xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision f35e839a)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/mmu_context.h>
33 #include <asm/cacheflush.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38 
39 /*
40  * TLB load/store/modify handlers.
41  *
42  * Only the fastpath gets synthesized at runtime, the slowpath for
43  * do_page_fault remains normal asm.
44  */
45 extern void tlb_do_page_fault_0(void);
46 extern void tlb_do_page_fault_1(void);
47 
48 struct work_registers {
49 	int r1;
50 	int r2;
51 	int r3;
52 };
53 
54 struct tlb_reg_save {
55 	unsigned long a;
56 	unsigned long b;
57 } ____cacheline_aligned_in_smp;
58 
59 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60 
61 static inline int r45k_bvahwbug(void)
62 {
63 	/* XXX: We should probe for the presence of this bug, but we don't. */
64 	return 0;
65 }
66 
67 static inline int r4k_250MHZhwbug(void)
68 {
69 	/* XXX: We should probe for the presence of this bug, but we don't. */
70 	return 0;
71 }
72 
73 static inline int __maybe_unused bcm1250_m3_war(void)
74 {
75 	return BCM1250_M3_WAR;
76 }
77 
78 static inline int __maybe_unused r10000_llsc_war(void)
79 {
80 	return R10000_LLSC_WAR;
81 }
82 
83 static int use_bbit_insns(void)
84 {
85 	switch (current_cpu_type()) {
86 	case CPU_CAVIUM_OCTEON:
87 	case CPU_CAVIUM_OCTEON_PLUS:
88 	case CPU_CAVIUM_OCTEON2:
89 		return 1;
90 	default:
91 		return 0;
92 	}
93 }
94 
95 static int use_lwx_insns(void)
96 {
97 	switch (current_cpu_type()) {
98 	case CPU_CAVIUM_OCTEON2:
99 		return 1;
100 	default:
101 		return 0;
102 	}
103 }
104 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
105     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
106 static bool scratchpad_available(void)
107 {
108 	return true;
109 }
110 static int scratchpad_offset(int i)
111 {
112 	/*
113 	 * CVMSEG starts at address -32768 and extends for
114 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
115 	 */
116 	i += 1; /* Kernel use starts at the top and works down. */
117 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
118 }
119 #else
120 static bool scratchpad_available(void)
121 {
122 	return false;
123 }
124 static int scratchpad_offset(int i)
125 {
126 	BUG();
127 	/* Really unreachable, but evidently some GCC want this. */
128 	return 0;
129 }
130 #endif
131 /*
132  * Found by experiment: At least some revisions of the 4kc throw under
133  * some circumstances a machine check exception, triggered by invalid
134  * values in the index register.  Delaying the tlbp instruction until
135  * after the next branch,  plus adding an additional nop in front of
136  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
137  * why; it's not an issue caused by the core RTL.
138  *
139  */
140 static int __cpuinit m4kc_tlbp_war(void)
141 {
142 	return (current_cpu_data.processor_id & 0xffff00) ==
143 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
144 }
145 
146 /* Handle labels (which must be positive integers). */
147 enum label_id {
148 	label_second_part = 1,
149 	label_leave,
150 	label_vmalloc,
151 	label_vmalloc_done,
152 	label_tlbw_hazard_0,
153 	label_split = label_tlbw_hazard_0 + 8,
154 	label_tlbl_goaround1,
155 	label_tlbl_goaround2,
156 	label_nopage_tlbl,
157 	label_nopage_tlbs,
158 	label_nopage_tlbm,
159 	label_smp_pgtable_change,
160 	label_r3000_write_probe_fail,
161 	label_large_segbits_fault,
162 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
163 	label_tlb_huge_update,
164 #endif
165 };
166 
167 UASM_L_LA(_second_part)
168 UASM_L_LA(_leave)
169 UASM_L_LA(_vmalloc)
170 UASM_L_LA(_vmalloc_done)
171 /* _tlbw_hazard_x is handled differently.  */
172 UASM_L_LA(_split)
173 UASM_L_LA(_tlbl_goaround1)
174 UASM_L_LA(_tlbl_goaround2)
175 UASM_L_LA(_nopage_tlbl)
176 UASM_L_LA(_nopage_tlbs)
177 UASM_L_LA(_nopage_tlbm)
178 UASM_L_LA(_smp_pgtable_change)
179 UASM_L_LA(_r3000_write_probe_fail)
180 UASM_L_LA(_large_segbits_fault)
181 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
182 UASM_L_LA(_tlb_huge_update)
183 #endif
184 
185 static int __cpuinitdata hazard_instance;
186 
187 static void __cpuinit uasm_bgezl_hazard(u32 **p,
188 					struct uasm_reloc **r,
189 					int instance)
190 {
191 	switch (instance) {
192 	case 0 ... 7:
193 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
194 		return;
195 	default:
196 		BUG();
197 	}
198 }
199 
200 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
201 				       u32 **p,
202 				       int instance)
203 {
204 	switch (instance) {
205 	case 0 ... 7:
206 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
207 		break;
208 	default:
209 		BUG();
210 	}
211 }
212 
213 /*
214  * pgtable bits are assigned dynamically depending on processor feature
215  * and statically based on kernel configuration.  This spits out the actual
216  * values the kernel is using.	Required to make sense from disassembled
217  * TLB exception handlers.
218  */
219 static void output_pgtable_bits_defines(void)
220 {
221 #define pr_define(fmt, ...)					\
222 	pr_debug("#define " fmt, ##__VA_ARGS__)
223 
224 	pr_debug("#include <asm/asm.h>\n");
225 	pr_debug("#include <asm/regdef.h>\n");
226 	pr_debug("\n");
227 
228 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
229 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
230 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
231 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
232 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
233 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
234 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
235 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
236 #endif
237 	if (cpu_has_rixi) {
238 #ifdef _PAGE_NO_EXEC_SHIFT
239 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
240 #endif
241 #ifdef _PAGE_NO_READ_SHIFT
242 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
243 #endif
244 	}
245 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
246 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
247 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
248 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
249 	pr_debug("\n");
250 }
251 
252 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
253 {
254 	int i;
255 
256 	pr_debug("LEAF(%s)\n", symbol);
257 
258 	pr_debug("\t.set push\n");
259 	pr_debug("\t.set noreorder\n");
260 
261 	for (i = 0; i < count; i++)
262 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
263 
264 	pr_debug("\t.set\tpop\n");
265 
266 	pr_debug("\tEND(%s)\n", symbol);
267 }
268 
269 /* The only general purpose registers allowed in TLB handlers. */
270 #define K0		26
271 #define K1		27
272 
273 /* Some CP0 registers */
274 #define C0_INDEX	0, 0
275 #define C0_ENTRYLO0	2, 0
276 #define C0_TCBIND	2, 2
277 #define C0_ENTRYLO1	3, 0
278 #define C0_CONTEXT	4, 0
279 #define C0_PAGEMASK	5, 0
280 #define C0_BADVADDR	8, 0
281 #define C0_ENTRYHI	10, 0
282 #define C0_EPC		14, 0
283 #define C0_XCONTEXT	20, 0
284 
285 #ifdef CONFIG_64BIT
286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
287 #else
288 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
289 #endif
290 
291 /* The worst case length of the handler is around 18 instructions for
292  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
293  * Maximum space available is 32 instructions for R3000 and 64
294  * instructions for R4000.
295  *
296  * We deliberately chose a buffer size of 128, so we won't scribble
297  * over anything important on overflow before we panic.
298  */
299 static u32 tlb_handler[128] __cpuinitdata;
300 
301 /* simply assume worst case size for labels and relocs */
302 static struct uasm_label labels[128] __cpuinitdata;
303 static struct uasm_reloc relocs[128] __cpuinitdata;
304 
305 #ifdef CONFIG_64BIT
306 static int check_for_high_segbits __cpuinitdata;
307 #endif
308 
309 static void __cpuinit insn_fixup(unsigned int **start, unsigned int **stop,
310 					unsigned int i_const)
311 {
312 	unsigned int **p;
313 
314 	for (p = start; p < stop; p++) {
315 #ifndef CONFIG_CPU_MICROMIPS
316 		unsigned int *ip;
317 
318 		ip = *p;
319 		*ip = (*ip & 0xffff0000) | i_const;
320 #else
321 		unsigned short *ip;
322 
323 		ip = ((unsigned short *)((unsigned int)*p - 1));
324 		if ((*ip & 0xf000) == 0x4000) {
325 			*ip &= 0xfff1;
326 			*ip |= (i_const << 1);
327 		} else if ((*ip & 0xf000) == 0x6000) {
328 			*ip &= 0xfff1;
329 			*ip |= ((i_const >> 2) << 1);
330 		} else {
331 			ip++;
332 			*ip = i_const;
333 		}
334 #endif
335 		local_flush_icache_range((unsigned long)ip,
336 					 (unsigned long)ip + sizeof(*ip));
337 	}
338 }
339 
340 #define asid_insn_fixup(section, const)					\
341 do {									\
342 	extern unsigned int *__start_ ## section;			\
343 	extern unsigned int *__stop_ ## section;			\
344 	insn_fixup(&__start_ ## section, &__stop_ ## section, const);	\
345 } while(0)
346 
347 /*
348  * Caller is assumed to flush the caches before the first context switch.
