_CONTEXT	4, 0
277 #define C0_PAGEMASK	5, 0
278 #define C0_BADVADDR	8, 0
279 #define C0_ENTRYHI	10, 0
280 #define C0_EPC		14, 0
281 #define C0_XCONTEXT	20, 0
282 
283 #ifdef CONFIG_64BIT
284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 #else
286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
287 #endif
288 
289 /* The worst case length of the handler is around 18 instructions for
290  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
291  * Maximum space available is 32 instructions for R3000 and 64
292  * instructions for R4000.
293  *
294  * We deliberately chose a buffer size of 128, so we won't scribble
295  * over anything important on overflow before we panic.
296  */
297 static u32 tlb_handler[128];
298 
299 /* simply assume worst case size for labels and relocs */
300 static struct uasm_label labels[128];
301 static struct uasm_reloc relocs[128];
302 
303 static int check_for_high_segbits;
304 
305 static unsigned int kscratch_used_mask;
306 
307 static inline int __maybe_unused c0_kscratch(void)
308 {
309 	switch (current_cpu_type()) {
310 	case CPU_XLP:
311 	case CPU_XLR:
312 		return 22;
313 	default:
314 		return 31;
315 	}
316 }
317 
318 static int allocate_kscratch(void)
319 {
320 	int r;
321 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
322 
323 	r = ffs(a);
324 
325 	if (r == 0)
326 		return -1;
327 
328 	r--; /* make it zero based */
329 
330 	kscratch_used_mask |= (1 << r);
331 
332 	return r;
333 }
334 
335 static int scratch_reg;
336 static int pgd_reg;
337 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
338 
339 static struct work_registers build_get_work_registers(u32 **p)
340 {
341 	struct work_registers r;
342 
343 	if (scratch_reg >= 0) {
344 		/* Save in CPU local C0_KScratch? */
345 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
346 		r.r1 = K0;
347 		r.r2 = K1;
348 		r.r3 = 1;
349 		return r;
350 	}
351 
352 	if (num_possible_cpus() > 1) {
353 		/* Get smp_processor_id */
354 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
355 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
356 
357 		/* handler_reg_save index in K0 */
358 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
359 
360 		UASM_i_LA(p, K1, (long)&handler_reg_save);
361 		UASM_i_ADDU(p, K0, K0, K1);
362 	} else {
363 		UASM_i_LA(p, K0, (long)&handler_reg_save);
364 	}
365 	/* K0 now points to save area, save $1 and $2  */
366 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
367 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
368 
369 	r.r1 = K1;
370 	r.r2 = 1;
371 	r.r3 = 2;
372 	return r;
373 }
374 
375 static void build_restore_work_registers(u32 **p)
376 {
377 	if (scratch_reg >= 0) {
378 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
379 		return;
380 	}
381 	/* K0 already points to save area, restore $1 and $2  */
382 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
383 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
384 }
385 
386 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
387 
388 /*
389  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
390  * we cannot do r3000 under these circumstances.
391  *
392  * Declare pgd_current here instead of including mmu_context.h to avoid type
393  * conflicts for tlbmiss_handler_setup_pgd
394  */
395 extern unsigned long pgd_current[];
396 
397 /*
398  * The R3000 TLB handler is simple.
399  */
400 static void build_r3000_tlb_refill_handler(void)
401 {
402 	long pgdc = (long)pgd_current;
403 	u32 *p;
404 
405 	memset(tlb_handler, 0, sizeof(tlb_handler));
406 	p = tlb_handler;
407 
408 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
409 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
410 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
411 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
412 	uasm_i_sll(&p, K0, K0, 2);
413 	uasm_i_addu(&p, K1, K1, K0);
414 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
415 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
416 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
417 	uasm_i_addu(&p, K1, K1, K0);
418 	uasm_i_lw(&p, K0, 0, K1);
419 	uasm_i_nop(&p); /* load delay */
420 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
421 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
422 	uasm_i_tlbwr(&p); /* cp0 delay */
423 	uasm_i_jr(&p, K1);
424 	uasm_i_rfe(&p); /* branch delay */
425 
426 	if (p > tlb_handler + 32)
427 		panic("TLB refill handler space exceeded");
428 
429 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
430 		 (unsigned int)(p - tlb_handler));
431 
432 	memcpy((void *)ebase, tlb_handler, 0x80);
433 
434 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
435 }
436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
437 
438 /*
439  * The R4000 TLB handler is much more complicated. We have two
440  * consecutive handler areas with 32 instructions space each.
441  * Since they aren't used at the same time, we can overflow in the
442  * other one.To keep things simple, we first assume linear space,
443  * then we relocate it to the final handler layout as needed.
444  */
445 static u32 final_handler[64];
446 
447 /*
448  * Hazards
449  *
450  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
451  * 2. A timing hazard exists for the TLBP instruction.
452  *
453  *	stalling_instruction
454  *	TLBP
455  *
456  * The JTLB is being read for the TLBP throughout the stall generated by the
457  * previous instruction. This is not really correct as the stalling instruction
458  * can modify the address used to access the JTLB.  The failure symptom is that
459  * the TLBP instruction will use an address created for the stalling instruction
460  * and not the address held in C0_ENHI and thus report the wrong results.
461  *
462  * The software work-around is to not allow the instruction preceding the TLBP
463  * to stall - make it an NOP or some other instruction guaranteed not to stall.
464  *
465  * Errata 2 will not be fixed.	This errata is also on the R5000.
466  *
467  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468  */
469 static void __maybe_unused build_tlb_probe_entry(u32 **p)
470 {
471 	switch (current_cpu_type()) {
472 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
473 	case CPU_R4600:
474 	case CPU_R4700:
475 	case CPU_R5000:
476 	case CPU_NEVADA:
477 		uasm_i_nop(p);
478 		uasm_i_tlbp(p);
479 		break;
480 
481 	default:
482 		uasm_i_tlbp(p);
483 		break;
484 	}
485 }
486 
487 /*
488  * Write random or indexed TLB entry, and care about the hazards from
489  * the preceding mtc0 and for the following eret.
490  */
491 enum tlb_write_entry { tlb_random, tlb_indexed };
492 
493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
494 				  struct uasm_reloc **r,
495 				  enum tlb_write_entry wmode)
496 {
497 	void(*tlbw)(u32 **) = NULL;
498 
499 	switch (wmode) {
500 	case tlb_random: tlbw = uasm_i_tlbwr; break;
501 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
502 	}
503 
504 	if (cpu_has_mips_r2) {
505 		/*
506 		 * The architecture spec says an ehb is required here,
507 		 * but a number of cores do not have the hazard and
508 		 * using an ehb causes an expensive pipeline stall.
509 		 */
510 		switch (current_cpu_type()) {
511 		case CPU_M14KC:
512 		case CPU_74K:
513 			break;
514 
515 		default:
516 			uasm_i_ehb(p);
517 			break;
518 		}
519 		tlbw(p);
520 		return;
521 	}
522 
523 	switch (current_cpu_type()) {
524 	case CPU_R4000PC:
525 	case CPU_R4000SC:
526 	case CPU_R4000MC:
527 	case CPU_R4400PC:
528 	case CPU_R4400SC:
529 	case CPU_R4400MC:
530 		/*
531 		 * This branch uses up a mtc0 hazard nop slot and saves
532 		 * two nops after the tlbw instruction.
