xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision d2f4a190)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completely out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/smp.h>
29 #include <linux/string.h>
30 #include <linux/cache.h>
31 #include <linux/pgtable.h>
32 
33 #include <asm/cacheflush.h>
34 #include <asm/cpu-type.h>
35 #include <asm/mmu_context.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38 #include <asm/tlbex.h>
39 
40 static int mips_xpa_disabled;
41 
42 static int __init xpa_disable(char *s)
43 {
44 	mips_xpa_disabled = 1;
45 
46 	return 1;
47 }
48 
49 __setup("noxpa", xpa_disable);
50 
51 /*
52  * TLB load/store/modify handlers.
53  *
54  * Only the fastpath gets synthesized at runtime, the slowpath for
55  * do_page_fault remains normal asm.
56  */
57 extern void tlb_do_page_fault_0(void);
58 extern void tlb_do_page_fault_1(void);
59 
60 struct work_registers {
61 	int r1;
62 	int r2;
63 	int r3;
64 };
65 
66 struct tlb_reg_save {
67 	unsigned long a;
68 	unsigned long b;
69 } ____cacheline_aligned_in_smp;
70 
71 static struct tlb_reg_save handler_reg_save[NR_CPUS];
72 
73 static inline int r45k_bvahwbug(void)
74 {
75 	/* XXX: We should probe for the presence of this bug, but we don't. */
76 	return 0;
77 }
78 
79 static inline int r4k_250MHZhwbug(void)
80 {
81 	/* XXX: We should probe for the presence of this bug, but we don't. */
82 	return 0;
83 }
84 
85 extern int sb1250_m3_workaround_needed(void);
86 
87 static inline int __maybe_unused bcm1250_m3_war(void)
88 {
89 	if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
90 		return sb1250_m3_workaround_needed();
91 	return 0;
92 }
93 
94 static inline int __maybe_unused r10000_llsc_war(void)
95 {
96 	return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
97 }
98 
99 static int use_bbit_insns(void)
100 {
101 	switch (current_cpu_type()) {
102 	case CPU_CAVIUM_OCTEON:
103 	case CPU_CAVIUM_OCTEON_PLUS:
104 	case CPU_CAVIUM_OCTEON2:
105 	case CPU_CAVIUM_OCTEON3:
106 		return 1;
107 	default:
108 		return 0;
109 	}
110 }
111 
112 static int use_lwx_insns(void)
113 {
114 	switch (current_cpu_type()) {
115 	case CPU_CAVIUM_OCTEON2:
116 	case CPU_CAVIUM_OCTEON3:
117 		return 1;
118 	default:
119 		return 0;
120 	}
121 }
122 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
123     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
124 static bool scratchpad_available(void)
125 {
126 	return true;
127 }
128 static int scratchpad_offset(int i)
129 {
130 	/*
131 	 * CVMSEG starts at address -32768 and extends for
132 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
133 	 */
134 	i += 1; /* Kernel use starts at the top and works down. */
135 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
136 }
137 #else
138 static bool scratchpad_available(void)
139 {
140 	return false;
141 }
142 static int scratchpad_offset(int i)
143 {
144 	BUG();
145 	/* Really unreachable, but evidently some GCC want this. */
146 	return 0;
147 }
148 #endif
149 /*
150  * Found by experiment: At least some revisions of the 4kc throw under
151  * some circumstances a machine check exception, triggered by invalid
152  * values in the index register.  Delaying the tlbp instruction until
153  * after the next branch,  plus adding an additional nop in front of
154  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
155  * why; it's not an issue caused by the core RTL.
156  *
157  */
158 static int m4kc_tlbp_war(void)
159 {
160 	return current_cpu_type() == CPU_4KC;
161 }
162 
163 /* Handle labels (which must be positive integers). */
164 enum label_id {
165 	label_second_part = 1,
166 	label_leave,
167 	label_vmalloc,
168 	label_vmalloc_done,
169 	label_tlbw_hazard_0,
170 	label_split = label_tlbw_hazard_0 + 8,
171 	label_tlbl_goaround1,
172 	label_tlbl_goaround2,
173 	label_nopage_tlbl,
174 	label_nopage_tlbs,
175 	label_nopage_tlbm,
176 	label_smp_pgtable_change,
177 	label_r3000_write_probe_fail,
178 	label_large_segbits_fault,
179 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
180 	label_tlb_huge_update,
181 #endif
182 };
183 
184 UASM_L_LA(_second_part)
185 UASM_L_LA(_leave)
186 UASM_L_LA(_vmalloc)
187 UASM_L_LA(_vmalloc_done)
188 /* _tlbw_hazard_x is handled differently.  */
189 UASM_L_LA(_split)
190 UASM_L_LA(_tlbl_goaround1)
191 UASM_L_LA(_tlbl_goaround2)
192 UASM_L_LA(_nopage_tlbl)
193 UASM_L_LA(_nopage_tlbs)
194 UASM_L_LA(_nopage_tlbm)
195 UASM_L_LA(_smp_pgtable_change)
196 UASM_L_LA(_r3000_write_probe_fail)
197 UASM_L_LA(_large_segbits_fault)
198 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
199 UASM_L_LA(_tlb_huge_update)
200 #endif
201 
202 static int hazard_instance;
203 
204 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
205 {
206 	switch (instance) {
207 	case 0 ... 7:
208 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
209 		return;
210 	default:
211 		BUG();
212 	}
213 }
214 
215 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
216 {
217 	switch (instance) {
218 	case 0 ... 7:
219 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
220 		break;
221 	default:
222 		BUG();
223 	}
224 }
225 
226 /*
227  * pgtable bits are assigned dynamically depending on processor feature
228  * and statically based on kernel configuration.  This spits out the actual
229  * values the kernel is using.	Required to make sense from disassembled
230  * TLB exception handlers.