349  */
350 static void __cpuinit setup_asid(unsigned int inc, unsigned int mask,
351 				 unsigned int version_mask,
352 				 unsigned int first_version)
353 {
354 	extern asmlinkage void handle_ri_rdhwr_vivt(void);
355 	unsigned long *vivt_exc;
356 
357 #ifdef CONFIG_CPU_MICROMIPS
358 	/*
359 	 * Worst case optimised microMIPS addiu instructions support
360 	 * only a 3-bit immediate value.
361 	 */
362 	if(inc > 7)
363 		panic("Invalid ASID increment value!");
364 #endif
365 	asid_insn_fixup(__asid_inc, inc);
366 	asid_insn_fixup(__asid_mask, mask);
367 	asid_insn_fixup(__asid_version_mask, version_mask);
368 	asid_insn_fixup(__asid_first_version, first_version);
369 
370 	/* Patch up the 'handle_ri_rdhwr_vivt' handler. */
371 	vivt_exc = (unsigned long *) &handle_ri_rdhwr_vivt;
372 #ifdef CONFIG_CPU_MICROMIPS
373 	vivt_exc = (unsigned long *)((unsigned long) vivt_exc - 1);
374 #endif
375 	vivt_exc++;
376 	*vivt_exc = (*vivt_exc & ~mask) | mask;
377 
378 	current_cpu_data.asid_cache = first_version;
379 }
380 
381 static int check_for_high_segbits __cpuinitdata;
382 
383 static unsigned int kscratch_used_mask __cpuinitdata;
384 
385 static int __cpuinit allocate_kscratch(void)
386 {
387 	int r;
388 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
389 
390 	r = ffs(a);
391 
392 	if (r == 0)
393 		return -1;
394 
395 	r--; /* make it zero based */
396 
397 	kscratch_used_mask |= (1 << r);
398 
399 	return r;
400 }
401 
402 static int scratch_reg __cpuinitdata;
403 static int pgd_reg __cpuinitdata;
404 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
405 
406 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
407 {
408 	struct work_registers r;
409 
410 	int smp_processor_id_reg;
411 	int smp_processor_id_sel;
412 	int smp_processor_id_shift;
413 
414 	if (scratch_reg > 0) {
415 		/* Save in CPU local C0_KScratch? */
416 		UASM_i_MTC0(p, 1, 31, scratch_reg);
417 		r.r1 = K0;
418 		r.r2 = K1;
419 		r.r3 = 1;
420 		return r;
421 	}
422 
423 	if (num_possible_cpus() > 1) {
424 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
425 		smp_processor_id_shift = 51;
426 		smp_processor_id_reg = 20; /* XContext */
427 		smp_processor_id_sel = 0;
428 #else
429 # ifdef CONFIG_32BIT
430 		smp_processor_id_shift = 25;
431 		smp_processor_id_reg = 4; /* Context */
432 		smp_processor_id_sel = 0;
433 # endif
434 # ifdef CONFIG_64BIT
435 		smp_processor_id_shift = 26;
436 		smp_processor_id_reg = 4; /* Context */
437 		smp_processor_id_sel = 0;
438 # endif
439 #endif
440 		/* Get smp_processor_id */
441 		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
442 		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
443 
444 		/* handler_reg_save index in K0 */
445 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
446 
447 		UASM_i_LA(p, K1, (long)&handler_reg_save);
448 		UASM_i_ADDU(p, K0, K0, K1);
449 	} else {
450 		UASM_i_LA(p, K0, (long)&handler_reg_save);
451 	}
452 	/* K0 now points to save area, save $1 and $2  */
453 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
454 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
455 
456 	r.r1 = K1;
457 	r.r2 = 1;
458 	r.r3 = 2;
459 	return r;
460 }
461 
462 static void __cpuinit build_restore_work_registers(u32 **p)
463 {
464 	if (scratch_reg > 0) {
465 		UASM_i_MFC0(p, 1, 31, scratch_reg);
466 		return;
467 	}
468 	/* K0 already points to save area, restore $1 and $2  */
469 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
470 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
471 }
472 
473 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
474 
475 /*
476  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
477  * we cannot do r3000 under these circumstances.
478  *
479  * Declare pgd_current here instead of including mmu_context.h to avoid type
480  * conflicts for tlbmiss_handler_setup_pgd
481  */
482 extern unsigned long pgd_current[];
483 
484 /*
485  * The R3000 TLB handler is simple.
486  */
487 static void __cpuinit build_r3000_tlb_refill_handler(void)
488 {
489 	long pgdc = (long)pgd_current;
490 	u32 *p;
491 
492 	memset(tlb_handler, 0, sizeof(tlb_handler));
493 	p = tlb_handler;
494 
495 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
496 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
497 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
498 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
499 	uasm_i_sll(&p, K0, K0, 2);
500 	uasm_i_addu(&p, K1, K1, K0);
501 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
502 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
503 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
504 	uasm_i_addu(&p, K1, K1, K0);
505 	uasm_i_lw(&p, K0, 0, K1);
506 	uasm_i_nop(&p); /* load delay */
507 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
508 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
509 	uasm_i_tlbwr(&p); /* cp0 delay */
510 	uasm_i_jr(&p, K1);
511 	uasm_i_rfe(&p); /* branch delay */
512 
513 	if (p > tlb_handler + 32)
514 		panic("TLB refill handler space exceeded");
515 
516 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
517 		 (unsigned int)(p - tlb_handler));
518 
519 	memcpy((void *)ebase, tlb_handler, 0x80);
520 
521 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
522 }
523 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
524 
525 /*
526  * The R4000 TLB handler is much more complicated. We have two
527  * consecutive handler areas with 32 instructions space each.
528  * Since they aren't used at the same time, we can overflow in the
529  * other one.To keep things simple, we first assume linear space,
530  * then we relocate it to the final handler layout as needed.
531  */
532 static u32 final_handler[64] __cpuinitdata;
533 
534 /*
535  * Hazards
536  *
537  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
538  * 2. A timing hazard exists for the TLBP instruction.
539  *
540  *	stalling_instruction
541  *	TLBP
542  *
543  * The JTLB is being read for the TLBP throughout the stall generated by the
544  * previous instruction. This is not really correct as the stalling instruction
545  * can modify the address used to access the JTLB.  The failure symptom is that
546  * the TLBP instruction will use an address created for the stalling instruction
547  * and not the address held in C0_ENHI and thus report the wrong results.
548  *
549  * The software work-around is to not allow the instruction preceding the TLBP
550  * to stall - make it an NOP or some other instruction guaranteed not to stall.
551  *
552  * Errata 2 will not be fixed.	This errata is also on the R5000.
553  *
554  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
555  */
556 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
557 {
558 	switch (current_cpu_type()) {
559 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
560 	case CPU_R4600:
561 	case CPU_R4700:
562 	case CPU_R5000:
563 	case CPU_NEVADA:
564 		uasm_i_nop(p);
565 		uasm_i_tlbp(p);
566 		break;
567 
568 	default:
569 		uasm_i_tlbp(p);
570 		break;
571 	}
572 }
573 
574 /*
575  * Write random or indexed TLB entry, and care about the hazards from
576  * the preceding mtc0 and for the following eret.
577  */
578 enum tlb_write_entry { tlb_random, tlb_indexed };
579 
580 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
581 					 struct uasm_reloc **r,
582 					 enum tlb_write_entry wmode)
583 {
584 	void(*tlbw)(u32 **) = NULL;
585 
586 	switch (wmode) {
587 	case tlb_random: tlbw = uasm_i_tlbwr; break;
588 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
589 	}
590 
591 	if (cpu_has_mips_r2) {
592 		/*
593 		 * The architecture spec says an ehb is required here,
594 		 * but a number of cores do not have the hazard and
595 		 * using an ehb causes an expensive pipeline stall.
596 		 */
597 		switch (current_cpu_type()) {
598 		case CPU_M14KC:
599 		case CPU_74K:
600 			break;
601 
602 		default:
603 			uasm_i_ehb(p);
604 			break;
605 		}
606 		tlbw(p);
607 		return;
608 	}
609 
610 	switch (current_cpu_type()) {
611 	case CPU_R4000PC:
612 	case CPU_R4000SC:
613 	case CPU_R4000MC:
614 	case CPU_R4400PC:
615 	case CPU_R4400SC:
616 	case CPU_R4400MC:
617 		/*
618 		 * This branch uses up a mtc0 hazard nop slot and saves
619 		 * two nops after the tlbw instruction.
