xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision e190bfe5)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009  Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  *
13  * ... and the days got worse and worse and now you see
14  * I've gone completly out of my mind.
15  *
16  * They're coming to take me a away haha
17  * they're coming to take me a away hoho hihi haha
18  * to the funny farm where code is beautiful all the time ...
19  *
20  * (Condolences to Napoleon XIV)
21  */
22 
23 #include <linux/bug.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/smp.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29 
30 #include <asm/mmu_context.h>
31 #include <asm/war.h>
32 #include <asm/uasm.h>
33 
34 /*
35  * TLB load/store/modify handlers.
36  *
37  * Only the fastpath gets synthesized at runtime, the slowpath for
38  * do_page_fault remains normal asm.
39  */
40 extern void tlb_do_page_fault_0(void);
41 extern void tlb_do_page_fault_1(void);
42 
43 
44 static inline int r45k_bvahwbug(void)
45 {
46 	/* XXX: We should probe for the presence of this bug, but we don't. */
47 	return 0;
48 }
49 
50 static inline int r4k_250MHZhwbug(void)
51 {
52 	/* XXX: We should probe for the presence of this bug, but we don't. */
53 	return 0;
54 }
55 
56 static inline int __maybe_unused bcm1250_m3_war(void)
57 {
58 	return BCM1250_M3_WAR;
59 }
60 
61 static inline int __maybe_unused r10000_llsc_war(void)
62 {
63 	return R10000_LLSC_WAR;
64 }
65 
66 /*
67  * Found by experiment: At least some revisions of the 4kc throw under
68  * some circumstances a machine check exception, triggered by invalid
69  * values in the index register.  Delaying the tlbp instruction until
70  * after the next branch,  plus adding an additional nop in front of
71  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
72  * why; it's not an issue caused by the core RTL.
73  *
74  */
75 static int __cpuinit m4kc_tlbp_war(void)
76 {
77 	return (current_cpu_data.processor_id & 0xffff00) ==
78 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
79 }
80 
81 /* Handle labels (which must be positive integers). */
82 enum label_id {
83 	label_second_part = 1,
84 	label_leave,
85 	label_vmalloc,
86 	label_vmalloc_done,
87 	label_tlbw_hazard,
88 	label_split,
89 	label_tlbl_goaround1,
90 	label_tlbl_goaround2,
91 	label_nopage_tlbl,
92 	label_nopage_tlbs,
93 	label_nopage_tlbm,
94 	label_smp_pgtable_change,
95 	label_r3000_write_probe_fail,
96 	label_large_segbits_fault,
97 #ifdef CONFIG_HUGETLB_PAGE
98 	label_tlb_huge_update,
99 #endif
100 };
101 
102 UASM_L_LA(_second_part)
103 UASM_L_LA(_leave)
104 UASM_L_LA(_vmalloc)
105 UASM_L_LA(_vmalloc_done)
106 UASM_L_LA(_tlbw_hazard)
107 UASM_L_LA(_split)
108 UASM_L_LA(_tlbl_goaround1)
109 UASM_L_LA(_tlbl_goaround2)
110 UASM_L_LA(_nopage_tlbl)
111 UASM_L_LA(_nopage_tlbs)
112 UASM_L_LA(_nopage_tlbm)
113 UASM_L_LA(_smp_pgtable_change)
114 UASM_L_LA(_r3000_write_probe_fail)
115 UASM_L_LA(_large_segbits_fault)
116 #ifdef CONFIG_HUGETLB_PAGE
117 UASM_L_LA(_tlb_huge_update)
118 #endif
119 
120 /*
121  * For debug purposes.
122  */
123 static inline void dump_handler(const u32 *handler, int count)
124 {
125 	int i;
126 
127 	pr_debug("\t.set push\n");
128 	pr_debug("\t.set noreorder\n");
129 
130 	for (i = 0; i < count; i++)
131 		pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
132 
133 	pr_debug("\t.set pop\n");
134 }
135 
136 /* The only general purpose registers allowed in TLB handlers. */
137 #define K0		26
138 #define K1		27
139 
140 /* Some CP0 registers */
141 #define C0_INDEX	0, 0
142 #define C0_ENTRYLO0	2, 0
143 #define C0_TCBIND	2, 2
144 #define C0_ENTRYLO1	3, 0
145 #define C0_CONTEXT	4, 0
146 #define C0_PAGEMASK	5, 0
147 #define C0_BADVADDR	8, 0
148 #define C0_ENTRYHI	10, 0
149 #define C0_EPC		14, 0
150 #define C0_XCONTEXT	20, 0
151 
152 #ifdef CONFIG_64BIT
153 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
154 #else
155 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
156 #endif
157 
158 /* The worst case length of the handler is around 18 instructions for
159  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
160  * Maximum space available is 32 instructions for R3000 and 64
161  * instructions for R4000.
162  *
163  * We deliberately chose a buffer size of 128, so we won't scribble
164  * over anything important on overflow before we panic.
165  */
166 static u32 tlb_handler[128] __cpuinitdata;
167 
168 /* simply assume worst case size for labels and relocs */
169 static struct uasm_label labels[128] __cpuinitdata;
170 static struct uasm_reloc relocs[128] __cpuinitdata;
171 
172 #ifdef CONFIG_64BIT
173 static int check_for_high_segbits __cpuinitdata;
174 #endif
175 
176 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
177 /*
178  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
179  * we cannot do r3000 under these circumstances.
180  */
181 
182 /*
183  * The R3000 TLB handler is simple.
184  */
185 static void __cpuinit build_r3000_tlb_refill_handler(void)
186 {
187 	long pgdc = (long)pgd_current;
188 	u32 *p;
189 
190 	memset(tlb_handler, 0, sizeof(tlb_handler));
191 	p = tlb_handler;
192 
193 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
194 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
195 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
196 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
197 	uasm_i_sll(&p, K0, K0, 2);
198 	uasm_i_addu(&p, K1, K1, K0);
199 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
200 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
201 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
202 	uasm_i_addu(&p, K1, K1, K0);
203 	uasm_i_lw(&p, K0, 0, K1);
204 	uasm_i_nop(&p); /* load delay */
205 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
206 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
207 	uasm_i_tlbwr(&p); /* cp0 delay */
208 	uasm_i_jr(&p, K1);
209 	uasm_i_rfe(&p); /* branch delay */
210 
211 	if (p > tlb_handler + 32)
212 		panic("TLB refill handler space exceeded");
213 
214 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
215 		 (unsigned int)(p - tlb_handler));
216 
217 	memcpy((void *)ebase, tlb_handler, 0x80);
218 
219 	dump_handler((u32 *)ebase, 32);
220 }
221 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
222 
223 /*
224  * The R4000 TLB handler is much more complicated. We have two
225  * consecutive handler areas with 32 instructions space each.