533 		 */
534 		uasm_bgezl_hazard(p, r, hazard_instance);
535 		tlbw(p);
536 		uasm_bgezl_label(l, p, hazard_instance);
537 		hazard_instance++;
538 		uasm_i_nop(p);
539 		break;
540 
541 	case CPU_R4600:
542 	case CPU_R4700:
543 		uasm_i_nop(p);
544 		tlbw(p);
545 		uasm_i_nop(p);
546 		break;
547 
548 	case CPU_R5000:
549 	case CPU_NEVADA:
550 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
552 		tlbw(p);
553 		break;
554 
555 	case CPU_R4300:
556 	case CPU_5KC:
557 	case CPU_TX49XX:
558 	case CPU_PR4450:
559 	case CPU_XLR:
560 		uasm_i_nop(p);
561 		tlbw(p);
562 		break;
563 
564 	case CPU_R10000:
565 	case CPU_R12000:
566 	case CPU_R14000:
567 	case CPU_4KC:
568 	case CPU_4KEC:
569 	case CPU_M14KC:
570 	case CPU_M14KEC:
571 	case CPU_SB1:
572 	case CPU_SB1A:
573 	case CPU_4KSC:
574 	case CPU_20KC:
575 	case CPU_25KF:
576 	case CPU_BMIPS32:
577 	case CPU_BMIPS3300:
578 	case CPU_BMIPS4350:
579 	case CPU_BMIPS4380:
580 	case CPU_BMIPS5000:
581 	case CPU_LOONGSON2:
582 	case CPU_R5500:
583 		if (m4kc_tlbp_war())
584 			uasm_i_nop(p);
585 	case CPU_ALCHEMY:
586 		tlbw(p);
587 		break;
588 
589 	case CPU_RM7000:
590 		uasm_i_nop(p);
591 		uasm_i_nop(p);
592 		uasm_i_nop(p);
593 		uasm_i_nop(p);
594 		tlbw(p);
595 		break;
596 
597 	case CPU_VR4111:
598 	case CPU_VR4121:
599 	case CPU_VR4122:
600 	case CPU_VR4181:
601 	case CPU_VR4181A:
602 		uasm_i_nop(p);
603 		uasm_i_nop(p);
604 		tlbw(p);
605 		uasm_i_nop(p);
606 		uasm_i_nop(p);
607 		break;
608 
609 	case CPU_VR4131:
610 	case CPU_VR4133:
611 	case CPU_R5432:
612 		uasm_i_nop(p);
613 		uasm_i_nop(p);
614 		tlbw(p);
615 		break;
616 
617 	case CPU_JZRISC:
618 		tlbw(p);
619 		uasm_i_nop(p);
620 		break;
621 
622 	default:
623 		panic("No TLB refill handler yet (CPU type: %d)",
624 		      current_cpu_data.cputype);
625 		break;
626 	}
627 }
628 
629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
630 							unsigned int reg)
631 {
632 	if (cpu_has_rixi) {
633 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
634 	} else {
635 #ifdef CONFIG_64BIT_PHYS_ADDR
636 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
637 #else
638 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
639 #endif
640 	}
641 }
642 
643 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
644 
645 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
646 				   unsigned int tmp, enum label_id lid,
647 				   int restore_scratch)
648 {
649 	if (restore_scratch) {
650 		/* Reset default page size */
651 		if (PM_DEFAULT_MASK >> 16) {
652 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
653 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
654 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
655 			uasm_il_b(p, r, lid);
656 		} else if (PM_DEFAULT_MASK) {
657 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
658 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
659 			uasm_il_b(p, r, lid);
660 		} else {
661 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
662 			uasm_il_b(p, r, lid);
663 		}
664 		if (scratch_reg >= 0)
665 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
666 		else
667 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
668 	} else {
669 		/* Reset default page size */
670 		if (PM_DEFAULT_MASK >> 16) {
671 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
672 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
673 			uasm_il_b(p, r, lid);
674 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
675 		} else if (PM_DEFAULT_MASK) {
676 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
677 			uasm_il_b(p, r, lid);
678 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 		} else {
680 			uasm_il_b(p, r, lid);
681 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
682 		}
683 	}
684 }
685 
686 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
687 				       struct uasm_reloc **r,
688 				       unsigned int tmp,
689 				       enum tlb_write_entry wmode,
690 				       int restore_scratch)
691 {
692 	/* Set huge page tlb entry size */
693 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
694 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
695 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
696 
697 	build_tlb_write_entry(p, l, r, wmode);
698 
699 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
700 }
701 
702 /*
703  * Check if Huge PTE is present, if so then jump to LABEL.
704  */
705 static void
706 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
707 		  unsigned int pmd, int lid)
708 {
709 	UASM_i_LW(p, tmp, 0, pmd);
710 	if (use_bbit_insns()) {
711 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
712 	} else {
713 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
714 		uasm_il_bnez(p, r, tmp, lid);
715 	}
716 }
717 
718 static void build_huge_update_entries(u32 **p, unsigned int pte,
719 				      unsigned int tmp)
720 {
721 	int small_sequence;
722 
723 	/*
724 	 * A huge PTE describes an area the size of the
725 	 * configured huge page size. This is twice the
726 	 * of the large TLB entry size we intend to use.
727 	 * A TLB entry half the size of the configured
728 	 * huge page size is configured into entrylo0
729 	 * and entrylo1 to cover the contiguous huge PTE
730 	 * address space.
731 	 */
732 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
733 
734 	/* We can clobber tmp.	It isn't used after this.*/
735 	if (!small_sequence)
736 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
737 
738 	build_convert_pte_to_entrylo(p, pte);
739 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
740 	/* convert to entrylo1 */
741 	if (small_sequence)
742 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
743 	else
744 		UASM_i_ADDU(p, pte, pte, tmp);
745 
746 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
747 }
748 
749 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
750 				    struct uasm_label **l,
751 				    unsigned int pte,
752 				    unsigned int ptr)
753 {
754 #ifdef CONFIG_SMP
755 	UASM_i_SC(p, pte, 0, ptr);
756 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
757 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
758 #else
759 	UASM_i_SW(p, pte, 0, ptr);
760 #endif
761 	build_huge_update_entries(p, pte, ptr);
762 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
763 }
764 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
765 
766 #ifdef CONFIG_64BIT
767 /*
768  * TMP and PTR are scratch.
769  * TMP will be clobbered, PTR will hold the pmd entry.
770  */
771 static void
772 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
773 		 unsigned int tmp, unsigned int ptr)
774 {
775 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
776 	long pgdc = (long)pgd_current;
777 #endif
778 	/*
779 	 * The vmalloc handling is not in the hotpath.
780 	 */
781 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
782 
783 	if (check_for_high_segbits) {
784 		/*
785 		 * The kernel currently implicitely assumes that the
786 		 * MIPS SEGBITS parameter for the processor is
787 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
788 		 * allocate virtual addresses outside the maximum
789 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
790 		 * that doesn't prevent user code from accessing the
791 		 * higher xuseg addresses.  Here, we make sure that
792 		 * everything but the lower xuseg addresses goes down
793 		 * the module_alloc/vmalloc path.