620 		 */
621 		uasm_bgezl_hazard(p, r, hazard_instance);
622 		tlbw(p);
623 		uasm_bgezl_label(l, p, hazard_instance);
624 		hazard_instance++;
625 		uasm_i_nop(p);
626 		break;
627 
628 	case CPU_R4600:
629 	case CPU_R4700:
630 		uasm_i_nop(p);
631 		tlbw(p);
632 		uasm_i_nop(p);
633 		break;
634 
635 	case CPU_R5000:
636 	case CPU_NEVADA:
637 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
638 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
639 		tlbw(p);
640 		break;
641 
642 	case CPU_R4300:
643 	case CPU_5KC:
644 	case CPU_TX49XX:
645 	case CPU_PR4450:
646 	case CPU_XLR:
647 		uasm_i_nop(p);
648 		tlbw(p);
649 		break;
650 
651 	case CPU_R10000:
652 	case CPU_R12000:
653 	case CPU_R14000:
654 	case CPU_4KC:
655 	case CPU_4KEC:
656 	case CPU_M14KC:
657 	case CPU_M14KEC:
658 	case CPU_SB1:
659 	case CPU_SB1A:
660 	case CPU_4KSC:
661 	case CPU_20KC:
662 	case CPU_25KF:
663 	case CPU_BMIPS32:
664 	case CPU_BMIPS3300:
665 	case CPU_BMIPS4350:
666 	case CPU_BMIPS4380:
667 	case CPU_BMIPS5000:
668 	case CPU_LOONGSON2:
669 	case CPU_R5500:
670 		if (m4kc_tlbp_war())
671 			uasm_i_nop(p);
672 	case CPU_ALCHEMY:
673 		tlbw(p);
674 		break;
675 
676 	case CPU_RM7000:
677 		uasm_i_nop(p);
678 		uasm_i_nop(p);
679 		uasm_i_nop(p);
680 		uasm_i_nop(p);
681 		tlbw(p);
682 		break;
683 
684 	case CPU_VR4111:
685 	case CPU_VR4121:
686 	case CPU_VR4122:
687 	case CPU_VR4181:
688 	case CPU_VR4181A:
689 		uasm_i_nop(p);
690 		uasm_i_nop(p);
691 		tlbw(p);
692 		uasm_i_nop(p);
693 		uasm_i_nop(p);
694 		break;
695 
696 	case CPU_VR4131:
697 	case CPU_VR4133:
698 	case CPU_R5432:
699 		uasm_i_nop(p);
700 		uasm_i_nop(p);
701 		tlbw(p);
702 		break;
703 
704 	case CPU_JZRISC:
705 		tlbw(p);
706 		uasm_i_nop(p);
707 		break;
708 
709 	default:
710 		panic("No TLB refill handler yet (CPU type: %d)",
711 		      current_cpu_data.cputype);
712 		break;
713 	}
714 }
715 
716 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
717 								  unsigned int reg)
718 {
719 	if (cpu_has_rixi) {
720 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
721 	} else {
722 #ifdef CONFIG_64BIT_PHYS_ADDR
723 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
724 #else
725 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
726 #endif
727 	}
728 }
729 
730 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
731 
732 static __cpuinit void build_restore_pagemask(u32 **p,
733 					     struct uasm_reloc **r,
734 					     unsigned int tmp,
735 					     enum label_id lid,
736 					     int restore_scratch)
737 {
738 	if (restore_scratch) {
739 		/* Reset default page size */
740 		if (PM_DEFAULT_MASK >> 16) {
741 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
742 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
743 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
744 			uasm_il_b(p, r, lid);
745 		} else if (PM_DEFAULT_MASK) {
746 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
747 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
748 			uasm_il_b(p, r, lid);
749 		} else {
750 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
751 			uasm_il_b(p, r, lid);
752 		}
753 		if (scratch_reg > 0)
754 			UASM_i_MFC0(p, 1, 31, scratch_reg);
755 		else
756 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
757 	} else {
758 		/* Reset default page size */
759 		if (PM_DEFAULT_MASK >> 16) {
760 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
761 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
762 			uasm_il_b(p, r, lid);
763 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
764 		} else if (PM_DEFAULT_MASK) {
765 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
766 			uasm_il_b(p, r, lid);
767 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
768 		} else {
769 			uasm_il_b(p, r, lid);
770 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
771 		}
772 	}
773 }
774 
775 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
776 						 struct uasm_label **l,
777 						 struct uasm_reloc **r,
778 						 unsigned int tmp,
779 						 enum tlb_write_entry wmode,
780 						 int restore_scratch)
781 {
782 	/* Set huge page tlb entry size */
783 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
784 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
785 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
786 
787 	build_tlb_write_entry(p, l, r, wmode);
788 
789 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
790 }
791 
792 /*
793  * Check if Huge PTE is present, if so then jump to LABEL.
794  */
795 static void __cpuinit
796 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
797 		unsigned int pmd, int lid)
798 {
799 	UASM_i_LW(p, tmp, 0, pmd);
800 	if (use_bbit_insns()) {
801 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
802 	} else {
803 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
804 		uasm_il_bnez(p, r, tmp, lid);
805 	}
806 }
807 
808 static __cpuinit void build_huge_update_entries(u32 **p,
809 						unsigned int pte,
810 						unsigned int tmp)
811 {
812 	int small_sequence;
813 
814 	/*
815 	 * A huge PTE describes an area the size of the
816 	 * configured huge page size. This is twice the
817 	 * of the large TLB entry size we intend to use.
818 	 * A TLB entry half the size of the configured
819 	 * huge page size is configured into entrylo0
820 	 * and entrylo1 to cover the contiguous huge PTE
821 	 * address space.
822 	 */
823 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
824 
825 	/* We can clobber tmp.	It isn't used after this.*/
826 	if (!small_sequence)
827 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
828 
829 	build_convert_pte_to_entrylo(p, pte);
830 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
831 	/* convert to entrylo1 */
832 	if (small_sequence)
833 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
834 	else
835 		UASM_i_ADDU(p, pte, pte, tmp);
836 
837 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
838 }
839 
840 static __cpuinit void build_huge_handler_tail(u32 **p,
841 					      struct uasm_reloc **r,
842 					      struct uasm_label **l,
843 					      unsigned int pte,
844 					      unsigned int ptr)
845 {
846 #ifdef CONFIG_SMP
847 	UASM_i_SC(p, pte, 0, ptr);
848 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
849 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
850 #else
851 	UASM_i_SW(p, pte, 0, ptr);
852 #endif
853 	build_huge_update_entries(p, pte, ptr);
854 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
855 }
856 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
857 
858 #ifdef CONFIG_64BIT
859 /*
860  * TMP and PTR are scratch.
861  * TMP will be clobbered, PTR will hold the pmd entry.
862  */
863 static void __cpuinit
864 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
865 		 unsigned int tmp, unsigned int ptr)
866 {
867 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
868 	long pgdc = (long)pgd_current;
869 #endif
870 	/*
871 	 * The vmalloc handling is not in the hotpath.
872 	 */
873 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
874 
875 	if (check_for_high_segbits) {
876 		/*
877 		 * The kernel currently implicitely assumes that the
878 		 * MIPS SEGBITS parameter for the processor is
879 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
880 		 * allocate virtual addresses outside the maximum
881 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
882 		 * that doesn't prevent user code from accessing the
883 		 * higher xuseg addresses.  Here, we make sure that
884 		 * everything but the lower xuseg addresses goes down
885 		 * the module_alloc/vmalloc path.
886 		 */
887 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
888 		uasm_il_bnez(p, r, ptr, label_vmalloc);
889 	} else {
890 		uasm_il_bltz(p, r, tmp, label_vmalloc);
891 	}
892 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
893 
894 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
895 	if (pgd_reg != -1) {
896 		/* pgd is in pgd_reg */
897 		UASM_i_MFC0(p, ptr, 31, pgd_reg);
898 	} else {
899 		/*
900 		 * &pgd << 11 stored in CONTEXT [23..63].
901 		 */
902 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
903 
904 		/* Clear lower 23 bits of context. */
905 		uasm_i_dins(p, ptr, 0, 0, 23);
906 
907 		/* 1 0	1 0 1  << 6  xkphys cached */
908 		uasm_i_ori(p, ptr, ptr, 0x540);
909 		uasm_i_drotr(p, ptr, ptr, 11);
910 	}
911 #elif defined(CONFIG_SMP)
912 # ifdef	 CONFIG_MIPS_MT_SMTC
913 	/*
914 	 * SMTC uses TCBind value as "CPU" index
915 	 */
916 	uasm_i_mfc0(p, ptr, C0_TCBIND);
917 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
918 # else
919 	/*
920 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
921 	 * stored in CONTEXT.