226  * Since they aren't used at the same time, we can overflow in the
227  * other one.To keep things simple, we first assume linear space,
228  * then we relocate it to the final handler layout as needed.
229  */
230 static u32 final_handler[64] __cpuinitdata;
231 
232 /*
233  * Hazards
234  *
235  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
236  * 2. A timing hazard exists for the TLBP instruction.
237  *
238  *      stalling_instruction
239  *      TLBP
240  *
241  * The JTLB is being read for the TLBP throughout the stall generated by the
242  * previous instruction. This is not really correct as the stalling instruction
243  * can modify the address used to access the JTLB.  The failure symptom is that
244  * the TLBP instruction will use an address created for the stalling instruction
245  * and not the address held in C0_ENHI and thus report the wrong results.
246  *
247  * The software work-around is to not allow the instruction preceding the TLBP
248  * to stall - make it an NOP or some other instruction guaranteed not to stall.
249  *
250  * Errata 2 will not be fixed.  This errata is also on the R5000.
251  *
252  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
253  */
254 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
255 {
256 	switch (current_cpu_type()) {
257 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
258 	case CPU_R4600:
259 	case CPU_R4700:
260 	case CPU_R5000:
261 	case CPU_R5000A:
262 	case CPU_NEVADA:
263 		uasm_i_nop(p);
264 		uasm_i_tlbp(p);
265 		break;
266 
267 	default:
268 		uasm_i_tlbp(p);
269 		break;
270 	}
271 }
272 
273 /*
274  * Write random or indexed TLB entry, and care about the hazards from
275  * the preceeding mtc0 and for the following eret.
276  */
277 enum tlb_write_entry { tlb_random, tlb_indexed };
278 
279 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
280 					 struct uasm_reloc **r,
281 					 enum tlb_write_entry wmode)
282 {
283 	void(*tlbw)(u32 **) = NULL;
284 
285 	switch (wmode) {
286 	case tlb_random: tlbw = uasm_i_tlbwr; break;
287 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
288 	}
289 
290 	if (cpu_has_mips_r2) {
291 		if (cpu_has_mips_r2_exec_hazard)
292 			uasm_i_ehb(p);
293 		tlbw(p);
294 		return;
295 	}
296 
297 	switch (current_cpu_type()) {
298 	case CPU_R4000PC:
299 	case CPU_R4000SC:
300 	case CPU_R4000MC:
301 	case CPU_R4400PC:
302 	case CPU_R4400SC:
303 	case CPU_R4400MC:
304 		/*
305 		 * This branch uses up a mtc0 hazard nop slot and saves
306 		 * two nops after the tlbw instruction.
307 		 */
308 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
309 		tlbw(p);
310 		uasm_l_tlbw_hazard(l, *p);
311 		uasm_i_nop(p);
312 		break;
313 
314 	case CPU_R4600:
315 	case CPU_R4700:
316 	case CPU_R5000:
317 	case CPU_R5000A:
318 		uasm_i_nop(p);
319 		tlbw(p);
320 		uasm_i_nop(p);
321 		break;
322 
323 	case CPU_R4300:
324 	case CPU_5KC:
325 	case CPU_TX49XX:
326 	case CPU_PR4450:
327 		uasm_i_nop(p);
328 		tlbw(p);
329 		break;
330 
331 	case CPU_R10000:
332 	case CPU_R12000:
333 	case CPU_R14000:
334 	case CPU_4KC:
335 	case CPU_4KEC:
336 	case CPU_SB1:
337 	case CPU_SB1A:
338 	case CPU_4KSC:
339 	case CPU_20KC:
340 	case CPU_25KF:
341 	case CPU_BCM3302:
342 	case CPU_BCM4710:
343 	case CPU_LOONGSON2:
344 	case CPU_BCM6338:
345 	case CPU_BCM6345:
346 	case CPU_BCM6348:
347 	case CPU_BCM6358:
348 	case CPU_R5500:
349 		if (m4kc_tlbp_war())
350 			uasm_i_nop(p);
351 	case CPU_ALCHEMY:
352 		tlbw(p);
353 		break;
354 
355 	case CPU_NEVADA:
356 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
357 		/*
358 		 * This branch uses up a mtc0 hazard nop slot and saves
359 		 * a nop after the tlbw instruction.
360 		 */
361 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
362 		tlbw(p);
363 		uasm_l_tlbw_hazard(l, *p);
364 		break;
365 
366 	case CPU_RM7000:
367 		uasm_i_nop(p);
368 		uasm_i_nop(p);
369 		uasm_i_nop(p);
370 		uasm_i_nop(p);
371 		tlbw(p);
372 		break;
373 
374 	case CPU_RM9000:
375 		/*
376 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
377 		 * use of the JTLB for instructions should not occur for 4
378 		 * cpu cycles and use for data translations should not occur
379 		 * for 3 cpu cycles.