794 		 */
795 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
796 		uasm_il_bnez(p, r, ptr, label_vmalloc);
797 	} else {
798 		uasm_il_bltz(p, r, tmp, label_vmalloc);
799 	}
800 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
801 
802 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
803 	if (pgd_reg != -1) {
804 		/* pgd is in pgd_reg */
805 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
806 	} else {
807 		/*
808 		 * &pgd << 11 stored in CONTEXT [23..63].
809 		 */
810 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
811 
812 		/* Clear lower 23 bits of context. */
813 		uasm_i_dins(p, ptr, 0, 0, 23);
814 
815 		/* 1 0	1 0 1  << 6  xkphys cached */
816 		uasm_i_ori(p, ptr, ptr, 0x540);
817 		uasm_i_drotr(p, ptr, ptr, 11);
818 	}
819 #elif defined(CONFIG_SMP)
820 	UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
821 	uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
822 	UASM_i_LA_mostly(p, tmp, pgdc);
823 	uasm_i_daddu(p, ptr, ptr, tmp);
824 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
825 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
826 #else
827 	UASM_i_LA_mostly(p, ptr, pgdc);
828 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
829 #endif
830 
831 	uasm_l_vmalloc_done(l, *p);
832 
833 	/* get pgd offset in bytes */
834 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
835 
836 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
837 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
838 #ifndef __PAGETABLE_PMD_FOLDED
839 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
840 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
841 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
842 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
843 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
844 #endif
845 }
846 
847 /*
848  * BVADDR is the faulting address, PTR is scratch.
849  * PTR will hold the pgd for vmalloc.
850  */
851 static void
852 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
853 			unsigned int bvaddr, unsigned int ptr,
854 			enum vmalloc64_mode mode)
855 {
856 	long swpd = (long)swapper_pg_dir;
857 	int single_insn_swpd;
858 	int did_vmalloc_branch = 0;
859 
860 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
861 
862 	uasm_l_vmalloc(l, *p);
863 
864 	if (mode != not_refill && check_for_high_segbits) {
865 		if (single_insn_swpd) {
866 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
867 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
868 			did_vmalloc_branch = 1;
869 			/* fall through */
870 		} else {
871 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
872 		}
873 	}
874 	if (!did_vmalloc_branch) {
875 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
876 			uasm_il_b(p, r, label_vmalloc_done);
877 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
878 		} else {
879 			UASM_i_LA_mostly(p, ptr, swpd);
880 			uasm_il_b(p, r, label_vmalloc_done);
881 			if (uasm_in_compat_space_p(swpd))
882 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
883 			else
884 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
885 		}
886 	}
887 	if (mode != not_refill && check_for_high_segbits) {
888 		uasm_l_large_segbits_fault(l, *p);
889 		/*
890 		 * We get here if we are an xsseg address, or if we are
891 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
892 		 *
893 		 * Ignoring xsseg (assume disabled so would generate
894 		 * (address errors?), the only remaining possibility
895 		 * is the upper xuseg addresses.  On processors with
896 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
897 		 * addresses would have taken an address error. We try
898 		 * to mimic that here by taking a load/istream page
899 		 * fault.
900 		 */
901 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
902 		uasm_i_jr(p, ptr);
903 
904 		if (mode == refill_scratch) {
905 			if (scratch_reg >= 0)
906 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
907 			else
908 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
909 		} else {
910 			uasm_i_nop(p);
911 		}
912 	}
913 }
914 
915 #else /* !CONFIG_64BIT */
916 
917 /*
918  * TMP and PTR are scratch.
919  * TMP will be clobbered, PTR will hold the pgd entry.
920  */
921 static void __maybe_unused
922 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
923 {
924 	long pgdc = (long)pgd_current;
925 
926 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
927 #ifdef CONFIG_SMP
928 	uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
929 	UASM_i_LA_mostly(p, tmp, pgdc);
930 	uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
931 	uasm_i_addu(p, ptr, tmp, ptr);
932 #else
933 	UASM_i_LA_mostly(p, ptr, pgdc);
934 #endif
935 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
936 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
937 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
938 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
939 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
940 }
941 
942 #endif /* !CONFIG_64BIT */
943 
944 static void build_adjust_context(u32 **p, unsigned int ctx)
945 {
946 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
947 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
948 
949 	switch (current_cpu_type()) {
950 	case CPU_VR41XX:
951 	case CPU_VR4111:
952 	case CPU_VR4121:
953 	case CPU_VR4122:
954 	case CPU_VR4131:
955 	case CPU_VR4181:
956 	case CPU_VR4181A:
957 	case CPU_VR4133:
958 		shift += 2;
959 		break;
960 
961 	default:
962 		break;
963 	}
964 
965 	if (shift)
966 		UASM_i_SRL(p, ctx, ctx, shift);
967 	uasm_i_andi(p, ctx, ctx, mask);
968 }
969 
970 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
971 {
972 	/*
973 	 * Bug workaround for the Nevada. It seems as if under certain
974 	 * circumstances the move from cp0_context might produce a
975 	 * bogus result when the mfc0 instruction and its consumer are
976 	 * in a different cacheline or a load instruction, probably any
977 	 * memory reference, is between them.
978 	 */
979 	switch (current_cpu_type()) {
980 	case CPU_NEVADA:
981 		UASM_i_LW(p, ptr, 0, ptr);
982 		GET_CONTEXT(p, tmp); /* get context reg */
983 		break;
984 
985 	default:
986 		GET_CONTEXT(p, tmp); /* get context reg */
987 		UASM_i_LW(p, ptr, 0, ptr);
988 		break;
989 	}
990 
991 	build_adjust_context(p, tmp);
992 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
993 }
994 
995 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
996 {
997 	/*
998 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
999 	 * Kernel is a special case. Only a few CPUs use it.