922 	 */
923 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
924 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
925 # endif
926 	UASM_i_LA_mostly(p, tmp, pgdc);
927 	uasm_i_daddu(p, ptr, ptr, tmp);
928 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
929 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
930 #else
931 	UASM_i_LA_mostly(p, ptr, pgdc);
932 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
933 #endif
934 
935 	uasm_l_vmalloc_done(l, *p);
936 
937 	/* get pgd offset in bytes */
938 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
939 
940 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
941 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
942 #ifndef __PAGETABLE_PMD_FOLDED
943 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
944 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
945 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
946 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
947 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
948 #endif
949 }
950 
951 /*
952  * BVADDR is the faulting address, PTR is scratch.
953  * PTR will hold the pgd for vmalloc.
954  */
955 static void __cpuinit
956 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
957 			unsigned int bvaddr, unsigned int ptr,
958 			enum vmalloc64_mode mode)
959 {
960 	long swpd = (long)swapper_pg_dir;
961 	int single_insn_swpd;
962 	int did_vmalloc_branch = 0;
963 
964 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
965 
966 	uasm_l_vmalloc(l, *p);
967 
968 	if (mode != not_refill && check_for_high_segbits) {
969 		if (single_insn_swpd) {
970 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
971 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
972 			did_vmalloc_branch = 1;
973 			/* fall through */
974 		} else {
975 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
976 		}
977 	}
978 	if (!did_vmalloc_branch) {
979 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
980 			uasm_il_b(p, r, label_vmalloc_done);
981 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
982 		} else {
983 			UASM_i_LA_mostly(p, ptr, swpd);
984 			uasm_il_b(p, r, label_vmalloc_done);
985 			if (uasm_in_compat_space_p(swpd))
986 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
987 			else
988 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
989 		}
990 	}
991 	if (mode != not_refill && check_for_high_segbits) {
992 		uasm_l_large_segbits_fault(l, *p);
993 		/*
994 		 * We get here if we are an xsseg address, or if we are
995 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
996 		 *
997 		 * Ignoring xsseg (assume disabled so would generate
998 		 * (address errors?), the only remaining possibility
999 		 * is the upper xuseg addresses.  On processors with
1000 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
1001 		 * addresses would have taken an address error. We try
1002 		 * to mimic that here by taking a load/istream page
1003 		 * fault.
1004 		 */
1005 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
1006 		uasm_i_jr(p, ptr);
1007 
1008 		if (mode == refill_scratch) {
1009 			if (scratch_reg > 0)
1010 				UASM_i_MFC0(p, 1, 31, scratch_reg);
1011 			else
1012 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
1013 		} else {
1014 			uasm_i_nop(p);
1015 		}
1016 	}
1017 }
1018 
1019 #else /* !CONFIG_64BIT */
1020 
1021 /*
1022  * TMP and PTR are scratch.
1023  * TMP will be clobbered, PTR will hold the pgd entry.
1024  */
1025 static void __cpuinit __maybe_unused
1026 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1027 {
1028 	long pgdc = (long)pgd_current;
1029 
1030 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1031 #ifdef CONFIG_SMP
1032 #ifdef	CONFIG_MIPS_MT_SMTC
1033 	/*
1034 	 * SMTC uses TCBind value as "CPU" index
1035 	 */
1036 	uasm_i_mfc0(p, ptr, C0_TCBIND);
1037 	UASM_i_LA_mostly(p, tmp, pgdc);
1038 	uasm_i_srl(p, ptr, ptr, 19);
1039 #else
1040 	/*
1041 	 * smp_processor_id() << 3 is stored in CONTEXT.
1042 	 */
1043 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
1044 	UASM_i_LA_mostly(p, tmp, pgdc);
1045 	uasm_i_srl(p, ptr, ptr, 23);
1046 #endif
1047 	uasm_i_addu(p, ptr, tmp, ptr);
1048 #else
1049 	UASM_i_LA_mostly(p, ptr, pgdc);
1050 #endif
1051 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1052 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1053 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1054 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
1055 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1056 }
1057 
1058 #endif /* !CONFIG_64BIT */
1059 
1060 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
1061 {
1062 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1063 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1064 
1065 	switch (current_cpu_type()) {
1066 	case CPU_VR41XX:
1067 	case CPU_VR4111:
1068 	case CPU_VR4121:
1069 	case CPU_VR4122:
1070 	case CPU_VR4131:
1071 	case CPU_VR4181:
1072 	case CPU_VR4181A:
1073 	case CPU_VR4133:
1074 		shift += 2;
1075 		break;
1076 
1077 	default:
1078 		break;
1079 	}
1080 
1081 	if (shift)
1082 		UASM_i_SRL(p, ctx, ctx, shift);
1083 	uasm_i_andi(p, ctx, ctx, mask);
1084 }
1085 
1086 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1087 {
1088 	/*
1089 	 * Bug workaround for the Nevada. It seems as if under certain
1090 	 * circumstances the move from cp0_context might produce a
1091 	 * bogus result when the mfc0 instruction and its consumer are
1092 	 * in a different cacheline or a load instruction, probably any
1093 	 * memory reference, is between them.
1094 	 */
1095 	switch (current_cpu_type()) {
1096 	case CPU_NEVADA:
1097 		UASM_i_LW(p, ptr, 0, ptr);
1098 		GET_CONTEXT(p, tmp); /* get context reg */
1099 		break;
1100 
1101 	default:
1102 		GET_CONTEXT(p, tmp); /* get context reg */
1103 		UASM_i_LW(p, ptr, 0, ptr);
1104 		break;
1105 	}
1106 
1107 	build_adjust_context(p, tmp);
1108 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1109 }
1110 
1111 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1112 					unsigned int ptep)
1113 {
1114 	/*
1115 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1116 	 * Kernel is a special case. Only a few CPUs use it.
1117 	 */
1118 #ifdef CONFIG_64BIT_PHYS_ADDR
1119 	if (cpu_has_64bits) {
1120 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1121 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1122 		if (cpu_has_rixi) {
1123 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1124 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1125 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1126 		} else {
1127 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1128 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1129 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1130 		}
1131 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1132 	} else {
1133 		int pte_off_even = sizeof(pte_t) / 2;
1134 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1135 
1136 		/* The pte entries are pre-shifted */
1137 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1138 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1139 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1140 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1141 	}
1142 #else
1143 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1144 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1145 	if (r45k_bvahwbug())
1146 		build_tlb_probe_entry(p);
1147 	if (cpu_has_rixi) {
1148 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1149 		if (r4k_250MHZhwbug())
1150 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1151 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1152 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1153 	} else {
1154 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1155 		if (r4k_250MHZhwbug())
1156 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1157 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1158 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1159 		if (r45k_bvahwbug())
1160 			uasm_i_mfc0(p, tmp, C0_INDEX);
1161 	}
1162 	if (r4k_250MHZhwbug())
1163 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1164 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1165 #endif
1166 }
1167 
1168 struct mips_huge_tlb_info {
1169 	int huge_pte;
1170 	int restore_scratch;
1171 };
1172 
1173 static struct mips_huge_tlb_info __cpuinit
1174 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1175 			       struct uasm_reloc **r, unsigned int tmp,
1176 			       unsigned int ptr, int c0_scratch)
1177 {
1178 	struct mips_huge_tlb_info rv;
1179 	unsigned int even, odd;
1180 	int vmalloc_branch_delay_filled = 0;
1181 	const int scratch = 1; /* Our extra working register */
1182 
1183 	rv.huge_pte = scratch;
1184 	rv.restore_scratch = 0;
1185 
1186 	if (check_for_high_segbits) {
1187 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1188 
1189 		if (pgd_reg != -1)
1190 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1191 		else
1192 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1193 
1194 		if (c0_scratch >= 0)
1195 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1196 		else
1197 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1198 
1199 		uasm_i_dsrl_safe(p, scratch, tmp,
1200 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1201 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1202 
1203 		if (pgd_reg == -1) {
1204 			vmalloc_branch_delay_filled = 1;
1205 			/* Clear lower 23 bits of context. */
1206 			uasm_i_dins(p, ptr, 0, 0, 23);
1207 		}
1208 	} else {
1209 		if (pgd_reg != -1)
1210 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1211 		else
1212 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1213 
1214 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1215 
1216 		if (c0_scratch >= 0)
1217 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1218 		else
1219 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1220 
1221 		if (pgd_reg == -1)
1222 			/* Clear lower 23 bits of context. */
1223 			uasm_i_dins(p, ptr, 0, 0, 23);
1224 
1225 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1226 	}
1227 
1228 	if (pgd_reg == -1) {
1229 		vmalloc_branch_delay_filled = 1;
1230 		/* 1 0	1 0 1  << 6  xkphys cached */
1231 		uasm_i_ori(p, ptr, ptr, 0x540);
1232 		uasm_i_drotr(p, ptr, ptr, 11);
1233 	}
1234 
1235 #ifdef __PAGETABLE_PMD_FOLDED
1236 #define LOC_PTEP scratch
1237 #else
1238 #define LOC_PTEP ptr
1239 #endif
1240 
1241 	if (!vmalloc_branch_delay_filled)
1242 		/* get pgd offset in bytes */
1243 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1244 
1245 	uasm_l_vmalloc_done(l, *p);
1246 
1247 	/*
1248 	 *			   tmp		ptr
1249 	 * fall-through case =	 badvaddr  *pgd_current
1250 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1251 	 */
1252 
1253 	if (vmalloc_branch_delay_filled)
1254 		/* get pgd offset in bytes */
1255 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1256 
1257 #ifdef __PAGETABLE_PMD_FOLDED
1258 	GET_CONTEXT(p, tmp); /* get context reg */
1259 #endif
1260 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1261 
1262 	if (use_lwx_insns()) {
1263 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1264 	} else {
1265 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1266 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1267 	}
1268 
1269 #ifndef __PAGETABLE_PMD_FOLDED
1270 	/* get pmd offset in bytes */
1271 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1272 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1273 	GET_CONTEXT(p, tmp); /* get context reg */
1274 
1275 	if (use_lwx_insns()) {
1276 		UASM_i_LWX(p, scratch, scratch, ptr);
1277 	} else {
1278 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1279 		UASM_i_LW(p, scratch, 0, ptr);
1280 	}
1281 #endif
1282 	/* Adjust the context during the load latency. */
1283 	build_adjust_context(p, tmp);
1284 
1285 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1286 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1287 	/*
1288 	 * The in the LWX case we don't want to do the load in the
1289 	 * delay slot.	It cannot issue in the same cycle and may be
1290 	 * speculative and unneeded.