380 		 */
381 		uasm_i_ssnop(p);
382 		uasm_i_ssnop(p);
383 		uasm_i_ssnop(p);
384 		uasm_i_ssnop(p);
385 		tlbw(p);
386 		uasm_i_ssnop(p);
387 		uasm_i_ssnop(p);
388 		uasm_i_ssnop(p);
389 		uasm_i_ssnop(p);
390 		break;
391 
392 	case CPU_VR4111:
393 	case CPU_VR4121:
394 	case CPU_VR4122:
395 	case CPU_VR4181:
396 	case CPU_VR4181A:
397 		uasm_i_nop(p);
398 		uasm_i_nop(p);
399 		tlbw(p);
400 		uasm_i_nop(p);
401 		uasm_i_nop(p);
402 		break;
403 
404 	case CPU_VR4131:
405 	case CPU_VR4133:
406 	case CPU_R5432:
407 		uasm_i_nop(p);
408 		uasm_i_nop(p);
409 		tlbw(p);
410 		break;
411 
412 	default:
413 		panic("No TLB refill handler yet (CPU type: %d)",
414 		      current_cpu_data.cputype);
415 		break;
416 	}
417 }
418 
419 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
420 								  unsigned int reg)
421 {
422 	if (kernel_uses_smartmips_rixi) {
423 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
424 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
425 	} else {
426 #ifdef CONFIG_64BIT_PHYS_ADDR
427 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
428 #else
429 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
430 #endif
431 	}
432 }
433 
434 #ifdef CONFIG_HUGETLB_PAGE
435 
436 static __cpuinit void build_restore_pagemask(u32 **p,
437 					     struct uasm_reloc **r,
438 					     unsigned int tmp,
439 					     enum label_id lid)
440 {
441 	/* Reset default page size */
442 	if (PM_DEFAULT_MASK >> 16) {
443 		uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
444 		uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
445 		uasm_il_b(p, r, lid);
446 		uasm_i_mtc0(p, tmp, C0_PAGEMASK);
447 	} else if (PM_DEFAULT_MASK) {
448 		uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
449 		uasm_il_b(p, r, lid);
450 		uasm_i_mtc0(p, tmp, C0_PAGEMASK);
451 	} else {
452 		uasm_il_b(p, r, lid);
453 		uasm_i_mtc0(p, 0, C0_PAGEMASK);
454 	}
455 }
456 
457 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
458 						 struct uasm_label **l,
459 						 struct uasm_reloc **r,
460 						 unsigned int tmp,
461 						 enum tlb_write_entry wmode)
462 {
463 	/* Set huge page tlb entry size */
464 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
465 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
466 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
467 
468 	build_tlb_write_entry(p, l, r, wmode);
469 
470 	build_restore_pagemask(p, r, tmp, label_leave);
471 }
472 
473 /*
474  * Check if Huge PTE is present, if so then jump to LABEL.
475  */
476 static void __cpuinit
477 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
478 		unsigned int pmd, int lid)
479 {
480 	UASM_i_LW(p, tmp, 0, pmd);
481 	uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
482 	uasm_il_bnez(p, r, tmp, lid);
483 }
484 
485 static __cpuinit void build_huge_update_entries(u32 **p,
486 						unsigned int pte,
487 						unsigned int tmp)
488 {
489 	int small_sequence;
490 
491 	/*
492 	 * A huge PTE describes an area the size of the
493 	 * configured huge page size. This is twice the
494 	 * of the large TLB entry size we intend to use.
495 	 * A TLB entry half the size of the configured
496 	 * huge page size is configured into entrylo0
497 	 * and entrylo1 to cover the contiguous huge PTE
498 	 * address space.
499 	 */
500 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
501 
502 	/* We can clobber tmp.  It isn't used after this.*/
503 	if (!small_sequence)
504 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
505 
506 	build_convert_pte_to_entrylo(p, pte);
507 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
508 	/* convert to entrylo1 */
509 	if (small_sequence)
510 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
511 	else
512 		UASM_i_ADDU(p, pte, pte, tmp);
513 
514 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
515 }
516 
517 static __cpuinit void build_huge_handler_tail(u32 **p,
518 					      struct uasm_reloc **r,
519 					      struct uasm_label **l,
520 					      unsigned int pte,
521 					      unsigned int ptr)
522 {
523 #ifdef CONFIG_SMP
524 	UASM_i_SC(p, pte, 0, ptr);
525 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
526 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
527 #else
528 	UASM_i_SW(p, pte, 0, ptr);
529 #endif
530 	build_huge_update_entries(p, pte, ptr);
531 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed);
532 }
533 #endif /* CONFIG_HUGETLB_PAGE */
534 
535 #ifdef CONFIG_64BIT
536 /*
537  * TMP and PTR are scratch.
538  * TMP will be clobbered, PTR will hold the pmd entry.
539  */
540 static void __cpuinit
541 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
542 		 unsigned int tmp, unsigned int ptr)
543 {
544 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
545 	long pgdc = (long)pgd_current;
546 #endif
547 	/*
548 	 * The vmalloc handling is not in the hotpath.
549 	 */
550 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
551 
552 	if (check_for_high_segbits) {
553 		/*
554 		 * The kernel currently implicitely assumes that the
555 		 * MIPS SEGBITS parameter for the processor is
556 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
557 		 * allocate virtual addresses outside the maximum
558 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
559 		 * that doesn't prevent user code from accessing the
560 		 * higher xuseg addresses.  Here, we make sure that
561 		 * everything but the lower xuseg addresses goes down
562 		 * the module_alloc/vmalloc path.
563 		 */
564 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
565 		uasm_il_bnez(p, r, ptr, label_vmalloc);
566 	} else {
567 		uasm_il_bltz(p, r, tmp, label_vmalloc);
568 	}
569 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
570 
571 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
572 	/*
573 	 * &pgd << 11 stored in CONTEXT [23..63].
574 	 */
575 	UASM_i_MFC0(p, ptr, C0_CONTEXT);
576 	uasm_i_dins(p, ptr, 0, 0, 23); /* Clear lower 23 bits of context. */
577 	uasm_i_ori(p, ptr, ptr, 0x540); /* 1 0  1 0 1  << 6  xkphys cached */
578 	uasm_i_drotr(p, ptr, ptr, 11);
579 #elif defined(CONFIG_SMP)
580 # ifdef  CONFIG_MIPS_MT_SMTC
581 	/*
582 	 * SMTC uses TCBind value as "CPU" index
583 	 */
584 	uasm_i_mfc0(p, ptr, C0_TCBIND);
585 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
586 # else
587 	/*
588 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
589 	 * stored in CONTEXT.
590 	 */
591 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
592 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
593 # endif
594 	UASM_i_LA_mostly(p, tmp, pgdc);
595 	uasm_i_daddu(p, ptr, ptr, tmp);
596 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
597 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
598 #else
599 	UASM_i_LA_mostly(p, ptr, pgdc);
600 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
601 #endif
602 
603 	uasm_l_vmalloc_done(l, *p);
604 
605 	/* get pgd offset in bytes */
606 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
607 
608 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
609 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
610 #ifndef __PAGETABLE_PMD_FOLDED
611 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
612 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
613 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
614 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
615 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
616 #endif
617 }
618 
619 enum vmalloc64_mode {not_refill, refill};
620 /*
621  * BVADDR is the faulting address, PTR is scratch.
622  * PTR will hold the pgd for vmalloc.