1000 	 */
1001 #ifdef CONFIG_64BIT_PHYS_ADDR
1002 	if (cpu_has_64bits) {
1003 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1004 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1005 		if (cpu_has_rixi) {
1006 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1007 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1008 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1009 		} else {
1010 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1011 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1012 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1013 		}
1014 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1015 	} else {
1016 		int pte_off_even = sizeof(pte_t) / 2;
1017 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1018 
1019 		/* The pte entries are pre-shifted */
1020 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1021 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1022 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1023 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1024 	}
1025 #else
1026 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1027 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1028 	if (r45k_bvahwbug())
1029 		build_tlb_probe_entry(p);
1030 	if (cpu_has_rixi) {
1031 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1032 		if (r4k_250MHZhwbug())
1033 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1034 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1035 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1036 	} else {
1037 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1038 		if (r4k_250MHZhwbug())
1039 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1040 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1041 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1042 		if (r45k_bvahwbug())
1043 			uasm_i_mfc0(p, tmp, C0_INDEX);
1044 	}
1045 	if (r4k_250MHZhwbug())
1046 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1047 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1048 #endif
1049 }
1050 
1051 struct mips_huge_tlb_info {
1052 	int huge_pte;
1053 	int restore_scratch;
1054 };
1055 
1056 static struct mips_huge_tlb_info
1057 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1058 			       struct uasm_reloc **r, unsigned int tmp,
1059 			       unsigned int ptr, int c0_scratch_reg)
1060 {
1061 	struct mips_huge_tlb_info rv;
1062 	unsigned int even, odd;
1063 	int vmalloc_branch_delay_filled = 0;
1064 	const int scratch = 1; /* Our extra working register */
1065 
1066 	rv.huge_pte = scratch;
1067 	rv.restore_scratch = 0;
1068 
1069 	if (check_for_high_segbits) {
1070 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1071 
1072 		if (pgd_reg != -1)
1073 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1074 		else
1075 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1076 
1077 		if (c0_scratch_reg >= 0)
1078 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1079 		else
1080 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1081 
1082 		uasm_i_dsrl_safe(p, scratch, tmp,
1083 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1084 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1085 
1086 		if (pgd_reg == -1) {
1087 			vmalloc_branch_delay_filled = 1;
1088 			/* Clear lower 23 bits of context. */
1089 			uasm_i_dins(p, ptr, 0, 0, 23);
1090 		}
1091 	} else {
1092 		if (pgd_reg != -1)
1093 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1094 		else
1095 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1096 
1097 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1098 
1099 		if (c0_scratch_reg >= 0)
1100 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1101 		else
1102 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1103 
1104 		if (pgd_reg == -1)
1105 			/* Clear lower 23 bits of context. */
1106 			uasm_i_dins(p, ptr, 0, 0, 23);
1107 
1108 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1109 	}
1110 
1111 	if (pgd_reg == -1) {
1112 		vmalloc_branch_delay_filled = 1;
1113 		/* 1 0	1 0 1  << 6  xkphys cached */
1114 		uasm_i_ori(p, ptr, ptr, 0x540);
1115 		uasm_i_drotr(p, ptr, ptr, 11);
1116 	}
1117 
1118 #ifdef __PAGETABLE_PMD_FOLDED
1119 #define LOC_PTEP scratch
1120 #else
1121 #define LOC_PTEP ptr
1122 #endif
1123 
1124 	if (!vmalloc_branch_delay_filled)
1125 		/* get pgd offset in bytes */
1126 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1127 
1128 	uasm_l_vmalloc_done(l, *p);
1129 
1130 	/*
1131 	 *			   tmp		ptr
1132 	 * fall-through case =	 badvaddr  *pgd_current
1133 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1134 	 */
1135 
1136 	if (vmalloc_branch_delay_filled)
1137 		/* get pgd offset in bytes */
1138 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1139 
1140 #ifdef __PAGETABLE_PMD_FOLDED
1141 	GET_CONTEXT(p, tmp); /* get context reg */
1142 #endif
1143 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1144 
1145 	if (use_lwx_insns()) {
1146 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1147 	} else {
1148 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1149 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1150 	}
1151 
1152 #ifndef __PAGETABLE_PMD_FOLDED
1153 	/* get pmd offset in bytes */
1154 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1155 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1156 	GET_CONTEXT(p, tmp); /* get context reg */
1157 
1158 	if (use_lwx_insns()) {
1159 		UASM_i_LWX(p, scratch, scratch, ptr);
1160 	} else {
1161 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1162 		UASM_i_LW(p, scratch, 0, ptr);
1163 	}
1164 #endif
1165 	/* Adjust the context during the load latency. */
1166 	build_adjust_context(p, tmp);
1167 
1168 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1169 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1170 	/*
1171 	 * The in the LWX case we don't want to do the load in the
1172 	 * delay slot.	It cannot issue in the same cycle and may be
1173 	 * speculative and unneeded.
1174 	 */
1175 	if (use_lwx_insns())
1176 		uasm_i_nop(p);
1177 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1178 
1179 
1180 	/* build_update_entries */
1181 	if (use_lwx_insns()) {
1182 		even = ptr;
1183 		odd = tmp;
1184 		UASM_i_LWX(p, even, scratch, tmp);
1185 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1186 		UASM_i_LWX(p, odd, scratch, tmp);
1187 	} else {
1188 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1189 		even = tmp;
1190 		odd = ptr;
1191 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1192 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1193 	}
1194 	if (cpu_has_rixi) {
1195 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1196 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1197 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1198 	} else {
1199 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1200 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1201 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1202 	}
1203 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1204 
1205 	if (c0_scratch_reg >= 0) {
1206 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1207 		build_tlb_write_entry(p, l, r, tlb_random);
1208 		uasm_l_leave(l, *p);
1209 		rv.restore_scratch = 1;
1210 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1211 		build_tlb_write_entry(p, l, r, tlb_random);
1212 		uasm_l_leave(l, *p);
1213 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1214 	} else {
1215 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1216 		build_tlb_write_entry(p, l, r, tlb_random);
1217 		uasm_l_leave(l, *p);
1218 		rv.restore_scratch = 1;
1219 	}
1220 
1221 	uasm_i_eret(p); /* return from trap */
1222 
1223 	return rv;
1224 }
1225 
1226 /*
1227  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1228  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1229  * slots before the XTLB refill exception handler which belong to the
1230  * unused TLB refill exception.
1231  */
1232 #define MIPS64_REFILL_INSNS 32
1233 
1234 static void build_r4000_tlb_refill_handler(void)
1235 {
1236 	u32 *p = tlb_handler;
1237 	struct uasm_label *l = labels;
1238 	struct uasm_reloc *r = relocs;
1239 	u32 *f;
1240 	unsigned int final_len;
1241 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1242 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1243 
1244 	memset(tlb_handler, 0, sizeof(tlb_handler));
1245 	memset(labels, 0, sizeof(labels));
1246 	memset(relocs, 0, sizeof(relocs));
1247 	memset(final_handler, 0, sizeof(final_handler));
1248 
1249 	if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1250 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1251 							  scratch_reg);
1252 		vmalloc_mode = refill_scratch;
1253 	} else {
1254 		htlb_info.huge_pte = K0;
1255 		htlb_info.restore_scratch = 0;
1256 		vmalloc_mode = refill_noscratch;
1257 		/*
1258 		 * create the plain linear handler
1259 		 */
1260 		if (bcm1250_m3_war()) {
1261 			unsigned int segbits = 44;
1262 
1263 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1264 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1265 			uasm_i_xor(&p, K0, K0, K1);
1266 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1267 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1268 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1269 			uasm_i_or(&p, K0, K0, K1);
1270 			uasm_il_bnez(&p, &r, K0, label_leave);
1271 			/* No need for uasm_i_nop */
1272 		}
1273 
1274 #ifdef CONFIG_64BIT
1275 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1276 #else
1277 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1278 #endif
1279 
1280 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1281 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1282 #endif
1283 
1284 		build_get_ptep(&p, K0, K1);
1285 		build_update_entries(&p, K0, K1);
1286 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1287 		uasm_l_leave(&l, p);
1288 		uasm_i_eret(&p); /* return from trap */
1289 	}
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 	uasm_l_tlb_huge_update(&l, p);
1292 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1293 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1294 				   htlb_info.restore_scratch);
1295 #endif
1296 
1297 #ifdef CONFIG_64BIT
1298 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1299 #endif
1300 
1301 	/*
1302 	 * Overflow check: For the 64bit handler, we need at least one
1303 	 * free instruction slot for the wrap-around branch. In worst
1304 	 * case, if the intended insertion point is a delay slot, we
1305 	 * need three, with the second nop'ed and the third being
1306 	 * unused.