1291 	 */
1292 	if (use_lwx_insns())
1293 		uasm_i_nop(p);
1294 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1295 
1296 
1297 	/* build_update_entries */
1298 	if (use_lwx_insns()) {
1299 		even = ptr;
1300 		odd = tmp;
1301 		UASM_i_LWX(p, even, scratch, tmp);
1302 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1303 		UASM_i_LWX(p, odd, scratch, tmp);
1304 	} else {
1305 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1306 		even = tmp;
1307 		odd = ptr;
1308 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1309 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1310 	}
1311 	if (cpu_has_rixi) {
1312 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1313 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1314 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1315 	} else {
1316 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1317 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1318 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1319 	}
1320 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1321 
1322 	if (c0_scratch >= 0) {
1323 		UASM_i_MFC0(p, scratch, 31, c0_scratch);
1324 		build_tlb_write_entry(p, l, r, tlb_random);
1325 		uasm_l_leave(l, *p);
1326 		rv.restore_scratch = 1;
1327 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1328 		build_tlb_write_entry(p, l, r, tlb_random);
1329 		uasm_l_leave(l, *p);
1330 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1331 	} else {
1332 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1333 		build_tlb_write_entry(p, l, r, tlb_random);
1334 		uasm_l_leave(l, *p);
1335 		rv.restore_scratch = 1;
1336 	}
1337 
1338 	uasm_i_eret(p); /* return from trap */
1339 
1340 	return rv;
1341 }
1342 
1343 /*
1344  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1345  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1346  * slots before the XTLB refill exception handler which belong to the
1347  * unused TLB refill exception.
1348  */
1349 #define MIPS64_REFILL_INSNS 32
1350 
1351 static void __cpuinit build_r4000_tlb_refill_handler(void)
1352 {
1353 	u32 *p = tlb_handler;
1354 	struct uasm_label *l = labels;
1355 	struct uasm_reloc *r = relocs;
1356 	u32 *f;
1357 	unsigned int final_len;
1358 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1359 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1360 
1361 	memset(tlb_handler, 0, sizeof(tlb_handler));
1362 	memset(labels, 0, sizeof(labels));
1363 	memset(relocs, 0, sizeof(relocs));
1364 	memset(final_handler, 0, sizeof(final_handler));
1365 
1366 	if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1367 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1368 							  scratch_reg);
1369 		vmalloc_mode = refill_scratch;
1370 	} else {
1371 		htlb_info.huge_pte = K0;
1372 		htlb_info.restore_scratch = 0;
1373 		vmalloc_mode = refill_noscratch;
1374 		/*
1375 		 * create the plain linear handler
1376 		 */
1377 		if (bcm1250_m3_war()) {
1378 			unsigned int segbits = 44;
1379 
1380 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1381 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1382 			uasm_i_xor(&p, K0, K0, K1);
1383 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1384 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1385 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1386 			uasm_i_or(&p, K0, K0, K1);
1387 			uasm_il_bnez(&p, &r, K0, label_leave);
1388 			/* No need for uasm_i_nop */
1389 		}
1390 
1391 #ifdef CONFIG_64BIT
1392 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1393 #else
1394 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1395 #endif
1396 
1397 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1398 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1399 #endif
1400 
1401 		build_get_ptep(&p, K0, K1);
1402 		build_update_entries(&p, K0, K1);
1403 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1404 		uasm_l_leave(&l, p);
1405 		uasm_i_eret(&p); /* return from trap */
1406 	}
1407 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1408 	uasm_l_tlb_huge_update(&l, p);
1409 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1410 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1411 				   htlb_info.restore_scratch);
1412 #endif
1413 
1414 #ifdef CONFIG_64BIT
1415 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1416 #endif
1417 
1418 	/*
1419 	 * Overflow check: For the 64bit handler, we need at least one
1420 	 * free instruction slot for the wrap-around branch. In worst
1421 	 * case, if the intended insertion point is a delay slot, we
1422 	 * need three, with the second nop'ed and the third being
1423 	 * unused.
1424 	 */
1425 	/* Loongson2 ebase is different than r4k, we have more space */
1426 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1427 	if ((p - tlb_handler) > 64)
1428 		panic("TLB refill handler space exceeded");
1429 #else
1430 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1431 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1432 		&& uasm_insn_has_bdelay(relocs,
1433 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1434 		panic("TLB refill handler space exceeded");
1435 #endif
1436 
1437 	/*
1438 	 * Now fold the handler in the TLB refill handler space.
1439 	 */
1440 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1441 	f = final_handler;
1442 	/* Simplest case, just copy the handler. */
1443 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1444 	final_len = p - tlb_handler;
1445 #else /* CONFIG_64BIT */
1446 	f = final_handler + MIPS64_REFILL_INSNS;
1447 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1448 		/* Just copy the handler. */
1449 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1450 		final_len = p - tlb_handler;
1451 	} else {
1452 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1453 		const enum label_id ls = label_tlb_huge_update;
1454 #else
1455 		const enum label_id ls = label_vmalloc;
1456 #endif
1457 		u32 *split;
1458 		int ov = 0;
1459 		int i;
1460 
1461 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1462 			;
1463 		BUG_ON(i == ARRAY_SIZE(labels));
1464 		split = labels[i].addr;
1465 
1466 		/*
1467 		 * See if we have overflown one way or the other.
1468 		 */
1469 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1470 		    split < p - MIPS64_REFILL_INSNS)
1471 			ov = 1;
1472 
1473 		if (ov) {
1474 			/*
1475 			 * Split two instructions before the end.  One
1476 			 * for the branch and one for the instruction
1477 			 * in the delay slot.
1478 			 */
1479 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1480 
1481 			/*
1482 			 * If the branch would fall in a delay slot,
1483 			 * we must back up an additional instruction
1484 			 * so that it is no longer in a delay slot.
1485 			 */
1486 			if (uasm_insn_has_bdelay(relocs, split - 1))
1487 				split--;
1488 		}
1489 		/* Copy first part of the handler. */
1490 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1491 		f += split - tlb_handler;
1492 
1493 		if (ov) {
1494 			/* Insert branch. */
1495 			uasm_l_split(&l, final_handler);
1496 			uasm_il_b(&f, &r, label_split);
1497 			if (uasm_insn_has_bdelay(relocs, split))
1498 				uasm_i_nop(&f);
1499 			else {
1500 				uasm_copy_handler(relocs, labels,
1501 						  split, split + 1, f);
1502 				uasm_move_labels(labels, f, f + 1, -1);
1503 				f++;
1504 				split++;
1505 			}
1506 		}
1507 
1508 		/* Copy the rest of the handler. */
1509 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1510 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1511 			    (p - split);
1512 	}
1513 #endif /* CONFIG_64BIT */
1514 
1515 	uasm_resolve_relocs(relocs, labels);
1516 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1517 		 final_len);
1518 
1519 	memcpy((void *)ebase, final_handler, 0x100);
1520 
1521 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1522 }
1523 
1524 /*
1525  * 128 instructions for the fastpath handler is generous and should
1526  * never be exceeded.