231  */
232 static void output_pgtable_bits_defines(void)
233 {
234 #define pr_define(fmt, ...)					\
235 	pr_debug("#define " fmt, ##__VA_ARGS__)
236 
237 	pr_debug("#include <asm/asm.h>\n");
238 	pr_debug("#include <asm/regdef.h>\n");
239 	pr_debug("\n");
240 
241 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
242 	pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
243 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
244 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
245 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
246 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
247 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
248 #endif
249 #ifdef _PAGE_NO_EXEC_SHIFT
250 	if (cpu_has_rixi)
251 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
252 #endif
253 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
257 	pr_debug("\n");
258 }
259 
260 static inline void dump_handler(const char *symbol, const void *start, const void *end)
261 {
262 	unsigned int count = (end - start) / sizeof(u32);
263 	const u32 *handler = start;
264 	int i;
265 
266 	pr_debug("LEAF(%s)\n", symbol);
267 
268 	pr_debug("\t.set push\n");
269 	pr_debug("\t.set noreorder\n");
270 
271 	for (i = 0; i < count; i++)
272 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
273 
274 	pr_debug("\t.set\tpop\n");
275 
276 	pr_debug("\tEND(%s)\n", symbol);
277 }
278 
279 /* The only general purpose registers allowed in TLB handlers. */
280 #define K0		26
281 #define K1		27
282 
283 /* Some CP0 registers */
284 #define C0_INDEX	0, 0
285 #define C0_ENTRYLO0	2, 0
286 #define C0_TCBIND	2, 2
287 #define C0_ENTRYLO1	3, 0
288 #define C0_CONTEXT	4, 0
289 #define C0_PAGEMASK	5, 0
290 #define C0_PWBASE	5, 5
291 #define C0_PWFIELD	5, 6
292 #define C0_PWSIZE	5, 7
293 #define C0_PWCTL	6, 6
294 #define C0_BADVADDR	8, 0
295 #define C0_PGD		9, 7
296 #define C0_ENTRYHI	10, 0
297 #define C0_EPC		14, 0
298 #define C0_XCONTEXT	20, 0
299 
300 #ifdef CONFIG_64BIT
301 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
302 #else
303 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
304 #endif
305 
306 /* The worst case length of the handler is around 18 instructions for
307  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
308  * Maximum space available is 32 instructions for R3000 and 64
309  * instructions for R4000.
310  *
311  * We deliberately chose a buffer size of 128, so we won't scribble
312  * over anything important on overflow before we panic.
313  */
314 static u32 tlb_handler[128];
315 
316 /* simply assume worst case size for labels and relocs */
317 static struct uasm_label labels[128];
318 static struct uasm_reloc relocs[128];
319 
320 static int check_for_high_segbits;
321 static bool fill_includes_sw_bits;
322 
323 static unsigned int kscratch_used_mask;
324 
325 static inline int __maybe_unused c0_kscratch(void)
326 {
327 	return 31;
328 }
329 
330 static int allocate_kscratch(void)
331 {
332 	int r;
333 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
334 
335 	r = ffs(a);
336 
337 	if (r == 0)
338 		return -1;
339 
340 	r--; /* make it zero based */
341 
342 	kscratch_used_mask |= (1 << r);
343 
344 	return r;
345 }
346 
347 static int scratch_reg;
348 int pgd_reg;
349 EXPORT_SYMBOL_GPL(pgd_reg);
350 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
351 
352 static struct work_registers build_get_work_registers(u32 **p)
353 {
354 	struct work_registers r;
355 
356 	if (scratch_reg >= 0) {
357 		/* Save in CPU local C0_KScratch? */
358 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
359 		r.r1 = K0;
360 		r.r2 = K1;
361 		r.r3 = 1;
362 		return r;
363 	}
364 
365 	if (num_possible_cpus() > 1) {
366 		/* Get smp_processor_id */
367 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
368 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
369 
370 		/* handler_reg_save index in K0 */
371 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
372 
373 		UASM_i_LA(p, K1, (long)&handler_reg_save);
374 		UASM_i_ADDU(p, K0, K0, K1);
375 	} else {
376 		UASM_i_LA(p, K0, (long)&handler_reg_save);
377 	}
378 	/* K0 now points to save area, save $1 and $2  */
379 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
380 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
381 
382 	r.r1 = K1;
383 	r.r2 = 1;
384 	r.r3 = 2;
385 	return r;
386 }
387 
388 static void build_restore_work_registers(u32 **p)
389 {
390 	if (scratch_reg >= 0) {
391 		uasm_i_ehb(p);
392 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
393 		return;
394 	}
395 	/* K0 already points to save area, restore $1 and $2  */
396 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
397 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
398 }
399 
400 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
401 
402 /*
403  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
404  * we cannot do r3000 under these circumstances.