1307 	 */
1308 	/* Loongson2 ebase is different than r4k, we have more space */
1309 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1310 	if ((p - tlb_handler) > 64)
1311 		panic("TLB refill handler space exceeded");
1312 #else
1313 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1314 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1315 		&& uasm_insn_has_bdelay(relocs,
1316 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1317 		panic("TLB refill handler space exceeded");
1318 #endif
1319 
1320 	/*
1321 	 * Now fold the handler in the TLB refill handler space.
1322 	 */
1323 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1324 	f = final_handler;
1325 	/* Simplest case, just copy the handler. */
1326 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1327 	final_len = p - tlb_handler;
1328 #else /* CONFIG_64BIT */
1329 	f = final_handler + MIPS64_REFILL_INSNS;
1330 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1331 		/* Just copy the handler. */
1332 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1333 		final_len = p - tlb_handler;
1334 	} else {
1335 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1336 		const enum label_id ls = label_tlb_huge_update;
1337 #else
1338 		const enum label_id ls = label_vmalloc;
1339 #endif
1340 		u32 *split;
1341 		int ov = 0;
1342 		int i;
1343 
1344 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1345 			;
1346 		BUG_ON(i == ARRAY_SIZE(labels));
1347 		split = labels[i].addr;
1348 
1349 		/*
1350 		 * See if we have overflown one way or the other.
1351 		 */
1352 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1353 		    split < p - MIPS64_REFILL_INSNS)
1354 			ov = 1;
1355 
1356 		if (ov) {
1357 			/*
1358 			 * Split two instructions before the end.  One
1359 			 * for the branch and one for the instruction
1360 			 * in the delay slot.
1361 			 */
1362 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1363 
1364 			/*
1365 			 * If the branch would fall in a delay slot,
1366 			 * we must back up an additional instruction
1367 			 * so that it is no longer in a delay slot.
1368 			 */
1369 			if (uasm_insn_has_bdelay(relocs, split - 1))
1370 				split--;
1371 		}
1372 		/* Copy first part of the handler. */
1373 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1374 		f += split - tlb_handler;
1375 
1376 		if (ov) {
1377 			/* Insert branch. */
1378 			uasm_l_split(&l, final_handler);
1379 			uasm_il_b(&f, &r, label_split);
1380 			if (uasm_insn_has_bdelay(relocs, split))
1381 				uasm_i_nop(&f);
1382 			else {
1383 				uasm_copy_handler(relocs, labels,
1384 						  split, split + 1, f);
1385 				uasm_move_labels(labels, f, f + 1, -1);
1386 				f++;
1387 				split++;
1388 			}
1389 		}
1390 
1391 		/* Copy the rest of the handler. */
1392 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1393 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1394 			    (p - split);
1395 	}
1396 #endif /* CONFIG_64BIT */
1397 
1398 	uasm_resolve_relocs(relocs, labels);
1399 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1400 		 final_len);
1401 
1402 	memcpy((void *)ebase, final_handler, 0x100);
1403 
1404 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1405 }
1406 
1407 extern u32 handle_tlbl[], handle_tlbl_end[];
1408 extern u32 handle_tlbs[], handle_tlbs_end[];
1409 extern u32 handle_tlbm[], handle_tlbm_end[];
1410 
1411 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1412 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1413 
1414 static void build_r4000_setup_pgd(void)
1415 {
1416 	const int a0 = 4;
1417 	const int a1 = 5;
1418 	u32 *p = tlbmiss_handler_setup_pgd;
1419 	const int tlbmiss_handler_setup_pgd_size =
1420 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1421 	struct uasm_label *l = labels;
1422 	struct uasm_reloc *r = relocs;
1423 
1424 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1425 					sizeof(tlbmiss_handler_setup_pgd[0]));
1426 	memset(labels, 0, sizeof(labels));
1427 	memset(relocs, 0, sizeof(relocs));
1428 
1429 	pgd_reg = allocate_kscratch();
1430 
1431 	if (pgd_reg == -1) {
1432 		/* PGD << 11 in c0_Context */
1433 		/*
1434 		 * If it is a ckseg0 address, convert to a physical
1435 		 * address.  Shifting right by 29 and adding 4 will
1436 		 * result in zero for these addresses.
1437 		 *
1438 		 */
1439 		UASM_i_SRA(&p, a1, a0, 29);
1440 		UASM_i_ADDIU(&p, a1, a1, 4);
1441 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1442 		uasm_i_nop(&p);
1443 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1444 		uasm_l_tlbl_goaround1(&l, p);
1445 		UASM_i_SLL(&p, a0, a0, 11);
1446 		uasm_i_jr(&p, 31);
1447 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1448 	} else {
1449 		/* PGD in c0_KScratch */
1450 		uasm_i_jr(&p, 31);
1451 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1452 	}
1453 	if (p >= tlbmiss_handler_setup_pgd_end)
1454 		panic("tlbmiss_handler_setup_pgd space exceeded");
1455 
1456 	uasm_resolve_relocs(relocs, labels);
1457 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1458 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1459 
1460 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1461 					tlbmiss_handler_setup_pgd_size);
1462 }
1463 #endif
1464 
1465 static void
1466 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1467 {
1468 #ifdef CONFIG_SMP
1469 # ifdef CONFIG_64BIT_PHYS_ADDR
1470 	if (cpu_has_64bits)
1471 		uasm_i_lld(p, pte, 0, ptr);
1472 	else
1473 # endif
1474 		UASM_i_LL(p, pte, 0, ptr);
1475 #else
1476 # ifdef CONFIG_64BIT_PHYS_ADDR
1477 	if (cpu_has_64bits)
1478 		uasm_i_ld(p, pte, 0, ptr);
1479 	else
1480 # endif
1481 		UASM_i_LW(p, pte, 0, ptr);
1482 #endif
1483 }
1484 
1485 static void
1486 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1487 	unsigned int mode)
1488 {
1489 #ifdef CONFIG_64BIT_PHYS_ADDR
1490 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1491 #endif
1492 
1493 	uasm_i_ori(p, pte, pte, mode);
1494 #ifdef CONFIG_SMP
1495 # ifdef CONFIG_64BIT_PHYS_ADDR
1496 	if (cpu_has_64bits)
1497 		uasm_i_scd(p, pte, 0, ptr);
1498 	else
1499 # endif
1500 		UASM_i_SC(p, pte, 0, ptr);
1501 
1502 	if (r10000_llsc_war())
1503 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1504 	else
1505 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1506 
1507 # ifdef CONFIG_64BIT_PHYS_ADDR
1508 	if (!cpu_has_64bits) {
1509 		/* no uasm_i_nop needed */
1510 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1511 		uasm_i_ori(p, pte, pte, hwmode);
1512 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1513 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1514 		/* no uasm_i_nop needed */
1515 		uasm_i_lw(p, pte, 0, ptr);
1516 	} else
1517 		uasm_i_nop(p);
1518 # else
1519 	uasm_i_nop(p);
1520 # endif
1521 #else
1522 # ifdef CONFIG_64BIT_PHYS_ADDR
1523 	if (cpu_has_64bits)
1524 		uasm_i_sd(p, pte, 0, ptr);
1525 	else
1526 # endif
1527 		UASM_i_SW(p, pte, 0, ptr);
1528 
1529 # ifdef CONFIG_64BIT_PHYS_ADDR
1530 	if (!cpu_has_64bits) {
1531 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1532 		uasm_i_ori(p, pte, pte, hwmode);
1533 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1534 		uasm_i_lw(p, pte, 0, ptr);
1535 	}
1536 # endif
1537 #endif
1538 }
1539 
1540 /*
1541  * Check if PTE is present, if not then jump to LABEL. PTR points to
1542  * the page table where this PTE is located, PTE will be re-loaded
1543  * with it's original value.