1527  */
1528 #define FASTPATH_SIZE 128
1529 
1530 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1531 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1532 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1533 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1534 u32 tlbmiss_handler_setup_pgd_array[16] __cacheline_aligned;
1535 
1536 static void __cpuinit build_r4000_setup_pgd(void)
1537 {
1538 	const int a0 = 4;
1539 	const int a1 = 5;
1540 	u32 *p = tlbmiss_handler_setup_pgd_array;
1541 	struct uasm_label *l = labels;
1542 	struct uasm_reloc *r = relocs;
1543 
1544 	memset(tlbmiss_handler_setup_pgd_array, 0, sizeof(tlbmiss_handler_setup_pgd_array));
1545 	memset(labels, 0, sizeof(labels));
1546 	memset(relocs, 0, sizeof(relocs));
1547 
1548 	pgd_reg = allocate_kscratch();
1549 
1550 	if (pgd_reg == -1) {
1551 		/* PGD << 11 in c0_Context */
1552 		/*
1553 		 * If it is a ckseg0 address, convert to a physical
1554 		 * address.  Shifting right by 29 and adding 4 will
1555 		 * result in zero for these addresses.
1556 		 *
1557 		 */
1558 		UASM_i_SRA(&p, a1, a0, 29);
1559 		UASM_i_ADDIU(&p, a1, a1, 4);
1560 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1561 		uasm_i_nop(&p);
1562 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1563 		uasm_l_tlbl_goaround1(&l, p);
1564 		UASM_i_SLL(&p, a0, a0, 11);
1565 		uasm_i_jr(&p, 31);
1566 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1567 	} else {
1568 		/* PGD in c0_KScratch */
1569 		uasm_i_jr(&p, 31);
1570 		UASM_i_MTC0(&p, a0, 31, pgd_reg);
1571 	}
1572 	if (p - tlbmiss_handler_setup_pgd_array > ARRAY_SIZE(tlbmiss_handler_setup_pgd_array))
1573 		panic("tlbmiss_handler_setup_pgd_array space exceeded");
1574 	uasm_resolve_relocs(relocs, labels);
1575 	pr_debug("Wrote tlbmiss_handler_setup_pgd_array (%u instructions).\n",
1576 		 (unsigned int)(p - tlbmiss_handler_setup_pgd_array));
1577 
1578 	dump_handler("tlbmiss_handler",
1579 		     tlbmiss_handler_setup_pgd_array,
1580 		     ARRAY_SIZE(tlbmiss_handler_setup_pgd_array));
1581 }
1582 #endif
1583 
1584 static void __cpuinit
1585 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1586 {
1587 #ifdef CONFIG_SMP
1588 # ifdef CONFIG_64BIT_PHYS_ADDR
1589 	if (cpu_has_64bits)
1590 		uasm_i_lld(p, pte, 0, ptr);
1591 	else
1592 # endif
1593 		UASM_i_LL(p, pte, 0, ptr);
1594 #else
1595 # ifdef CONFIG_64BIT_PHYS_ADDR
1596 	if (cpu_has_64bits)
1597 		uasm_i_ld(p, pte, 0, ptr);
1598 	else
1599 # endif
1600 		UASM_i_LW(p, pte, 0, ptr);
1601 #endif
1602 }
1603 
1604 static void __cpuinit
1605 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1606 	unsigned int mode)
1607 {
1608 #ifdef CONFIG_64BIT_PHYS_ADDR
1609 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1610 #endif
1611 
1612 	uasm_i_ori(p, pte, pte, mode);
1613 #ifdef CONFIG_SMP
1614 # ifdef CONFIG_64BIT_PHYS_ADDR
1615 	if (cpu_has_64bits)
1616 		uasm_i_scd(p, pte, 0, ptr);
1617 	else
1618 # endif
1619 		UASM_i_SC(p, pte, 0, ptr);
1620 
1621 	if (r10000_llsc_war())
1622 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1623 	else
1624 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1625 
1626 # ifdef CONFIG_64BIT_PHYS_ADDR
1627 	if (!cpu_has_64bits) {
1628 		/* no uasm_i_nop needed */
1629 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1630 		uasm_i_ori(p, pte, pte, hwmode);
1631 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1632 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1633 		/* no uasm_i_nop needed */
1634 		uasm_i_lw(p, pte, 0, ptr);
1635 	} else
1636 		uasm_i_nop(p);
1637 # else
1638 	uasm_i_nop(p);
1639 # endif
1640 #else
1641 # ifdef CONFIG_64BIT_PHYS_ADDR
1642 	if (cpu_has_64bits)
1643 		uasm_i_sd(p, pte, 0, ptr);
1644 	else
1645 # endif
1646 		UASM_i_SW(p, pte, 0, ptr);
1647 
1648 # ifdef CONFIG_64BIT_PHYS_ADDR
1649 	if (!cpu_has_64bits) {
1650 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1651 		uasm_i_ori(p, pte, pte, hwmode);
1652 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1653 		uasm_i_lw(p, pte, 0, ptr);
1654 	}
1655 # endif
1656 #endif
1657 }
1658 
1659 /*
1660  * Check if PTE is present, if not then jump to LABEL. PTR points to
1661  * the page table where this PTE is located, PTE will be re-loaded
1662  * with it's original value.
1663  */
1664 static void __cpuinit
1665 build_pte_present(u32 **p, struct uasm_reloc **r,
1666 		  int pte, int ptr, int scratch, enum label_id lid)
1667 {
1668 	int t = scratch >= 0 ? scratch : pte;
1669 
1670 	if (cpu_has_rixi) {
1671 		if (use_bbit_insns()) {
1672 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1673 			uasm_i_nop(p);
1674 		} else {
1675 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1676 			uasm_il_beqz(p, r, t, lid);
1677 			if (pte == t)
1678 				/* You lose the SMP race :-(*/
1679 				iPTE_LW(p, pte, ptr);
1680 		}
1681 	} else {
1682 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1683 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1684 		uasm_il_bnez(p, r, t, lid);
1685 		if (pte == t)
1686 			/* You lose the SMP race :-(*/
1687 			iPTE_LW(p, pte, ptr);
1688 	}
1689 }
1690 
1691 /* Make PTE valid, store result in PTR. */
1692 static void __cpuinit
1693 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1694 		 unsigned int ptr)
1695 {
1696 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1697 
1698 	iPTE_SW(p, r, pte, ptr, mode);
1699 }
1700 
1701 /*
1702  * Check if PTE can be written to, if not branch to LABEL. Regardless
1703  * restore PTE with value from PTR when done.
1704  */
1705 static void __cpuinit
1706 build_pte_writable(u32 **p, struct uasm_reloc **r,
1707 		   unsigned int pte, unsigned int ptr, int scratch,
1708 		   enum label_id lid)
1709 {
1710 	int t = scratch >= 0 ? scratch : pte;
1711 
1712 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1713 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1714 	uasm_il_bnez(p, r, t, lid);
1715 	if (pte == t)
1716 		/* You lose the SMP race :-(*/
1717 		iPTE_LW(p, pte, ptr);
1718 	else
1719 		uasm_i_nop(p);
1720 }
1721 
1722 /* Make PTE writable, update software status bits as well, then store
1723  * at PTR.
1724  */
1725 static void __cpuinit
1726 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1727 		 unsigned int ptr)
1728 {
1729 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1730 			     | _PAGE_DIRTY);
1731 
1732 	iPTE_SW(p, r, pte, ptr, mode);
1733 }
1734 
1735 /*
1736  * Check if PTE can be modified, if not branch to LABEL. Regardless
1737  * restore PTE with value from PTR when done.
1738  */
1739 static void __cpuinit
1740 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1741 		     unsigned int pte, unsigned int ptr, int scratch,
1742 		     enum label_id lid)
1743 {
1744 	if (use_bbit_insns()) {
1745 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1746 		uasm_i_nop(p);
1747 	} else {
1748 		int t = scratch >= 0 ? scratch : pte;
1749 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1750 		uasm_il_beqz(p, r, t, lid);
1751 		if (pte == t)
1752 			/* You lose the SMP race :-(*/
1753 			iPTE_LW(p, pte, ptr);
1754 	}
1755 }
1756 
1757 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1758 
1759 
1760 /*
1761  * R3000 style TLB load/store/modify handlers.