623  */
624 static void __cpuinit
625 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
626 			unsigned int bvaddr, unsigned int ptr,
627 			enum vmalloc64_mode mode)
628 {
629 	long swpd = (long)swapper_pg_dir;
630 	int single_insn_swpd;
631 	int did_vmalloc_branch = 0;
632 
633 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
634 
635 	uasm_l_vmalloc(l, *p);
636 
637 	if (mode == refill && check_for_high_segbits) {
638 		if (single_insn_swpd) {
639 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
640 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
641 			did_vmalloc_branch = 1;
642 			/* fall through */
643 		} else {
644 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
645 		}
646 	}
647 	if (!did_vmalloc_branch) {
648 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
649 			uasm_il_b(p, r, label_vmalloc_done);
650 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
651 		} else {
652 			UASM_i_LA_mostly(p, ptr, swpd);
653 			uasm_il_b(p, r, label_vmalloc_done);
654 			if (uasm_in_compat_space_p(swpd))
655 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
656 			else
657 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
658 		}
659 	}
660 	if (mode == refill && check_for_high_segbits) {
661 		uasm_l_large_segbits_fault(l, *p);
662 		/*
663 		 * We get here if we are an xsseg address, or if we are
664 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
665 		 *
666 		 * Ignoring xsseg (assume disabled so would generate
667 		 * (address errors?), the only remaining possibility
668 		 * is the upper xuseg addresses.  On processors with
669 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
670 		 * addresses would have taken an address error. We try
671 		 * to mimic that here by taking a load/istream page
672 		 * fault.
673 		 */
674 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
675 		uasm_i_jr(p, ptr);
676 		uasm_i_nop(p);
677 	}
678 }
679 
680 #else /* !CONFIG_64BIT */
681 
682 /*
683  * TMP and PTR are scratch.
684  * TMP will be clobbered, PTR will hold the pgd entry.
685  */
686 static void __cpuinit __maybe_unused
687 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
688 {
689 	long pgdc = (long)pgd_current;
690 
691 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
692 #ifdef CONFIG_SMP
693 #ifdef  CONFIG_MIPS_MT_SMTC
694 	/*
695 	 * SMTC uses TCBind value as "CPU" index
696 	 */
697 	uasm_i_mfc0(p, ptr, C0_TCBIND);
698 	UASM_i_LA_mostly(p, tmp, pgdc);
699 	uasm_i_srl(p, ptr, ptr, 19);
700 #else
701 	/*
702 	 * smp_processor_id() << 3 is stored in CONTEXT.
703          */
704 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
705 	UASM_i_LA_mostly(p, tmp, pgdc);
706 	uasm_i_srl(p, ptr, ptr, 23);
707 #endif
708 	uasm_i_addu(p, ptr, tmp, ptr);
709 #else
710 	UASM_i_LA_mostly(p, ptr, pgdc);
711 #endif
712 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
713 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
714 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
715 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
716 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
717 }
718 
719 #endif /* !CONFIG_64BIT */
720 
721 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
722 {
723 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
724 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
725 
726 	switch (current_cpu_type()) {
727 	case CPU_VR41XX:
728 	case CPU_VR4111:
729 	case CPU_VR4121:
730 	case CPU_VR4122:
731 	case CPU_VR4131:
732 	case CPU_VR4181:
733 	case CPU_VR4181A:
734 	case CPU_VR4133:
735 		shift += 2;
736 		break;
737 
738 	default:
739 		break;
740 	}
741 
742 	if (shift)
743 		UASM_i_SRL(p, ctx, ctx, shift);
744 	uasm_i_andi(p, ctx, ctx, mask);
745 }
746 
747 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
748 {
749 	/*
750 	 * Bug workaround for the Nevada. It seems as if under certain
751 	 * circumstances the move from cp0_context might produce a
752 	 * bogus result when the mfc0 instruction and its consumer are
753 	 * in a different cacheline or a load instruction, probably any
754 	 * memory reference, is between them.
755 	 */
756 	switch (current_cpu_type()) {
757 	case CPU_NEVADA:
758 		UASM_i_LW(p, ptr, 0, ptr);
759 		GET_CONTEXT(p, tmp); /* get context reg */
760 		break;
761 
762 	default:
763 		GET_CONTEXT(p, tmp); /* get context reg */
764 		UASM_i_LW(p, ptr, 0, ptr);
765 		break;
766 	}
767 
768 	build_adjust_context(p, tmp);
769 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
770 }
771 
772 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
773 					unsigned int ptep)
774 {
775 	/*
776 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
777 	 * Kernel is a special case. Only a few CPUs use it.
778 	 */
779 #ifdef CONFIG_64BIT_PHYS_ADDR
780 	if (cpu_has_64bits) {
781 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
782 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
783 		if (kernel_uses_smartmips_rixi) {
784 			UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
785 			UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
786 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
787 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
788 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
789 		} else {
790 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
791 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
792 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
793 		}
794 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
795 	} else {
796 		int pte_off_even = sizeof(pte_t) / 2;
797 		int pte_off_odd = pte_off_even + sizeof(pte_t);
798 
799 		/* The pte entries are pre-shifted */
800 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
801 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
802 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
803 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
804 	}
805 #else
806 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
807 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
808 	if (r45k_bvahwbug())
809 		build_tlb_probe_entry(p);
810 	if (kernel_uses_smartmips_rixi) {
811 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
812 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
813 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
814 		if (r4k_250MHZhwbug())
815 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
816 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
817 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
818 	} else {
819 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
820 		if (r4k_250MHZhwbug())
821 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
822 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
823 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
824 		if (r45k_bvahwbug())
825 			uasm_i_mfc0(p, tmp, C0_INDEX);
826 	}
827 	if (r4k_250MHZhwbug())
828 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
829 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
830 #endif
831 }
832 
833 /*
834  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
835  * because EXL == 0.  If we wrap, we can also use the 32 instruction
836  * slots before the XTLB refill exception handler which belong to the
837  * unused TLB refill exception.