1544  */
1545 static void
1546 build_pte_present(u32 **p, struct uasm_reloc **r,
1547 		  int pte, int ptr, int scratch, enum label_id lid)
1548 {
1549 	int t = scratch >= 0 ? scratch : pte;
1550 
1551 	if (cpu_has_rixi) {
1552 		if (use_bbit_insns()) {
1553 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1554 			uasm_i_nop(p);
1555 		} else {
1556 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1557 			uasm_il_beqz(p, r, t, lid);
1558 			if (pte == t)
1559 				/* You lose the SMP race :-(*/
1560 				iPTE_LW(p, pte, ptr);
1561 		}
1562 	} else {
1563 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1564 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1565 		uasm_il_bnez(p, r, t, lid);
1566 		if (pte == t)
1567 			/* You lose the SMP race :-(*/
1568 			iPTE_LW(p, pte, ptr);
1569 	}
1570 }
1571 
1572 /* Make PTE valid, store result in PTR. */
1573 static void
1574 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1575 		 unsigned int ptr)
1576 {
1577 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1578 
1579 	iPTE_SW(p, r, pte, ptr, mode);
1580 }
1581 
1582 /*
1583  * Check if PTE can be written to, if not branch to LABEL. Regardless
1584  * restore PTE with value from PTR when done.
1585  */
1586 static void
1587 build_pte_writable(u32 **p, struct uasm_reloc **r,
1588 		   unsigned int pte, unsigned int ptr, int scratch,
1589 		   enum label_id lid)
1590 {
1591 	int t = scratch >= 0 ? scratch : pte;
1592 
1593 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1594 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1595 	uasm_il_bnez(p, r, t, lid);
1596 	if (pte == t)
1597 		/* You lose the SMP race :-(*/
1598 		iPTE_LW(p, pte, ptr);
1599 	else
1600 		uasm_i_nop(p);
1601 }
1602 
1603 /* Make PTE writable, update software status bits as well, then store
1604  * at PTR.
1605  */
1606 static void
1607 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1608 		 unsigned int ptr)
1609 {
1610 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1611 			     | _PAGE_DIRTY);
1612 
1613 	iPTE_SW(p, r, pte, ptr, mode);
1614 }
1615 
1616 /*
1617  * Check if PTE can be modified, if not branch to LABEL. Regardless
1618  * restore PTE with value from PTR when done.
1619  */
1620 static void
1621 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1622 		     unsigned int pte, unsigned int ptr, int scratch,
1623 		     enum label_id lid)
1624 {
1625 	if (use_bbit_insns()) {
1626 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1627 		uasm_i_nop(p);
1628 	} else {
1629 		int t = scratch >= 0 ? scratch : pte;
1630 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1631 		uasm_il_beqz(p, r, t, lid);
1632 		if (pte == t)
1633 			/* You lose the SMP race :-(*/
1634 			iPTE_LW(p, pte, ptr);
1635 	}
1636 }
1637 
1638 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1639 
1640 
1641 /*
1642  * R3000 style TLB load/store/modify handlers.
1643  */
1644 
1645 /*
1646  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1647  * Then it returns.
1648  */
1649 static void
1650 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1651 {
1652 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1653 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1654 	uasm_i_tlbwi(p);
1655 	uasm_i_jr(p, tmp);
1656 	uasm_i_rfe(p); /* branch delay */
1657 }
1658 
1659 /*
1660  * This places the pte into ENTRYLO0 and writes it with tlbwi
1661  * or tlbwr as appropriate.  This is because the index register
1662  * may have the probe fail bit set as a result of a trap on a
1663  * kseg2 access, i.e. without refill.  Then it returns.
1664  */
1665 static void
1666 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1667 			     struct uasm_reloc **r, unsigned int pte,
1668 			     unsigned int tmp)
1669 {
1670 	uasm_i_mfc0(p, tmp, C0_INDEX);
1671 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1672 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1673 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1674 	uasm_i_tlbwi(p); /* cp0 delay */
1675 	uasm_i_jr(p, tmp);
1676 	uasm_i_rfe(p); /* branch delay */
1677 	uasm_l_r3000_write_probe_fail(l, *p);
1678 	uasm_i_tlbwr(p); /* cp0 delay */
1679 	uasm_i_jr(p, tmp);
1680 	uasm_i_rfe(p); /* branch delay */
1681 }
1682 
1683 static void
1684 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1685 				   unsigned int ptr)
1686 {
1687 	long pgdc = (long)pgd_current;
1688 
1689 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1690 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1691 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1692 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1693 	uasm_i_sll(p, pte, pte, 2);
1694 	uasm_i_addu(p, ptr, ptr, pte);
1695 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1696 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1697 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1698 	uasm_i_addu(p, ptr, ptr, pte);
1699 	uasm_i_lw(p, pte, 0, ptr);
1700 	uasm_i_tlbp(p); /* load delay */
1701 }
1702 
1703 static void build_r3000_tlb_load_handler(void)
1704 {
1705 	u32 *p = handle_tlbl;
1706 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1707 	struct uasm_label *l = labels;
1708 	struct uasm_reloc *r = relocs;
1709 
1710 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1711 	memset(labels, 0, sizeof(labels));
1712 	memset(relocs, 0, sizeof(relocs));
1713 
1714 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1715 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1716 	uasm_i_nop(&p); /* load delay */
1717 	build_make_valid(&p, &r, K0, K1);
1718 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1719 
1720 	uasm_l_nopage_tlbl(&l, p);
1721 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1722 	uasm_i_nop(&p);
1723 
1724 	if (p >= handle_tlbl_end)
1725 		panic("TLB load handler fastpath space exceeded");
1726 
1727 	uasm_resolve_relocs(relocs, labels);
1728 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1729 		 (unsigned int)(p - handle_tlbl));
1730 
1731 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1732 }
1733 
1734 static void build_r3000_tlb_store_handler(void)
1735 {
1736 	u32 *p = handle_tlbs;
1737 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1738 	struct uasm_label *l = labels;
1739 	struct uasm_reloc *r = relocs;
1740 
1741 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1742 	memset(labels, 0, sizeof(labels));
1743 	memset(relocs, 0, sizeof(relocs));
1744 
1745 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1746 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1747 	uasm_i_nop(&p); /* load delay */
1748 	build_make_write(&p, &r, K0, K1);
1749 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1750 
1751 	uasm_l_nopage_tlbs(&l, p);
1752 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1753 	uasm_i_nop(&p);
1754 
1755 	if (p >= handle_tlbs_end)
1756 		panic("TLB store handler fastpath space exceeded");
1757 
1758 	uasm_resolve_relocs(relocs, labels);
1759 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1760 		 (unsigned int)(p - handle_tlbs));
1761 
1762 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1763 }
1764 
1765 static void build_r3000_tlb_modify_handler(void)
1766 {
1767 	u32 *p = handle_tlbm;
1768 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1769 	struct uasm_label *l = labels;
1770 	struct uasm_reloc *r = relocs;
1771 
1772 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1773 	memset(labels, 0, sizeof(labels));
1774 	memset(relocs, 0, sizeof(relocs));
1775 
1776 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1777 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1778 	uasm_i_nop(&p); /* load delay */
1779 	build_make_write(&p, &r, K0, K1);
1780 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1781 
1782 	uasm_l_nopage_tlbm(&l, p);
1783 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1784 	uasm_i_nop(&p);
1785 
1786 	if (p >= handle_tlbm_end)
1787 		panic("TLB modify handler fastpath space exceeded");
1788 
1789 	uasm_resolve_relocs(relocs, labels);
1790 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1791 		 (unsigned int)(p - handle_tlbm));
1792 
1793 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1794 }
1795 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1796 
1797 /*
1798  * R4000 style TLB load/store/modify handlers.