405  *
406  * The R3000 TLB handler is simple.
407  */
408 static void build_r3000_tlb_refill_handler(void)
409 {
410 	long pgdc = (long)pgd_current;
411 	u32 *p;
412 
413 	memset(tlb_handler, 0, sizeof(tlb_handler));
414 	p = tlb_handler;
415 
416 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
417 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
418 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
419 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
420 	uasm_i_sll(&p, K0, K0, 2);
421 	uasm_i_addu(&p, K1, K1, K0);
422 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
423 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
424 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
425 	uasm_i_addu(&p, K1, K1, K0);
426 	uasm_i_lw(&p, K0, 0, K1);
427 	uasm_i_nop(&p); /* load delay */
428 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
429 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
430 	uasm_i_tlbwr(&p); /* cp0 delay */
431 	uasm_i_jr(&p, K1);
432 	uasm_i_rfe(&p); /* branch delay */
433 
434 	if (p > tlb_handler + 32)
435 		panic("TLB refill handler space exceeded");
436 
437 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
438 		 (unsigned int)(p - tlb_handler));
439 
440 	memcpy((void *)ebase, tlb_handler, 0x80);
441 	local_flush_icache_range(ebase, ebase + 0x80);
442 	dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
443 }
444 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
445 
446 /*
447  * The R4000 TLB handler is much more complicated. We have two
448  * consecutive handler areas with 32 instructions space each.
449  * Since they aren't used at the same time, we can overflow in the
450  * other one.To keep things simple, we first assume linear space,
451  * then we relocate it to the final handler layout as needed.
452  */
453 static u32 final_handler[64];
454 
455 /*
456  * Hazards
457  *
458  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
459  * 2. A timing hazard exists for the TLBP instruction.
460  *
461  *	stalling_instruction
462  *	TLBP
463  *
464  * The JTLB is being read for the TLBP throughout the stall generated by the
465  * previous instruction. This is not really correct as the stalling instruction
466  * can modify the address used to access the JTLB.  The failure symptom is that
467  * the TLBP instruction will use an address created for the stalling instruction
468  * and not the address held in C0_ENHI and thus report the wrong results.
469  *
470  * The software work-around is to not allow the instruction preceding the TLBP
471  * to stall - make it an NOP or some other instruction guaranteed not to stall.
472  *
473  * Errata 2 will not be fixed.	This errata is also on the R5000.
474  *
475  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
476  */
477 static void __maybe_unused build_tlb_probe_entry(u32 **p)
478 {
479 	switch (current_cpu_type()) {
480 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
481 	case CPU_R4600:
482 	case CPU_R4700:
483 	case CPU_R5000:
484 	case CPU_NEVADA:
485 		uasm_i_nop(p);
486 		uasm_i_tlbp(p);
487 		break;
488 
489 	default:
490 		uasm_i_tlbp(p);
491 		break;
492 	}
493 }
494 
495 void build_tlb_write_entry(u32 **p, struct uasm_label **l,
496 			   struct uasm_reloc **r,
497 			   enum tlb_write_entry wmode)
498 {
499 	void(*tlbw)(u32 **) = NULL;
500 
501 	switch (wmode) {
502 	case tlb_random: tlbw = uasm_i_tlbwr; break;
503 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
504 	}
505 
506 	if (cpu_has_mips_r2_r6) {
507 		if (cpu_has_mips_r2_exec_hazard)
508 			uasm_i_ehb(p);
509 		tlbw(p);
510 		return;
511 	}
512 
513 	switch (current_cpu_type()) {
514 	case CPU_R4000PC:
515 	case CPU_R4000SC:
516 	case CPU_R4000MC:
517 	case CPU_R4400PC:
518 	case CPU_R4400SC:
519 	case CPU_R4400MC:
520 		/*
521 		 * This branch uses up a mtc0 hazard nop slot and saves
522 		 * two nops after the tlbw instruction.