838  */
839 #define MIPS64_REFILL_INSNS 32
840 
841 static void __cpuinit build_r4000_tlb_refill_handler(void)
842 {
843 	u32 *p = tlb_handler;
844 	struct uasm_label *l = labels;
845 	struct uasm_reloc *r = relocs;
846 	u32 *f;
847 	unsigned int final_len;
848 
849 	memset(tlb_handler, 0, sizeof(tlb_handler));
850 	memset(labels, 0, sizeof(labels));
851 	memset(relocs, 0, sizeof(relocs));
852 	memset(final_handler, 0, sizeof(final_handler));
853 
854 	/*
855 	 * create the plain linear handler
856 	 */
857 	if (bcm1250_m3_war()) {
858 		unsigned int segbits = 44;
859 
860 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
861 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
862 		uasm_i_xor(&p, K0, K0, K1);
863 		uasm_i_dsrl_safe(&p, K1, K0, 62);
864 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
865 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
866 		uasm_i_or(&p, K0, K0, K1);
867 		uasm_il_bnez(&p, &r, K0, label_leave);
868 		/* No need for uasm_i_nop */
869 	}
870 
871 #ifdef CONFIG_64BIT
872 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
873 #else
874 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
875 #endif
876 
877 #ifdef CONFIG_HUGETLB_PAGE
878 	build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
879 #endif
880 
881 	build_get_ptep(&p, K0, K1);
882 	build_update_entries(&p, K0, K1);
883 	build_tlb_write_entry(&p, &l, &r, tlb_random);
884 	uasm_l_leave(&l, p);
885 	uasm_i_eret(&p); /* return from trap */
886 
887 #ifdef CONFIG_HUGETLB_PAGE
888 	uasm_l_tlb_huge_update(&l, p);
889 	UASM_i_LW(&p, K0, 0, K1);
890 	build_huge_update_entries(&p, K0, K1);
891 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random);
892 #endif
893 
894 #ifdef CONFIG_64BIT
895 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, refill);
896 #endif
897 
898 	/*
899 	 * Overflow check: For the 64bit handler, we need at least one
900 	 * free instruction slot for the wrap-around branch. In worst
901 	 * case, if the intended insertion point is a delay slot, we
902 	 * need three, with the second nop'ed and the third being
903 	 * unused.
904 	 */
905 	/* Loongson2 ebase is different than r4k, we have more space */
906 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
907 	if ((p - tlb_handler) > 64)
908 		panic("TLB refill handler space exceeded");
909 #else
910 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
911 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
912 		&& uasm_insn_has_bdelay(relocs,
913 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
914 		panic("TLB refill handler space exceeded");
915 #endif
916 
917 	/*
918 	 * Now fold the handler in the TLB refill handler space.
919 	 */
920 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
921 	f = final_handler;
922 	/* Simplest case, just copy the handler. */
923 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
924 	final_len = p - tlb_handler;
925 #else /* CONFIG_64BIT */
926 	f = final_handler + MIPS64_REFILL_INSNS;
927 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
928 		/* Just copy the handler. */
929 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
930 		final_len = p - tlb_handler;
931 	} else {
932 #if defined(CONFIG_HUGETLB_PAGE)
933 		const enum label_id ls = label_tlb_huge_update;
934 #else
935 		const enum label_id ls = label_vmalloc;
936 #endif
937 		u32 *split;
938 		int ov = 0;
939 		int i;
940 
941 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
942 			;
943 		BUG_ON(i == ARRAY_SIZE(labels));
944 		split = labels[i].addr;
945 
946 		/*
947 		 * See if we have overflown one way or the other.
948 		 */
949 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
950 		    split < p - MIPS64_REFILL_INSNS)
951 			ov = 1;
952 
953 		if (ov) {
954 			/*
955 			 * Split two instructions before the end.  One
956 			 * for the branch and one for the instruction
957 			 * in the delay slot.
958 			 */
959 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
960 
961 			/*
962 			 * If the branch would fall in a delay slot,
963 			 * we must back up an additional instruction
964 			 * so that it is no longer in a delay slot.
965 			 */
966 			if (uasm_insn_has_bdelay(relocs, split - 1))
967 				split--;
968 		}
969 		/* Copy first part of the handler. */
970 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
971 		f += split - tlb_handler;
972 
973 		if (ov) {
974 			/* Insert branch. */
975 			uasm_l_split(&l, final_handler);
976 			uasm_il_b(&f, &r, label_split);
977 			if (uasm_insn_has_bdelay(relocs, split))
978 				uasm_i_nop(&f);
979 			else {
980 				uasm_copy_handler(relocs, labels,
981 						  split, split + 1, f);
982 				uasm_move_labels(labels, f, f + 1, -1);
983 				f++;
984 				split++;
985 			}
986 		}
987 
988 		/* Copy the rest of the handler. */
989 		uasm_copy_handler(relocs, labels, split, p, final_handler);
990 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
991 			    (p - split);
992 	}
993 #endif /* CONFIG_64BIT */
994 
995 	uasm_resolve_relocs(relocs, labels);
996 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
997 		 final_len);
998 
999 	memcpy((void *)ebase, final_handler, 0x100);
1000 
1001 	dump_handler((u32 *)ebase, 64);
1002 }
1003 
1004 /*
1005  * 128 instructions for the fastpath handler is generous and should
1006  * never be exceeded.
1007  */
1008 #define FASTPATH_SIZE 128
1009 
1010 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1011 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1012 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1013 
1014 static void __cpuinit
1015 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1016 {
1017 #ifdef CONFIG_SMP
1018 # ifdef CONFIG_64BIT_PHYS_ADDR
1019 	if (cpu_has_64bits)
1020 		uasm_i_lld(p, pte, 0, ptr);
1021 	else
1022 # endif
1023 		UASM_i_LL(p, pte, 0, ptr);
1024 #else
1025 # ifdef CONFIG_64BIT_PHYS_ADDR
1026 	if (cpu_has_64bits)
1027 		uasm_i_ld(p, pte, 0, ptr);
1028 	else
1029 # endif
1030 		UASM_i_LW(p, pte, 0, ptr);
1031 #endif
1032 }
1033 
1034 static void __cpuinit
1035 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1036 	unsigned int mode)
1037 {
1038 #ifdef CONFIG_64BIT_PHYS_ADDR
1039 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1040 #endif
1041 
1042 	uasm_i_ori(p, pte, pte, mode);
1043 #ifdef CONFIG_SMP
1044 # ifdef CONFIG_64BIT_PHYS_ADDR
1045 	if (cpu_has_64bits)
1046 		uasm_i_scd(p, pte, 0, ptr);
1047 	else
1048 # endif
1049 		UASM_i_SC(p, pte, 0, ptr);
1050 
1051 	if (r10000_llsc_war())
1052 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1053 	else
1054 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1055 
1056 # ifdef CONFIG_64BIT_PHYS_ADDR
1057 	if (!cpu_has_64bits) {
1058 		/* no uasm_i_nop needed */
1059 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1060 		uasm_i_ori(p, pte, pte, hwmode);
1061 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1062 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1063 		/* no uasm_i_nop needed */
1064 		uasm_i_lw(p, pte, 0, ptr);
1065 	} else
1066 		uasm_i_nop(p);
1067 # else
1068 	uasm_i_nop(p);
1069 # endif
1070 #else
1071 # ifdef CONFIG_64BIT_PHYS_ADDR
1072 	if (cpu_has_64bits)
1073 		uasm_i_sd(p, pte, 0, ptr);
1074 	else
1075 # endif
1076 		UASM_i_SW(p, pte, 0, ptr);
1077 
1078 # ifdef CONFIG_64BIT_PHYS_ADDR
1079 	if (!cpu_has_64bits) {
1080 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1081 		uasm_i_ori(p, pte, pte, hwmode);
1082 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1083 		uasm_i_lw(p, pte, 0, ptr);
1084 	}
1085 # endif
1086 #endif
1087 }
1088 
1089 /*
1090  * Check if PTE is present, if not then jump to LABEL. PTR points to
1091  * the page table where this PTE is located, PTE will be re-loaded
1092  * with it's original value.