1762  */
1763 
1764 /*
1765  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1766  * Then it returns.
1767  */
1768 static void __cpuinit
1769 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1770 {
1771 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1772 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1773 	uasm_i_tlbwi(p);
1774 	uasm_i_jr(p, tmp);
1775 	uasm_i_rfe(p); /* branch delay */
1776 }
1777 
1778 /*
1779  * This places the pte into ENTRYLO0 and writes it with tlbwi
1780  * or tlbwr as appropriate.  This is because the index register
1781  * may have the probe fail bit set as a result of a trap on a
1782  * kseg2 access, i.e. without refill.  Then it returns.
1783  */
1784 static void __cpuinit
1785 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1786 			     struct uasm_reloc **r, unsigned int pte,
1787 			     unsigned int tmp)
1788 {
1789 	uasm_i_mfc0(p, tmp, C0_INDEX);
1790 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1791 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1792 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1793 	uasm_i_tlbwi(p); /* cp0 delay */
1794 	uasm_i_jr(p, tmp);
1795 	uasm_i_rfe(p); /* branch delay */
1796 	uasm_l_r3000_write_probe_fail(l, *p);
1797 	uasm_i_tlbwr(p); /* cp0 delay */
1798 	uasm_i_jr(p, tmp);
1799 	uasm_i_rfe(p); /* branch delay */
1800 }
1801 
1802 static void __cpuinit
1803 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1804 				   unsigned int ptr)
1805 {
1806 	long pgdc = (long)pgd_current;
1807 
1808 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1809 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1810 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1811 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1812 	uasm_i_sll(p, pte, pte, 2);
1813 	uasm_i_addu(p, ptr, ptr, pte);
1814 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1815 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1816 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1817 	uasm_i_addu(p, ptr, ptr, pte);
1818 	uasm_i_lw(p, pte, 0, ptr);
1819 	uasm_i_tlbp(p); /* load delay */
1820 }
1821 
1822 static void __cpuinit build_r3000_tlb_load_handler(void)
1823 {
1824 	u32 *p = handle_tlbl;
1825 	struct uasm_label *l = labels;
1826 	struct uasm_reloc *r = relocs;
1827 
1828 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1829 	memset(labels, 0, sizeof(labels));
1830 	memset(relocs, 0, sizeof(relocs));
1831 
1832 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1833 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1834 	uasm_i_nop(&p); /* load delay */
1835 	build_make_valid(&p, &r, K0, K1);
1836 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1837 
1838 	uasm_l_nopage_tlbl(&l, p);
1839 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1840 	uasm_i_nop(&p);
1841 
1842 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1843 		panic("TLB load handler fastpath space exceeded");
1844 
1845 	uasm_resolve_relocs(relocs, labels);
1846 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1847 		 (unsigned int)(p - handle_tlbl));
1848 
1849 	dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1850 }
1851 
1852 static void __cpuinit build_r3000_tlb_store_handler(void)
1853 {
1854 	u32 *p = handle_tlbs;
1855 	struct uasm_label *l = labels;
1856 	struct uasm_reloc *r = relocs;
1857 
1858 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1859 	memset(labels, 0, sizeof(labels));
1860 	memset(relocs, 0, sizeof(relocs));
1861 
1862 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1863 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1864 	uasm_i_nop(&p); /* load delay */
1865 	build_make_write(&p, &r, K0, K1);
1866 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1867 
1868 	uasm_l_nopage_tlbs(&l, p);
1869 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1870 	uasm_i_nop(&p);
1871 
1872 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1873 		panic("TLB store handler fastpath space exceeded");
1874 
1875 	uasm_resolve_relocs(relocs, labels);
1876 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1877 		 (unsigned int)(p - handle_tlbs));
1878 
1879 	dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1880 }
1881 
1882 static void __cpuinit build_r3000_tlb_modify_handler(void)
1883 {
1884 	u32 *p = handle_tlbm;
1885 	struct uasm_label *l = labels;
1886 	struct uasm_reloc *r = relocs;
1887 
1888 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1889 	memset(labels, 0, sizeof(labels));
1890 	memset(relocs, 0, sizeof(relocs));
1891 
1892 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1893 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1894 	uasm_i_nop(&p); /* load delay */
1895 	build_make_write(&p, &r, K0, K1);
1896 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1897 
1898 	uasm_l_nopage_tlbm(&l, p);
1899 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1900 	uasm_i_nop(&p);
1901 
1902 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1903 		panic("TLB modify handler fastpath space exceeded");
1904 
1905 	uasm_resolve_relocs(relocs, labels);
1906 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1907 		 (unsigned int)(p - handle_tlbm));
1908 
1909 	dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1910 }
1911 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1912 
1913 /*
1914  * R4000 style TLB load/store/modify handlers.
1915  */
1916 static struct work_registers __cpuinit
1917 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1918 				   struct uasm_reloc **r)
1919 {
1920 	struct work_registers wr = build_get_work_registers(p);
1921 
1922 #ifdef CONFIG_64BIT
1923 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1924 #else
1925 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1926 #endif
1927 
1928 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1929 	/*
1930 	 * For huge tlb entries, pmd doesn't contain an address but
1931 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1932 	 * see if we need to jump to huge tlb processing.
1933 	 */
1934 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1935 #endif
1936 
1937 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1938 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1939 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1940 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1941 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1942 
1943 #ifdef CONFIG_SMP
1944 	uasm_l_smp_pgtable_change(l, *p);
1945 #endif
1946 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1947 	if (!m4kc_tlbp_war())
1948 		build_tlb_probe_entry(p);
1949 	return wr;
1950 }
1951 
1952 static void __cpuinit
1953 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1954 				   struct uasm_reloc **r, unsigned int tmp,
1955 				   unsigned int ptr)
1956 {
1957 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1958 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1959 	build_update_entries(p, tmp, ptr);
1960 	build_tlb_write_entry(p, l, r, tlb_indexed);
1961 	uasm_l_leave(l, *p);
1962 	build_restore_work_registers(p);
1963 	uasm_i_eret(p); /* return from trap */
1964 
1965 #ifdef CONFIG_64BIT
1966 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1967 #endif
1968 }
1969 
1970 static void __cpuinit build_r4000_tlb_load_handler(void)
1971 {
1972 	u32 *p = handle_tlbl;
1973 	struct uasm_label *l = labels;
1974 	struct uasm_reloc *r = relocs;
1975 	struct work_registers wr;
1976 
1977 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1978 	memset(labels, 0, sizeof(labels));
1979 	memset(relocs, 0, sizeof(relocs));
1980 
1981 	if (bcm1250_m3_war()) {
1982 		unsigned int segbits = 44;
1983 
1984 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1985 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1986 		uasm_i_xor(&p, K0, K0, K1);
1987 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1988 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1989 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1990 		uasm_i_or(&p, K0, K0, K1);
1991 		uasm_il_bnez(&p, &r, K0, label_leave);
1992 		/* No need for uasm_i_nop */
1993 	}
1994 
1995 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1996 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1997 	if (m4kc_tlbp_war())
1998 		build_tlb_probe_entry(&p);
1999 
2000 	if (cpu_has_rixi) {
2001 		/*
2002 		 * If the page is not _PAGE_VALID, RI or XI could not
2003 		 * have triggered it.  Skip the expensive test..
2004 		 */
2005 		if (use_bbit_insns()) {
2006 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2007 				      label_tlbl_goaround1);
2008 		} else {
2009 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2010 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2011 		}
2012 		uasm_i_nop(&p);
2013 
2014 		uasm_i_tlbr(&p);
2015 		/* Examine  entrylo 0 or 1 based on ptr. */
2016 		if (use_bbit_insns()) {
2017 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2018 		} else {
2019 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2020 			uasm_i_beqz(&p, wr.r3, 8);
2021 		}
2022 		/* load it in the delay slot*/
2023 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2024 		/* load it if ptr is odd */
2025 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2026 		/*
2027 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2028 		 * XI must have triggered it.
2029 		 */
2030 		if (use_bbit_insns()) {
2031 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2032 			uasm_i_nop(&p);
2033 			uasm_l_tlbl_goaround1(&l, p);
2034 		} else {
2035 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2036 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2037 			uasm_i_nop(&p);
2038 		}
2039 		uasm_l_tlbl_goaround1(&l, p);
2040 	}
2041 	build_make_valid(&p, &r, wr.r1, wr.r2);
2042 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2043 
2044 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2045 	/*
2046 	 * This is the entry point when build_r4000_tlbchange_handler_head
2047 	 * spots a huge page.