523 		 */
524 		uasm_bgezl_hazard(p, r, hazard_instance);
525 		tlbw(p);
526 		uasm_bgezl_label(l, p, hazard_instance);
527 		hazard_instance++;
528 		uasm_i_nop(p);
529 		break;
530 
531 	case CPU_R4600:
532 	case CPU_R4700:
533 		uasm_i_nop(p);
534 		tlbw(p);
535 		uasm_i_nop(p);
536 		break;
537 
538 	case CPU_R5000:
539 	case CPU_NEVADA:
540 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
541 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
542 		tlbw(p);
543 		break;
544 
545 	case CPU_R4300:
546 	case CPU_5KC:
547 	case CPU_TX49XX:
548 	case CPU_PR4450:
549 		uasm_i_nop(p);
550 		tlbw(p);
551 		break;
552 
553 	case CPU_R10000:
554 	case CPU_R12000:
555 	case CPU_R14000:
556 	case CPU_R16000:
557 	case CPU_4KC:
558 	case CPU_4KEC:
559 	case CPU_M14KC:
560 	case CPU_M14KEC:
561 	case CPU_SB1:
562 	case CPU_SB1A:
563 	case CPU_4KSC:
564 	case CPU_20KC:
565 	case CPU_25KF:
566 	case CPU_BMIPS32:
567 	case CPU_BMIPS3300:
568 	case CPU_BMIPS4350:
569 	case CPU_BMIPS4380:
570 	case CPU_BMIPS5000:
571 	case CPU_LOONGSON2EF:
572 	case CPU_LOONGSON64:
573 	case CPU_R5500:
574 		if (m4kc_tlbp_war())
575 			uasm_i_nop(p);
576 		fallthrough;
577 	case CPU_ALCHEMY:
578 		tlbw(p);
579 		break;
580 
581 	case CPU_RM7000:
582 		uasm_i_nop(p);
583 		uasm_i_nop(p);
584 		uasm_i_nop(p);
585 		uasm_i_nop(p);
586 		tlbw(p);
587 		break;
588 
589 	case CPU_XBURST:
590 		tlbw(p);
591 		uasm_i_nop(p);
592 		break;
593 
594 	default:
595 		panic("No TLB refill handler yet (CPU type: %d)",
596 		      current_cpu_type());
597 		break;
598 	}
599 }
600 EXPORT_SYMBOL_GPL(build_tlb_write_entry);
601 
602 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
603 							unsigned int reg)
604 {
605 	if (_PAGE_GLOBAL_SHIFT == 0) {
606 		/* pte_t is already in EntryLo format */
607 		return;
608 	}
609 
610 	if (cpu_has_rixi && _PAGE_NO_EXEC != 0) {
611 		if (fill_includes_sw_bits) {
612 			UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
613 		} else {
614 			UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
615 			UASM_i_ROTR(p, reg, reg,
616 				    ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
617 		}
618 	} else {
619 #ifdef CONFIG_PHYS_ADDR_T_64BIT
620 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
621 #else
622 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
623 #endif
624 	}
625 }
626 
627 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
628 
629 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
630 				   unsigned int tmp, enum label_id lid,
631 				   int restore_scratch)
632 {
633 	if (restore_scratch) {
634 		/*
635 		 * Ensure the MFC0 below observes the value written to the
636 		 * KScratch register by the prior MTC0.
637 		 */
638 		if (scratch_reg >= 0)
639 			uasm_i_ehb(p);
640 
641 		/* Reset default page size */
642 		if (PM_DEFAULT_MASK >> 16) {
643 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
644 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
645 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
646 			uasm_il_b(p, r, lid);
647 		} else if (PM_DEFAULT_MASK) {
648 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
649 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
650 			uasm_il_b(p, r, lid);
651 		} else {
652 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
653 			uasm_il_b(p, r, lid);
654 		}
655 		if (scratch_reg >= 0)
656 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
657 		else
658 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
659 	} else {
660 		/* Reset default page size */
661 		if (PM_DEFAULT_MASK >> 16) {
662 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
663 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
664 			uasm_il_b(p, r, lid);
665 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
666 		} else if (PM_DEFAULT_MASK) {
667 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
668 			uasm_il_b(p, r, lid);
669 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
670 		} else {
671 			uasm_il_b(p, r, lid);
672 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
673 		}
674 	}
675 }
676 
677 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
678 				       struct uasm_reloc **r,
679 				       unsigned int tmp,
680 				       enum tlb_write_entry wmode,
681 				       int restore_scratch)
682 {
683 	/* Set huge page tlb entry size */
684 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
685 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
686 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
687 
688 	build_tlb_write_entry(p, l, r, wmode);
689 
690 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
691 }
692 
693 /*
694  * Check if Huge PTE is present, if so then jump to LABEL.
695  */
696 static void
697 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
698 		  unsigned int pmd, int lid)
699 {
700 	UASM_i_LW(p, tmp, 0, pmd);
701 	if (use_bbit_insns()) {
702 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
703 	} else {
704 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
705 		uasm_il_bnez(p, r, tmp, lid);
706 	}
707 }
708 
709 static void build_huge_update_entries(u32 **p, unsigned int pte,
710 				      unsigned int tmp)
711 {
712 	int small_sequence;
713 
714 	/*
715 	 * A huge PTE describes an area the size of the
716 	 * configured huge page size. This is twice the
717 	 * of the large TLB entry size we intend to use.
718 	 * A TLB entry half the size of the configured
719 	 * huge page size is configured into entrylo0
720 	 * and entrylo1 to cover the contiguous huge PTE
721 	 * address space.