1093  */
1094 static void __cpuinit
1095 build_pte_present(u32 **p, struct uasm_reloc **r,
1096 		  unsigned int pte, unsigned int ptr, enum label_id lid)
1097 {
1098 	if (kernel_uses_smartmips_rixi) {
1099 		uasm_i_andi(p, pte, pte, _PAGE_PRESENT);
1100 		uasm_il_beqz(p, r, pte, lid);
1101 	} else {
1102 		uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1103 		uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1104 		uasm_il_bnez(p, r, pte, lid);
1105 	}
1106 	iPTE_LW(p, pte, ptr);
1107 }
1108 
1109 /* Make PTE valid, store result in PTR. */
1110 static void __cpuinit
1111 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1112 		 unsigned int ptr)
1113 {
1114 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1115 
1116 	iPTE_SW(p, r, pte, ptr, mode);
1117 }
1118 
1119 /*
1120  * Check if PTE can be written to, if not branch to LABEL. Regardless
1121  * restore PTE with value from PTR when done.
1122  */
1123 static void __cpuinit
1124 build_pte_writable(u32 **p, struct uasm_reloc **r,
1125 		   unsigned int pte, unsigned int ptr, enum label_id lid)
1126 {
1127 	uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1128 	uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1129 	uasm_il_bnez(p, r, pte, lid);
1130 	iPTE_LW(p, pte, ptr);
1131 }
1132 
1133 /* Make PTE writable, update software status bits as well, then store
1134  * at PTR.
1135  */
1136 static void __cpuinit
1137 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1138 		 unsigned int ptr)
1139 {
1140 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1141 			     | _PAGE_DIRTY);
1142 
1143 	iPTE_SW(p, r, pte, ptr, mode);
1144 }
1145 
1146 /*
1147  * Check if PTE can be modified, if not branch to LABEL. Regardless
1148  * restore PTE with value from PTR when done.
1149  */
1150 static void __cpuinit
1151 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1152 		     unsigned int pte, unsigned int ptr, enum label_id lid)
1153 {
1154 	uasm_i_andi(p, pte, pte, _PAGE_WRITE);
1155 	uasm_il_beqz(p, r, pte, lid);
1156 	iPTE_LW(p, pte, ptr);
1157 }
1158 
1159 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1160 /*
1161  * R3000 style TLB load/store/modify handlers.
1162  */
1163 
1164 /*
1165  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1166  * Then it returns.
1167  */
1168 static void __cpuinit
1169 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1170 {
1171 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1172 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1173 	uasm_i_tlbwi(p);
1174 	uasm_i_jr(p, tmp);
1175 	uasm_i_rfe(p); /* branch delay */
1176 }
1177 
1178 /*
1179  * This places the pte into ENTRYLO0 and writes it with tlbwi
1180  * or tlbwr as appropriate.  This is because the index register
1181  * may have the probe fail bit set as a result of a trap on a
1182  * kseg2 access, i.e. without refill.  Then it returns.
1183  */
1184 static void __cpuinit
1185 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1186 			     struct uasm_reloc **r, unsigned int pte,
1187 			     unsigned int tmp)
1188 {
1189 	uasm_i_mfc0(p, tmp, C0_INDEX);
1190 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1191 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1192 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1193 	uasm_i_tlbwi(p); /* cp0 delay */
1194 	uasm_i_jr(p, tmp);
1195 	uasm_i_rfe(p); /* branch delay */
1196 	uasm_l_r3000_write_probe_fail(l, *p);
1197 	uasm_i_tlbwr(p); /* cp0 delay */
1198 	uasm_i_jr(p, tmp);
1199 	uasm_i_rfe(p); /* branch delay */
1200 }
1201 
1202 static void __cpuinit
1203 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1204 				   unsigned int ptr)
1205 {
1206 	long pgdc = (long)pgd_current;
1207 
1208 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1209 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1210 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1211 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1212 	uasm_i_sll(p, pte, pte, 2);
1213 	uasm_i_addu(p, ptr, ptr, pte);
1214 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1215 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1216 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1217 	uasm_i_addu(p, ptr, ptr, pte);
1218 	uasm_i_lw(p, pte, 0, ptr);
1219 	uasm_i_tlbp(p); /* load delay */
1220 }
1221 
1222 static void __cpuinit build_r3000_tlb_load_handler(void)
1223 {
1224 	u32 *p = handle_tlbl;
1225 	struct uasm_label *l = labels;
1226 	struct uasm_reloc *r = relocs;
1227 
1228 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1229 	memset(labels, 0, sizeof(labels));
1230 	memset(relocs, 0, sizeof(relocs));
1231 
1232 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1233 	build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1234 	uasm_i_nop(&p); /* load delay */
1235 	build_make_valid(&p, &r, K0, K1);
1236 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1237 
1238 	uasm_l_nopage_tlbl(&l, p);
1239 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1240 	uasm_i_nop(&p);
1241 
1242 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1243 		panic("TLB load handler fastpath space exceeded");
1244 
1245 	uasm_resolve_relocs(relocs, labels);
1246 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1247 		 (unsigned int)(p - handle_tlbl));
1248 
1249 	dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1250 }
1251 
1252 static void __cpuinit build_r3000_tlb_store_handler(void)
1253 {
1254 	u32 *p = handle_tlbs;
1255 	struct uasm_label *l = labels;
1256 	struct uasm_reloc *r = relocs;
1257 
1258 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1259 	memset(labels, 0, sizeof(labels));
1260 	memset(relocs, 0, sizeof(relocs));
1261 
1262 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1263 	build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1264 	uasm_i_nop(&p); /* load delay */
1265 	build_make_write(&p, &r, K0, K1);
1266 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1267 
1268 	uasm_l_nopage_tlbs(&l, p);
1269 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1270 	uasm_i_nop(&p);
1271 
1272 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1273 		panic("TLB store handler fastpath space exceeded");
1274 
1275 	uasm_resolve_relocs(relocs, labels);
1276 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1277 		 (unsigned int)(p - handle_tlbs));
1278 
1279 	dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1280 }
1281 
1282 static void __cpuinit build_r3000_tlb_modify_handler(void)
1283 {
1284 	u32 *p = handle_tlbm;
1285 	struct uasm_label *l = labels;
1286 	struct uasm_reloc *r = relocs;
1287 
1288 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1289 	memset(labels, 0, sizeof(labels));
1290 	memset(relocs, 0, sizeof(relocs));
1291 
1292 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1293 	build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1294 	uasm_i_nop(&p); /* load delay */
1295 	build_make_write(&p, &r, K0, K1);
1296 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1297 
1298 	uasm_l_nopage_tlbm(&l, p);
1299 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1300 	uasm_i_nop(&p);
1301 
1302 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1303 		panic("TLB modify handler fastpath space exceeded");
1304 
1305 	uasm_resolve_relocs(relocs, labels);
1306 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1307 		 (unsigned int)(p - handle_tlbm));
1308 
1309 	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1310 }
1311 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1312 
1313 /*
1314  * R4000 style TLB load/store/modify handlers.