1799  */
1800 static struct work_registers
1801 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1802 				   struct uasm_reloc **r)
1803 {
1804 	struct work_registers wr = build_get_work_registers(p);
1805 
1806 #ifdef CONFIG_64BIT
1807 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1808 #else
1809 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1810 #endif
1811 
1812 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1813 	/*
1814 	 * For huge tlb entries, pmd doesn't contain an address but
1815 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1816 	 * see if we need to jump to huge tlb processing.
1817 	 */
1818 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1819 #endif
1820 
1821 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1822 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1823 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1824 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1825 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1826 
1827 #ifdef CONFIG_SMP
1828 	uasm_l_smp_pgtable_change(l, *p);
1829 #endif
1830 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1831 	if (!m4kc_tlbp_war())
1832 		build_tlb_probe_entry(p);
1833 	return wr;
1834 }
1835 
1836 static void
1837 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1838 				   struct uasm_reloc **r, unsigned int tmp,
1839 				   unsigned int ptr)
1840 {
1841 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1842 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1843 	build_update_entries(p, tmp, ptr);
1844 	build_tlb_write_entry(p, l, r, tlb_indexed);
1845 	uasm_l_leave(l, *p);
1846 	build_restore_work_registers(p);
1847 	uasm_i_eret(p); /* return from trap */
1848 
1849 #ifdef CONFIG_64BIT
1850 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1851 #endif
1852 }
1853 
1854 static void build_r4000_tlb_load_handler(void)
1855 {
1856 	u32 *p = handle_tlbl;
1857 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1858 	struct uasm_label *l = labels;
1859 	struct uasm_reloc *r = relocs;
1860 	struct work_registers wr;
1861 
1862 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1863 	memset(labels, 0, sizeof(labels));
1864 	memset(relocs, 0, sizeof(relocs));
1865 
1866 	if (bcm1250_m3_war()) {
1867 		unsigned int segbits = 44;
1868 
1869 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1870 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1871 		uasm_i_xor(&p, K0, K0, K1);
1872 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1873 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1874 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1875 		uasm_i_or(&p, K0, K0, K1);
1876 		uasm_il_bnez(&p, &r, K0, label_leave);
1877 		/* No need for uasm_i_nop */
1878 	}
1879 
1880 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1881 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1882 	if (m4kc_tlbp_war())
1883 		build_tlb_probe_entry(&p);
1884 
1885 	if (cpu_has_rixi) {
1886 		/*
1887 		 * If the page is not _PAGE_VALID, RI or XI could not
1888 		 * have triggered it.  Skip the expensive test..
1889 		 */
1890 		if (use_bbit_insns()) {
1891 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1892 				      label_tlbl_goaround1);
1893 		} else {
1894 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1895 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1896 		}
1897 		uasm_i_nop(&p);
1898 
1899 		uasm_i_tlbr(&p);
1900 
1901 		switch (current_cpu_type()) {
1902 		default:
1903 			if (cpu_has_mips_r2) {
1904 				uasm_i_ehb(&p);
1905 
1906 		case CPU_CAVIUM_OCTEON:
1907 		case CPU_CAVIUM_OCTEON_PLUS:
1908 		case CPU_CAVIUM_OCTEON2:
1909 				break;
1910 			}
1911 		}
1912 
1913 		/* Examine  entrylo 0 or 1 based on ptr. */
1914 		if (use_bbit_insns()) {
1915 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1916 		} else {
1917 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1918 			uasm_i_beqz(&p, wr.r3, 8);
1919 		}
1920 		/* load it in the delay slot*/
1921 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1922 		/* load it if ptr is odd */
1923 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1924 		/*
1925 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1926 		 * XI must have triggered it.
1927 		 */
1928 		if (use_bbit_insns()) {
1929 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1930 			uasm_i_nop(&p);
1931 			uasm_l_tlbl_goaround1(&l, p);
1932 		} else {
1933 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1934 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1935 			uasm_i_nop(&p);
1936 		}
1937 		uasm_l_tlbl_goaround1(&l, p);
1938 	}
1939 	build_make_valid(&p, &r, wr.r1, wr.r2);
1940 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1941 
1942 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1943 	/*
1944 	 * This is the entry point when build_r4000_tlbchange_handler_head
1945 	 * spots a huge page.
1946 	 */
1947 	uasm_l_tlb_huge_update(&l, p);
1948 	iPTE_LW(&p, wr.r1, wr.r2);
1949 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1950 	build_tlb_probe_entry(&p);
1951 
1952 	if (cpu_has_rixi) {
1953 		/*
1954 		 * If the page is not _PAGE_VALID, RI or XI could not
1955 		 * have triggered it.  Skip the expensive test..
1956 		 */
1957 		if (use_bbit_insns()) {
1958 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1959 				      label_tlbl_goaround2);
1960 		} else {
1961 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1962 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1963 		}
1964 		uasm_i_nop(&p);
1965 
1966 		uasm_i_tlbr(&p);
1967 
1968 		switch (current_cpu_type()) {
1969 		default:
1970 			if (cpu_has_mips_r2) {
1971 				uasm_i_ehb(&p);
1972 
1973 		case CPU_CAVIUM_OCTEON:
1974 		case CPU_CAVIUM_OCTEON_PLUS:
1975 		case CPU_CAVIUM_OCTEON2:
1976 				break;
1977 			}
1978 		}
1979 
1980 		/* Examine  entrylo 0 or 1 based on ptr. */
1981 		if (use_bbit_insns()) {
1982 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1983 		} else {
1984 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1985 			uasm_i_beqz(&p, wr.r3, 8);
1986 		}
1987 		/* load it in the delay slot*/
1988 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1989 		/* load it if ptr is odd */
1990 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1991 		/*
1992 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1993 		 * XI must have triggered it.
1994 		 */
1995 		if (use_bbit_insns()) {
1996 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1997 		} else {
1998 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1999 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2000 		}
2001 		if (PM_DEFAULT_MASK == 0)
2002 			uasm_i_nop(&p);
2003 		/*
2004 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2005 		 * it is restored in build_huge_tlb_write_entry.