722 	 */
723 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
724 
725 	/* We can clobber tmp.	It isn't used after this.*/
726 	if (!small_sequence)
727 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
728 
729 	build_convert_pte_to_entrylo(p, pte);
730 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
731 	/* convert to entrylo1 */
732 	if (small_sequence)
733 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
734 	else
735 		UASM_i_ADDU(p, pte, pte, tmp);
736 
737 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
738 }
739 
740 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
741 				    struct uasm_label **l,
742 				    unsigned int pte,
743 				    unsigned int ptr,
744 				    unsigned int flush)
745 {
746 #ifdef CONFIG_SMP
747 	UASM_i_SC(p, pte, 0, ptr);
748 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
749 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
750 #else
751 	UASM_i_SW(p, pte, 0, ptr);
752 #endif
753 	if (cpu_has_ftlb && flush) {
754 		BUG_ON(!cpu_has_tlbinv);
755 
756 		UASM_i_MFC0(p, ptr, C0_ENTRYHI);
757 		uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
758 		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
759 		build_tlb_write_entry(p, l, r, tlb_indexed);
760 
761 		uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
762 		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
763 		build_huge_update_entries(p, pte, ptr);
764 		build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
765 
766 		return;
767 	}
768 
769 	build_huge_update_entries(p, pte, ptr);
770 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
771 }
772 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
773 
774 #ifdef CONFIG_64BIT
775 /*
776  * TMP and PTR are scratch.
777  * TMP will be clobbered, PTR will hold the pmd entry.
778  */
779 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
780 		      unsigned int tmp, unsigned int ptr)
781 {
782 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
783 	long pgdc = (long)pgd_current;
784 #endif
785 	/*
786 	 * The vmalloc handling is not in the hotpath.
787 	 */
788 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
789 
790 	if (check_for_high_segbits) {
791 		/*
792 		 * The kernel currently implicitely assumes that the
793 		 * MIPS SEGBITS parameter for the processor is
794 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
795 		 * allocate virtual addresses outside the maximum
796 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
797 		 * that doesn't prevent user code from accessing the
798 		 * higher xuseg addresses.  Here, we make sure that
799 		 * everything but the lower xuseg addresses goes down
800 		 * the module_alloc/vmalloc path.
801 		 */
802 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
803 		uasm_il_bnez(p, r, ptr, label_vmalloc);
804 	} else {
805 		uasm_il_bltz(p, r, tmp, label_vmalloc);
806 	}
807 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
808 
809 	if (pgd_reg != -1) {
810 		/* pgd is in pgd_reg */
811 		if (cpu_has_ldpte)
812 			UASM_i_MFC0(p, ptr, C0_PWBASE);
813 		else
814 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
815 	} else {
816 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
817 		/*
818 		 * &pgd << 11 stored in CONTEXT [23..63].
819 		 */
820 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
821 
822 		/* Clear lower 23 bits of context. */
823 		uasm_i_dins(p, ptr, 0, 0, 23);
824 
825 		/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
826 		uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
827 		uasm_i_drotr(p, ptr, ptr, 11);
828 #elif defined(CONFIG_SMP)
829 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
830 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
831 		UASM_i_LA_mostly(p, tmp, pgdc);
832 		uasm_i_daddu(p, ptr, ptr, tmp);
833 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
834 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
835 #else
836 		UASM_i_LA_mostly(p, ptr, pgdc);
837 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
838 #endif
839 	}
840 
841 	uasm_l_vmalloc_done(l, *p);
842 
843 	/* get pgd offset in bytes */
844 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
845 
846 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
847 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
848 #ifndef __PAGETABLE_PUD_FOLDED
849 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
850 	uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
851 	uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
852 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
853 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
854 #endif
855 #ifndef __PAGETABLE_PMD_FOLDED
856 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
857 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
858 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
859 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
860 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
861 #endif
862 }
863 EXPORT_SYMBOL_GPL(build_get_pmde64);
864 
865 /*
866  * BVADDR is the faulting address, PTR is scratch.
867  * PTR will hold the pgd for vmalloc.
868  */
869 static void
870 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
871 			unsigned int bvaddr, unsigned int ptr,
872 			enum vmalloc64_mode mode)
873 {
874 	long swpd = (long)swapper_pg_dir;
875 	int single_insn_swpd;
876 	int did_vmalloc_branch = 0;
877 
878 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
879 
880 	uasm_l_vmalloc(l, *p);
881 
882 	if (mode != not_refill && check_for_high_segbits) {
883 		if (single_insn_swpd) {
884 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
885 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
886 			did_vmalloc_branch = 1;
887 			/* fall through */
888 		} else {
889 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
890 		}
891 	}
892 	if (!did_vmalloc_branch) {
893 		if (single_insn_swpd) {
894 			uasm_il_b(p, r, label_vmalloc_done);
895 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
896 		} else {
897 			UASM_i_LA_mostly(p, ptr, swpd);
898 			uasm_il_b(p, r, label_vmalloc_done);
899 			if (uasm_in_compat_space_p(swpd))
900 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
901 			else
902 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
903 		}
904 	}
905 	if (mode != not_refill && check_for_high_segbits) {
906 		uasm_l_large_segbits_fault(l, *p);
907 
908 		if (mode == refill_scratch && scratch_reg >= 0)
909 			uasm_i_ehb(p);
910 
911 		/*
912 		 * We get here if we are an xsseg address, or if we are
913 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
914 		 *
915 		 * Ignoring xsseg (assume disabled so would generate
916 		 * (address errors?), the only remaining possibility
917 		 * is the upper xuseg addresses.  On processors with
918 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
919 		 * addresses would have taken an address error. We try
920 		 * to mimic that here by taking a load/istream page
921 		 * fault.