1315  */
1316 static void __cpuinit
1317 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1318 				   struct uasm_reloc **r, unsigned int pte,
1319 				   unsigned int ptr)
1320 {
1321 #ifdef CONFIG_64BIT
1322 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1323 #else
1324 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1325 #endif
1326 
1327 #ifdef CONFIG_HUGETLB_PAGE
1328 	/*
1329 	 * For huge tlb entries, pmd doesn't contain an address but
1330 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1331 	 * see if we need to jump to huge tlb processing.
1332 	 */
1333 	build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update);
1334 #endif
1335 
1336 	UASM_i_MFC0(p, pte, C0_BADVADDR);
1337 	UASM_i_LW(p, ptr, 0, ptr);
1338 	UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1339 	uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1340 	UASM_i_ADDU(p, ptr, ptr, pte);
1341 
1342 #ifdef CONFIG_SMP
1343 	uasm_l_smp_pgtable_change(l, *p);
1344 #endif
1345 	iPTE_LW(p, pte, ptr); /* get even pte */
1346 	if (!m4kc_tlbp_war())
1347 		build_tlb_probe_entry(p);
1348 }
1349 
1350 static void __cpuinit
1351 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1352 				   struct uasm_reloc **r, unsigned int tmp,
1353 				   unsigned int ptr)
1354 {
1355 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1356 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1357 	build_update_entries(p, tmp, ptr);
1358 	build_tlb_write_entry(p, l, r, tlb_indexed);
1359 	uasm_l_leave(l, *p);
1360 	uasm_i_eret(p); /* return from trap */
1361 
1362 #ifdef CONFIG_64BIT
1363 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1364 #endif
1365 }
1366 
1367 static void __cpuinit build_r4000_tlb_load_handler(void)
1368 {
1369 	u32 *p = handle_tlbl;
1370 	struct uasm_label *l = labels;
1371 	struct uasm_reloc *r = relocs;
1372 
1373 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1374 	memset(labels, 0, sizeof(labels));
1375 	memset(relocs, 0, sizeof(relocs));
1376 
1377 	if (bcm1250_m3_war()) {
1378 		unsigned int segbits = 44;
1379 
1380 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1381 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1382 		uasm_i_xor(&p, K0, K0, K1);
1383 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1384 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1385 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1386 		uasm_i_or(&p, K0, K0, K1);
1387 		uasm_il_bnez(&p, &r, K0, label_leave);
1388 		/* No need for uasm_i_nop */
1389 	}
1390 
1391 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1392 	build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1393 	if (m4kc_tlbp_war())
1394 		build_tlb_probe_entry(&p);
1395 
1396 	if (kernel_uses_smartmips_rixi) {
1397 		/*
1398 		 * If the page is not _PAGE_VALID, RI or XI could not
1399 		 * have triggered it.  Skip the expensive test..
1400 		 */
1401 		uasm_i_andi(&p, K0, K0, _PAGE_VALID);
1402 		uasm_il_beqz(&p, &r, K0, label_tlbl_goaround1);
1403 		uasm_i_nop(&p);
1404 
1405 		uasm_i_tlbr(&p);
1406 		/* Examine  entrylo 0 or 1 based on ptr. */
1407 		uasm_i_andi(&p, K0, K1, sizeof(pte_t));
1408 		uasm_i_beqz(&p, K0, 8);
1409 
1410 		UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
1411 		UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
1412 		/*
1413 		 * If the entryLo (now in K0) is valid (bit 1), RI or
1414 		 * XI must have triggered it.
1415 		 */
1416 		uasm_i_andi(&p, K0, K0, 2);
1417 		uasm_il_bnez(&p, &r, K0, label_nopage_tlbl);
1418 
1419 		uasm_l_tlbl_goaround1(&l, p);
1420 		/* Reload the PTE value */
1421 		iPTE_LW(&p, K0, K1);
1422 	}
1423 	build_make_valid(&p, &r, K0, K1);
1424 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1425 
1426 #ifdef CONFIG_HUGETLB_PAGE
1427 	/*
1428 	 * This is the entry point when build_r4000_tlbchange_handler_head
1429 	 * spots a huge page.
1430 	 */
1431 	uasm_l_tlb_huge_update(&l, p);
1432 	iPTE_LW(&p, K0, K1);
1433 	build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1434 	build_tlb_probe_entry(&p);
1435 
1436 	if (kernel_uses_smartmips_rixi) {
1437 		/*
1438 		 * If the page is not _PAGE_VALID, RI or XI could not
1439 		 * have triggered it.  Skip the expensive test..
1440 		 */
1441 		uasm_i_andi(&p, K0, K0, _PAGE_VALID);
1442 		uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
1443 		uasm_i_nop(&p);
1444 
1445 		uasm_i_tlbr(&p);
1446 		/* Examine  entrylo 0 or 1 based on ptr. */
1447 		uasm_i_andi(&p, K0, K1, sizeof(pte_t));
1448 		uasm_i_beqz(&p, K0, 8);
1449 
1450 		UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
1451 		UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
1452 		/*
1453 		 * If the entryLo (now in K0) is valid (bit 1), RI or
1454 		 * XI must have triggered it.