2048 	 */
2049 	uasm_l_tlb_huge_update(&l, p);
2050 	iPTE_LW(&p, wr.r1, wr.r2);
2051 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2052 	build_tlb_probe_entry(&p);
2053 
2054 	if (cpu_has_rixi) {
2055 		/*
2056 		 * If the page is not _PAGE_VALID, RI or XI could not
2057 		 * have triggered it.  Skip the expensive test..
2058 		 */
2059 		if (use_bbit_insns()) {
2060 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2061 				      label_tlbl_goaround2);
2062 		} else {
2063 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2064 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2065 		}
2066 		uasm_i_nop(&p);
2067 
2068 		uasm_i_tlbr(&p);
2069 		/* Examine  entrylo 0 or 1 based on ptr. */
2070 		if (use_bbit_insns()) {
2071 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2072 		} else {
2073 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2074 			uasm_i_beqz(&p, wr.r3, 8);
2075 		}
2076 		/* load it in the delay slot*/
2077 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2078 		/* load it if ptr is odd */
2079 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2080 		/*
2081 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2082 		 * XI must have triggered it.
2083 		 */
2084 		if (use_bbit_insns()) {
2085 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2086 		} else {
2087 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2088 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2089 		}
2090 		if (PM_DEFAULT_MASK == 0)
2091 			uasm_i_nop(&p);
2092 		/*
2093 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2094 		 * it is restored in build_huge_tlb_write_entry.
2095 		 */
2096 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2097 
2098 		uasm_l_tlbl_goaround2(&l, p);
2099 	}
2100 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2101 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2102 #endif
2103 
2104 	uasm_l_nopage_tlbl(&l, p);
2105 	build_restore_work_registers(&p);
2106 #ifdef CONFIG_CPU_MICROMIPS
2107 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2108 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2109 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2110 		uasm_i_jr(&p, K0);
2111 	} else
2112 #endif
2113 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2114 	uasm_i_nop(&p);
2115 
2116 	if ((p - handle_tlbl) > FASTPATH_SIZE)
2117 		panic("TLB load handler fastpath space exceeded");
2118 
2119 	uasm_resolve_relocs(relocs, labels);
2120 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2121 		 (unsigned int)(p - handle_tlbl));
2122 
2123 	dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2124 }
2125 
2126 static void __cpuinit build_r4000_tlb_store_handler(void)
2127 {
2128 	u32 *p = handle_tlbs;
2129 	struct uasm_label *l = labels;
2130 	struct uasm_reloc *r = relocs;
2131 	struct work_registers wr;
2132 
2133 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
2134 	memset(labels, 0, sizeof(labels));
2135 	memset(relocs, 0, sizeof(relocs));
2136 
2137 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2138 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2139 	if (m4kc_tlbp_war())
2140 		build_tlb_probe_entry(&p);
2141 	build_make_write(&p, &r, wr.r1, wr.r2);
2142 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2143 
2144 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2145 	/*
2146 	 * This is the entry point when
2147 	 * build_r4000_tlbchange_handler_head spots a huge page.
2148 	 */
2149 	uasm_l_tlb_huge_update(&l, p);
2150 	iPTE_LW(&p, wr.r1, wr.r2);
2151 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2152 	build_tlb_probe_entry(&p);
2153 	uasm_i_ori(&p, wr.r1, wr.r1,
2154 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2155 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2156 #endif
2157 
2158 	uasm_l_nopage_tlbs(&l, p);
2159 	build_restore_work_registers(&p);
2160 #ifdef CONFIG_CPU_MICROMIPS
2161 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2162 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2163 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2164 		uasm_i_jr(&p, K0);
2165 	} else
2166 #endif
2167 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2168 	uasm_i_nop(&p);
2169 
2170 	if ((p - handle_tlbs) > FASTPATH_SIZE)
2171 		panic("TLB store handler fastpath space exceeded");
2172 
2173 	uasm_resolve_relocs(relocs, labels);
2174 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2175 		 (unsigned int)(p - handle_tlbs));
2176 
2177 	dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2178 }
2179 
2180 static void __cpuinit build_r4000_tlb_modify_handler(void)
2181 {
2182 	u32 *p = handle_tlbm;
2183 	struct uasm_label *l = labels;
2184 	struct uasm_reloc *r = relocs;
2185 	struct work_registers wr;
2186 
2187 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
2188 	memset(labels, 0, sizeof(labels));
2189 	memset(relocs, 0, sizeof(relocs));
2190 
2191 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2192 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2193 	if (m4kc_tlbp_war())
2194 		build_tlb_probe_entry(&p);
2195 	/* Present and writable bits set, set accessed and dirty bits. */
2196 	build_make_write(&p, &r, wr.r1, wr.r2);
2197 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2198 
2199 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2200 	/*
2201 	 * This is the entry point when
2202 	 * build_r4000_tlbchange_handler_head spots a huge page.
2203 	 */
2204 	uasm_l_tlb_huge_update(&l, p);
2205 	iPTE_LW(&p, wr.r1, wr.r2);
2206 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2207 	build_tlb_probe_entry(&p);
2208 	uasm_i_ori(&p, wr.r1, wr.r1,
2209 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2210 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2211 #endif
2212 
2213 	uasm_l_nopage_tlbm(&l, p);
2214 	build_restore_work_registers(&p);
2215 #ifdef CONFIG_CPU_MICROMIPS
2216 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2217 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2218 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2219 		uasm_i_jr(&p, K0);
2220 	} else
2221 #endif
2222 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2223 	uasm_i_nop(&p);
2224 
2225 	if ((p - handle_tlbm) > FASTPATH_SIZE)
2226 		panic("TLB modify handler fastpath space exceeded");
2227 
2228 	uasm_resolve_relocs(relocs, labels);
2229 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2230 		 (unsigned int)(p - handle_tlbm));
2231 
2232 	dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2233 }
2234 
2235 void __cpuinit build_tlb_refill_handler(void)
2236 {
2237 	/*
2238 	 * The refill handler is generated per-CPU, multi-node systems
2239 	 * may have local storage for it. The other handlers are only
2240 	 * needed once.
2241 	 */
2242 	static int run_once = 0;
2243 
2244 	output_pgtable_bits_defines();
2245 
2246 #ifdef CONFIG_64BIT
2247 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2248 #endif
2249 
2250 	switch (current_cpu_type()) {
2251 	case CPU_R2000:
2252 	case CPU_R3000:
2253 	case CPU_R3000A:
2254 	case CPU_R3081E:
2255 	case CPU_TX3912:
2256 	case CPU_TX3922:
2257 	case CPU_TX3927:
2258 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2259 		setup_asid(0x40, 0xfc0, 0xf000, ASID_FIRST_VERSION_R3000);
2260 		if (cpu_has_local_ebase)
2261 			build_r3000_tlb_refill_handler();
2262 		if (!run_once) {
2263 			if (!cpu_has_local_ebase)
2264 				build_r3000_tlb_refill_handler();
2265 			build_r3000_tlb_load_handler();
2266 			build_r3000_tlb_store_handler();
2267 			build_r3000_tlb_modify_handler();
2268 			run_once++;
2269 		}
2270 #else
2271 		panic("No R3000 TLB refill handler");
2272 #endif
2273 		break;
2274 
2275 	case CPU_R6000:
2276 	case CPU_R6000A:
2277 		panic("No R6000 TLB refill handler yet");
2278 		break;
2279 
2280 	case CPU_R8000:
2281 		panic("No R8000 TLB refill handler yet");
2282 		break;
2283 
2284 	default:
2285 #ifndef CONFIG_MIPS_MT_SMTC
2286 		setup_asid(0x1, 0xff, 0xff00, ASID_FIRST_VERSION_R4000);
2287 #else
2288 		setup_asid(0x1, smtc_asid_mask, 0xff00, ASID_FIRST_VERSION_R4000);
2289 #endif
2290 		if (!run_once) {
2291 			scratch_reg = allocate_kscratch();
2292 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2293 			build_r4000_setup_pgd();
2294 #endif
2295 			build_r4000_tlb_load_handler();
2296 			build_r4000_tlb_store_handler();
2297 			build_r4000_tlb_modify_handler();
2298 			if (!cpu_has_local_ebase)
2299 				build_r4000_tlb_refill_handler();
2300 			run_once++;
2301 		}
2302 		if (cpu_has_local_ebase)
2303 			build_r4000_tlb_refill_handler();
2304 	}
2305 }
2306 
2307 void __cpuinit flush_tlb_handlers(void)
2308 {
2309 	local_flush_icache_range((unsigned long)handle_tlbl,
2310 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2311 	local_flush_icache_range((unsigned long)handle_tlbs,
2312 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2313 	local_flush_icache_range((unsigned long)handle_tlbm,
2314 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2315 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2316 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd_array,
2317 			   (unsigned long)tlbmiss_handler_setup_pgd_array + sizeof(handle_tlbm));
2318 #endif
2319 }
2320