922 		 */
923 		if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
924 			uasm_i_sync(p, 0);
925 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
926 		uasm_i_jr(p, ptr);
927 
928 		if (mode == refill_scratch) {
929 			if (scratch_reg >= 0)
930 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
931 			else
932 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
933 		} else {
934 			uasm_i_nop(p);
935 		}
936 	}
937 }
938 
939 #else /* !CONFIG_64BIT */
940 
941 /*
942  * TMP and PTR are scratch.
943  * TMP will be clobbered, PTR will hold the pgd entry.
944  */
945 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
946 {
947 	if (pgd_reg != -1) {
948 		/* pgd is in pgd_reg */
949 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
950 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
951 	} else {
952 		long pgdc = (long)pgd_current;
953 
954 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
955 #ifdef CONFIG_SMP
956 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
957 		UASM_i_LA_mostly(p, tmp, pgdc);
958 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
959 		uasm_i_addu(p, ptr, tmp, ptr);
960 #else
961 		UASM_i_LA_mostly(p, ptr, pgdc);
962 #endif
963 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
964 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
965 	}
966 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
967 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
968 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
969 }
970 EXPORT_SYMBOL_GPL(build_get_pgde32);
971 
972 #endif /* !CONFIG_64BIT */
973 
974 static void build_adjust_context(u32 **p, unsigned int ctx)
975 {
976 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
977 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
978 
979 	if (shift)
980 		UASM_i_SRL(p, ctx, ctx, shift);
981 	uasm_i_andi(p, ctx, ctx, mask);
982 }
983 
984 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
985 {
986 	/*
987 	 * Bug workaround for the Nevada. It seems as if under certain
988 	 * circumstances the move from cp0_context might produce a
989 	 * bogus result when the mfc0 instruction and its consumer are
990 	 * in a different cacheline or a load instruction, probably any
991 	 * memory reference, is between them.
992 	 */
993 	switch (current_cpu_type()) {
994 	case CPU_NEVADA:
995 		UASM_i_LW(p, ptr, 0, ptr);
996 		GET_CONTEXT(p, tmp); /* get context reg */
997 		break;
998 
999 	default:
1000 		GET_CONTEXT(p, tmp); /* get context reg */
1001 		UASM_i_LW(p, ptr, 0, ptr);
1002 		break;
1003 	}
1004 
1005 	build_adjust_context(p, tmp);
1006 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1007 }
1008 EXPORT_SYMBOL_GPL(build_get_ptep);
1009 
1010 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1011 {
1012 	int pte_off_even = 0;
1013 	int pte_off_odd = sizeof(pte_t);
1014 
1015 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1016 	/* The low 32 bits of EntryLo is stored in pte_high */
1017 	pte_off_even += offsetof(pte_t, pte_high);
1018 	pte_off_odd += offsetof(pte_t, pte_high);
1019 #endif
1020 
1021 	if (IS_ENABLED(CONFIG_XPA)) {
1022 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1023 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1024 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1025 
1026 		if (cpu_has_xpa && !mips_xpa_disabled) {
1027 			uasm_i_lw(p, tmp, 0, ptep);
1028 			uasm_i_ext(p, tmp, tmp, 0, 24);
1029 			uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1030 		}
1031 
1032 		uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1033 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1034 		UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1035 
1036 		if (cpu_has_xpa && !mips_xpa_disabled) {
1037 			uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1038 			uasm_i_ext(p, tmp, tmp, 0, 24);
1039 			uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1040 		}
1041 		return;
1042 	}
1043 
1044 	UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1045 	UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1046 	if (r45k_bvahwbug())
1047 		build_tlb_probe_entry(p);
1048 	build_convert_pte_to_entrylo(p, tmp);
1049 	if (r4k_250MHZhwbug())
1050 		UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1051 	UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 	build_convert_pte_to_entrylo(p, ptep);
1053 	if (r45k_bvahwbug())
1054 		uasm_i_mfc0(p, tmp, C0_INDEX);
1055 	if (r4k_250MHZhwbug())
1056 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1057 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058 }
1059 EXPORT_SYMBOL_GPL(build_update_entries);
1060 
1061 struct mips_huge_tlb_info {
1062 	int huge_pte;
1063 	int restore_scratch;
1064 	bool need_reload_pte;
1065 };
1066 
1067 static struct mips_huge_tlb_info
1068 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1069 			       struct uasm_reloc **r, unsigned int tmp,
1070 			       unsigned int ptr, int c0_scratch_reg)
1071 {
1072 	struct mips_huge_tlb_info rv;
1073 	unsigned int even, odd;
1074 	int vmalloc_branch_delay_filled = 0;
1075 	const int scratch = 1; /* Our extra working register */
1076 
1077 	rv.huge_pte = scratch;
1078 	rv.restore_scratch = 0;
1079 	rv.need_reload_pte = false;
1080 
1081 	if (check_for_high_segbits) {
1082 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1083 
1084 		if (pgd_reg != -1)
1085 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1086 		else
1087 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1088 
1089 		if (c0_scratch_reg >= 0)
1090 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1091 		else