2006 		 */
2007 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2008 
2009 		uasm_l_tlbl_goaround2(&l, p);
2010 	}
2011 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2012 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2013 #endif
2014 
2015 	uasm_l_nopage_tlbl(&l, p);
2016 	build_restore_work_registers(&p);
2017 #ifdef CONFIG_CPU_MICROMIPS
2018 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2019 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2020 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2021 		uasm_i_jr(&p, K0);
2022 	} else
2023 #endif
2024 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2025 	uasm_i_nop(&p);
2026 
2027 	if (p >= handle_tlbl_end)
2028 		panic("TLB load handler fastpath space exceeded");
2029 
2030 	uasm_resolve_relocs(relocs, labels);
2031 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2032 		 (unsigned int)(p - handle_tlbl));
2033 
2034 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2035 }
2036 
2037 static void build_r4000_tlb_store_handler(void)
2038 {
2039 	u32 *p = handle_tlbs;
2040 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2041 	struct uasm_label *l = labels;
2042 	struct uasm_reloc *r = relocs;
2043 	struct work_registers wr;
2044 
2045 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2046 	memset(labels, 0, sizeof(labels));
2047 	memset(relocs, 0, sizeof(relocs));
2048 
2049 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2050 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2051 	if (m4kc_tlbp_war())
2052 		build_tlb_probe_entry(&p);
2053 	build_make_write(&p, &r, wr.r1, wr.r2);
2054 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2055 
2056 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2057 	/*
2058 	 * This is the entry point when
2059 	 * build_r4000_tlbchange_handler_head spots a huge page.
2060 	 */
2061 	uasm_l_tlb_huge_update(&l, p);
2062 	iPTE_LW(&p, wr.r1, wr.r2);
2063 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2064 	build_tlb_probe_entry(&p);
2065 	uasm_i_ori(&p, wr.r1, wr.r1,
2066 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2067 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2068 #endif
2069 
2070 	uasm_l_nopage_tlbs(&l, p);
2071 	build_restore_work_registers(&p);
2072 #ifdef CONFIG_CPU_MICROMIPS
2073 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2074 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2075 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2076 		uasm_i_jr(&p, K0);
2077 	} else
2078 #endif
2079 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2080 	uasm_i_nop(&p);
2081 
2082 	if (p >= handle_tlbs_end)
2083 		panic("TLB store handler fastpath space exceeded");
2084 
2085 	uasm_resolve_relocs(relocs, labels);
2086 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2087 		 (unsigned int)(p - handle_tlbs));
2088 
2089 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2090 }
2091 
2092 static void build_r4000_tlb_modify_handler(void)
2093 {
2094 	u32 *p = handle_tlbm;
2095 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2096 	struct uasm_label *l = labels;
2097 	struct uasm_reloc *r = relocs;
2098 	struct work_registers wr;
2099 
2100 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2101 	memset(labels, 0, sizeof(labels));
2102 	memset(relocs, 0, sizeof(relocs));
2103 
2104 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2105 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2106 	if (m4kc_tlbp_war())
2107 		build_tlb_probe_entry(&p);
2108 	/* Present and writable bits set, set accessed and dirty bits. */
2109 	build_make_write(&p, &r, wr.r1, wr.r2);
2110 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2111 
2112 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2113 	/*
2114 	 * This is the entry point when
2115 	 * build_r4000_tlbchange_handler_head spots a huge page.
2116 	 */
2117 	uasm_l_tlb_huge_update(&l, p);
2118 	iPTE_LW(&p, wr.r1, wr.r2);
2119 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2120 	build_tlb_probe_entry(&p);
2121 	uasm_i_ori(&p, wr.r1, wr.r1,
2122 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2123 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2124 #endif
2125 
2126 	uasm_l_nopage_tlbm(&l, p);
2127 	build_restore_work_registers(&p);
2128 #ifdef CONFIG_CPU_MICROMIPS
2129 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2130 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2131 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2132 		uasm_i_jr(&p, K0);
2133 	} else
2134 #endif
2135 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2136 	uasm_i_nop(&p);
2137 
2138 	if (p >= handle_tlbm_end)
2139 		panic("TLB modify handler fastpath space exceeded");
2140 
2141 	uasm_resolve_relocs(relocs, labels);
2142 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2143 		 (unsigned int)(p - handle_tlbm));
2144 
2145 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2146 }
2147 
2148 static void flush_tlb_handlers(void)
2149 {
2150 	local_flush_icache_range((unsigned long)handle_tlbl,
2151 			   (unsigned long)handle_tlbl_end);
2152 	local_flush_icache_range((unsigned long)handle_tlbs,
2153 			   (unsigned long)handle_tlbs_end);
2154 	local_flush_icache_range((unsigned long)handle_tlbm,
2155 			   (unsigned long)handle_tlbm_end);
2156 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2157 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2158 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2159 #endif
2160 }
2161 
2162 void build_tlb_refill_handler(void)
2163 {
2164 	/*
2165 	 * The refill handler is generated per-CPU, multi-node systems
2166 	 * may have local storage for it. The other handlers are only
2167 	 * needed once.
2168 	 */
2169 	static int run_once = 0;
2170 
2171 	output_pgtable_bits_defines();
2172 
2173 #ifdef CONFIG_64BIT
2174 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2175 #endif
2176 
2177 	switch (current_cpu_type()) {
2178 	case CPU_R2000:
2179 	case CPU_R3000:
2180 	case CPU_R3000A:
2181 	case CPU_R3081E:
2182 	case CPU_TX3912:
2183 	case CPU_TX3922:
2184 	case CPU_TX3927:
2185 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2186 		if (cpu_has_local_ebase)
2187 			build_r3000_tlb_refill_handler();
2188 		if (!run_once) {
2189 			if (!cpu_has_local_ebase)
2190 				build_r3000_tlb_refill_handler();
2191 			build_r3000_tlb_load_handler();
2192 			build_r3000_tlb_store_handler();
2193 			build_r3000_tlb_modify_handler();
2194 			flush_tlb_handlers();
2195 			run_once++;
2196 		}
2197 #else
2198 		panic("No R3000 TLB refill handler");
2199 #endif
2200 		break;
2201 
2202 	case CPU_R6000:
2203 	case CPU_R6000A:
2204 		panic("No R6000 TLB refill handler yet");
2205 		break;
2206 
2207 	case CPU_R8000:
2208 		panic("No R8000 TLB refill handler yet");
2209 		break;
2210 
2211 	default:
2212 		if (!run_once) {
2213 			scratch_reg = allocate_kscratch();
2214 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2215 			build_r4000_setup_pgd();
2216 #endif
2217 			build_r4000_tlb_load_handler();
2218 			build_r4000_tlb_store_handler();
2219 			build_r4000_tlb_modify_handler();
2220 			if (!cpu_has_local_ebase)
2221 				build_r4000_tlb_refill_handler();
2222 			flush_tlb_handlers();
2223 			run_once++;
2224 		}
2225 		if (cpu_has_local_ebase)
2226 			build_r4000_tlb_refill_handler();
2227 	}
2228 }
2229