1455 		 */
1456 		uasm_i_andi(&p, K0, K0, 2);
1457 		uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
1458 		/* Reload the PTE value */
1459 		iPTE_LW(&p, K0, K1);
1460 
1461 		/*
1462 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
1463 		 * it is restored in build_huge_tlb_write_entry.
1464 		 */
1465 		build_restore_pagemask(&p, &r, K0, label_nopage_tlbl);
1466 
1467 		uasm_l_tlbl_goaround2(&l, p);
1468 	}
1469 	uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID));
1470 	build_huge_handler_tail(&p, &r, &l, K0, K1);
1471 #endif
1472 
1473 	uasm_l_nopage_tlbl(&l, p);
1474 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1475 	uasm_i_nop(&p);
1476 
1477 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1478 		panic("TLB load handler fastpath space exceeded");
1479 
1480 	uasm_resolve_relocs(relocs, labels);
1481 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1482 		 (unsigned int)(p - handle_tlbl));
1483 
1484 	dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1485 }
1486 
1487 static void __cpuinit build_r4000_tlb_store_handler(void)
1488 {
1489 	u32 *p = handle_tlbs;
1490 	struct uasm_label *l = labels;
1491 	struct uasm_reloc *r = relocs;
1492 
1493 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1494 	memset(labels, 0, sizeof(labels));
1495 	memset(relocs, 0, sizeof(relocs));
1496 
1497 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1498 	build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1499 	if (m4kc_tlbp_war())
1500 		build_tlb_probe_entry(&p);
1501 	build_make_write(&p, &r, K0, K1);
1502 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1503 
1504 #ifdef CONFIG_HUGETLB_PAGE
1505 	/*
1506 	 * This is the entry point when
1507 	 * build_r4000_tlbchange_handler_head spots a huge page.
1508 	 */
1509 	uasm_l_tlb_huge_update(&l, p);
1510 	iPTE_LW(&p, K0, K1);
1511 	build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1512 	build_tlb_probe_entry(&p);
1513 	uasm_i_ori(&p, K0, K0,
1514 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1515 	build_huge_handler_tail(&p, &r, &l, K0, K1);
1516 #endif
1517 
1518 	uasm_l_nopage_tlbs(&l, p);
1519 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1520 	uasm_i_nop(&p);
1521 
1522 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1523 		panic("TLB store handler fastpath space exceeded");
1524 
1525 	uasm_resolve_relocs(relocs, labels);
1526 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1527 		 (unsigned int)(p - handle_tlbs));
1528 
1529 	dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1530 }
1531 
1532 static void __cpuinit build_r4000_tlb_modify_handler(void)
1533 {
1534 	u32 *p = handle_tlbm;
1535 	struct uasm_label *l = labels;
1536 	struct uasm_reloc *r = relocs;
1537 
1538 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1539 	memset(labels, 0, sizeof(labels));
1540 	memset(relocs, 0, sizeof(relocs));
1541 
1542 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1543 	build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1544 	if (m4kc_tlbp_war())
1545 		build_tlb_probe_entry(&p);
1546 	/* Present and writable bits set, set accessed and dirty bits. */
1547 	build_make_write(&p, &r, K0, K1);
1548 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1549 
1550 #ifdef CONFIG_HUGETLB_PAGE
1551 	/*
1552 	 * This is the entry point when
1553 	 * build_r4000_tlbchange_handler_head spots a huge page.
1554 	 */
1555 	uasm_l_tlb_huge_update(&l, p);
1556 	iPTE_LW(&p, K0, K1);
1557 	build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1558 	build_tlb_probe_entry(&p);
1559 	uasm_i_ori(&p, K0, K0,
1560 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1561 	build_huge_handler_tail(&p, &r, &l, K0, K1);
1562 #endif
1563 
1564 	uasm_l_nopage_tlbm(&l, p);
1565 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1566 	uasm_i_nop(&p);
1567 
1568 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1569 		panic("TLB modify handler fastpath space exceeded");
1570 
1571 	uasm_resolve_relocs(relocs, labels);
1572 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1573 		 (unsigned int)(p - handle_tlbm));
1574 
1575 	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1576 }
1577 
1578 void __cpuinit build_tlb_refill_handler(void)
1579 {
1580 	/*
1581 	 * The refill handler is generated per-CPU, multi-node systems
1582 	 * may have local storage for it. The other handlers are only
1583 	 * needed once.
1584 	 */
1585 	static int run_once = 0;
1586 
1587 #ifdef CONFIG_64BIT
1588 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1589 #endif
1590 
1591 	switch (current_cpu_type()) {
1592 	case CPU_R2000:
1593 	case CPU_R3000:
1594 	case CPU_R3000A:
1595 	case CPU_R3081E:
1596 	case CPU_TX3912:
1597 	case CPU_TX3922:
1598 	case CPU_TX3927:
1599 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1600 		build_r3000_tlb_refill_handler();
1601 		if (!run_once) {
1602 			build_r3000_tlb_load_handler();
1603 			build_r3000_tlb_store_handler();
1604 			build_r3000_tlb_modify_handler();
1605 			run_once++;
1606 		}
1607 #else
1608 		panic("No R3000 TLB refill handler");
1609 #endif
1610 		break;
1611 
1612 	case CPU_R6000:
1613 	case CPU_R6000A:
1614 		panic("No R6000 TLB refill handler yet");
1615 		break;
1616 
1617 	case CPU_R8000:
1618 		panic("No R8000 TLB refill handler yet");
1619 		break;
1620 
1621 	default:
1622 		build_r4000_tlb_refill_handler();
1623 		if (!run_once) {
1624 			build_r4000_tlb_load_handler();
1625 			build_r4000_tlb_store_handler();
1626 			build_r4000_tlb_modify_handler();
1627 			run_once++;
1628 		}
1629 	}
1630 }
1631 
1632 void __cpuinit flush_tlb_handlers(void)
1633 {
1634 	local_flush_icache_range((unsigned long)handle_tlbl,
1635 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1636 	local_flush_icache_range((unsigned long)handle_tlbs,
1637 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1638 	local_flush_icache_range((unsigned long)handle_tlbm,
1639 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1640 }
1641