1092 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1093 
1094 		uasm_i_dsrl_safe(p, scratch, tmp,
1095 				 PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1096 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1097 
1098 		if (pgd_reg == -1) {
1099 			vmalloc_branch_delay_filled = 1;
1100 			/* Clear lower 23 bits of context. */
1101 			uasm_i_dins(p, ptr, 0, 0, 23);
1102 		}
1103 	} else {
1104 		if (pgd_reg != -1)
1105 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1106 		else
1107 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1108 
1109 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1110 
1111 		if (c0_scratch_reg >= 0)
1112 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1113 		else
1114 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1115 
1116 		if (pgd_reg == -1)
1117 			/* Clear lower 23 bits of context. */
1118 			uasm_i_dins(p, ptr, 0, 0, 23);
1119 
1120 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1121 	}
1122 
1123 	if (pgd_reg == -1) {
1124 		vmalloc_branch_delay_filled = 1;
1125 		/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1126 		uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1127 
1128 		uasm_i_drotr(p, ptr, ptr, 11);
1129 	}
1130 
1131 #ifdef __PAGETABLE_PMD_FOLDED
1132 #define LOC_PTEP scratch
1133 #else
1134 #define LOC_PTEP ptr
1135 #endif
1136 
1137 	if (!vmalloc_branch_delay_filled)
1138 		/* get pgd offset in bytes */
1139 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1140 
1141 	uasm_l_vmalloc_done(l, *p);
1142 
1143 	/*
1144 	 *			   tmp		ptr
1145 	 * fall-through case =	 badvaddr  *pgd_current
1146 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1147 	 */
1148 
1149 	if (vmalloc_branch_delay_filled)
1150 		/* get pgd offset in bytes */
1151 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1152 
1153 #ifdef __PAGETABLE_PMD_FOLDED
1154 	GET_CONTEXT(p, tmp); /* get context reg */
1155 #endif
1156 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1157 
1158 	if (use_lwx_insns()) {
1159 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1160 	} else {
1161 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1162 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1163 	}
1164 
1165 #ifndef __PAGETABLE_PUD_FOLDED
1166 	/* get pud offset in bytes */
1167 	uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1168 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1169 
1170 	if (use_lwx_insns()) {
1171 		UASM_i_LWX(p, ptr, scratch, ptr);
1172 	} else {
1173 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1174 		UASM_i_LW(p, ptr, 0, ptr);
1175 	}
1176 	/* ptr contains a pointer to PMD entry */
1177 	/* tmp contains the address */
1178 #endif
1179 
1180 #ifndef __PAGETABLE_PMD_FOLDED
1181 	/* get pmd offset in bytes */
1182 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1183 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1184 	GET_CONTEXT(p, tmp); /* get context reg */
1185 
1186 	if (use_lwx_insns()) {
1187 		UASM_i_LWX(p, scratch, scratch, ptr);
1188 	} else {
1189 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1190 		UASM_i_LW(p, scratch, 0, ptr);
1191 	}
1192 #endif
1193 	/* Adjust the context during the load latency. */
1194 	build_adjust_context(p, tmp);
1195 
1196 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1197 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1198 	/*
1199 	 * The in the LWX case we don't want to do the load in the
1200 	 * delay slot.	It cannot issue in the same cycle and may be
1201 	 * speculative and unneeded.
1202 	 */
1203 	if (use_lwx_insns())
1204 		uasm_i_nop(p);
1205 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1206 
1207 
1208 	/* build_update_entries */
1209 	if (use_lwx_insns()) {
1210 		even = ptr;
1211 		odd = tmp;
1212 		UASM_i_LWX(p, even, scratch, tmp);
1213 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1214 		UASM_i_LWX(p, odd, scratch, tmp);
1215 	} else {
1216 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1217 		even = tmp;
1218 		odd = ptr;
1219 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1220 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1221 	}
1222 	if (cpu_has_rixi) {
1223 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1224 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1225 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1226 	} else {
1227 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1228 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1229 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1230 	}
1231 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1232 
1233 	if (c0_scratch_reg >= 0) {
1234 		uasm_i_ehb(p);
1235 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1236 		build_tlb_write_entry(p, l, r, tlb_random);
1237 		uasm_l_leave(l, *p);
1238 		rv.restore_scratch = 1;
1239 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1240 		build_tlb_write_entry(p, l, r, tlb_random);
1241 		uasm_l_leave(l, *p);
1242 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1243 	} else {
1244 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1245 		build_tlb_write_entry(p, l, r, tlb_random);
1246 		uasm_l_leave(l, *p);
1247 		rv.restore_scratch = 1;
1248 	}
1249 
1250 	uasm_i_eret(p); /* return from trap */
1251 
1252 	return rv;
1253 }
1254 
1255 /*
1256  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1257  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1258  * slots before the XTLB refill exception handler which belong to the
1259  * unused TLB refill exception.
1260  */
1261 #define MIPS64_REFILL_INSNS 32
1262 
1263 static void build_r4000_tlb_refill_handler(void)
1264 {
1265 	u32 *p = tlb_handler;
1266 	struct uasm_label *l = labels;
1267 	struct uasm_reloc *r = relocs;
1268 	u32 *f;
1269 	unsigned int final_len;
1270 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1271 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1272 
1273 	memset(tlb_handler, 0, sizeof(tlb_handler));
1274 	memset(labels, 0, sizeof(labels));
1275 	memset(relocs, 0, sizeof(relocs));
1276 	memset(final_handler, 0, sizeof(final_handler));
1277 
1278 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1279 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1280 							  scratch_reg);
1281 		vmalloc_mode = refill_scratch;
1282 	} else {
1283 		htlb_info.huge_pte = K0;
1284 		htlb_info.restore_scratch = 0;
1285 		htlb_info.need_reload_pte = true;
1286 		vmalloc_mode = refill_noscratch;
1287 		/*
1288 		 * create the plain linear handler
1289 		 */
1290 		if (bcm1250_m3_war()) {
1291 			unsigned int segbits = 44;
1292 
1293 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1294 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1295 			uasm_i_xor(&p, K0, K0, K1);
1296 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1297 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1298 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1299 			uasm_i_or(&p, K0, K0, K1);
1300 			uasm_il_bnez(&p, &r, K0, label_leave);
1301 			/* No need for uasm_i_nop */
1302 		}
1303 
1304 #ifdef CONFIG_64BIT
1305 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1306 #else
1307 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1308 #endif
1309 
1310 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1311 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1312 #endif
1313 
1314 		build_get_ptep(&p, K0, K1);
1315 		build_update_entries(&p, K0, K1);
1316 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1317 		uasm_l_leave(&l, p);
1318 		uasm_i_eret(&p); /* return from trap */
1319 	}
1320 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1321 	uasm_l_tlb_huge_update(&l, p);
1322 	if (htlb_info.need_reload_pte)
1323 		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1324 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1325 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1326 				   htlb_info.restore_scratch);
1327 #endif
1328 
1329 #ifdef CONFIG_64BIT
1330 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1331 #endif
1332 
1333 	/*
1334 	 * Overflow check: For the 64bit handler, we need at least one
1335 	 * free instruction slot for the wrap-around branch. In worst
1336 	 * case, if the intended insertion point is a delay slot, we
1337 	 * need three, with the second nop'ed and the third being
1338 	 * unused.
1339 	 */
1340 	switch (boot_cpu_type()) {
1341 	default:
1342 		if (sizeof(long) == 4) {
1343 		fallthrough;
1344 	case CPU_LOONGSON2EF:
1345 		/* Loongson2 ebase is different than r4k, we have more space */
1346 			if ((p - tlb_handler) > 64)
1347 				panic("TLB refill handler space exceeded");
1348 			/*
1349 			 * Now fold the handler in the TLB refill handler space.
1350 			 */
1351 			f = final_handler;
1352 			/* Simplest case, just copy the handler. */
1353 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1354 			final_len = p - tlb_handler;
1355 			break;
1356 		} else {
1357 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1358 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1359 				&& uasm_insn_has_bdelay(relocs,
1360 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1361 				panic("TLB refill handler space exceeded");
1362 			/*
1363 			 * Now fold the handler in the TLB refill handler space.
1364 			 */
1365 			f = final_handler + MIPS64_REFILL_INSNS;
1366 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1367 				/* Just copy the handler. */
1368 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1369 				final_len = p - tlb_handler;
1370 			} else {
1371 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1372 				const enum label_id ls = label_tlb_huge_update;
1373 #else
1374 				const enum label_id ls = label_vmalloc;
1375 #endif
1376 				u32 *split;
1377 				int ov = 0;
1378 				int i;
1379 
1380 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1381 					;
1382 				BUG_ON(i == ARRAY_SIZE(labels));
1383 				split = labels[i].addr;
1384 
1385 				/*
1386 				 * See if we have overflown one way or the other.
1387 				 */
1388 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1389 				    split < p - MIPS64_REFILL_INSNS)
1390 					ov = 1;
1391 
1392 				if (ov) {
1393 					/*
1394 					 * Split two instructions before the end.  One
1395 					 * for the branch and one for the instruction
1396 					 * in the delay slot.
1397 					 */
1398 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1399 
1400 					/*
1401 					 * If the branch would fall in a delay slot,
1402 					 * we must back up an additional instruction
1403 					 * so that it is no longer in a delay slot.
1404 					 */
1405 					if (uasm_insn_has_bdelay(relocs, split - 1))
1406 						split--;
1407 				}
1408 				/* Copy first part of the handler. */
1409 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1410 				f += split - tlb_handler;
1411 
1412 				if (ov) {
1413 					/* Insert branch. */
1414 					uasm_l_split(&l, final_handler);
1415 					uasm_il_b(&f, &r, label_split);
1416 					if (uasm_insn_has_bdelay(relocs, split))
1417 						uasm_i_nop(&f);
1418 					else {
1419 						uasm_copy_handler(relocs, labels,
1420 								  split, split + 1, f);
1421 						uasm_move_labels(labels, f, f + 1, -1);
1422 						f++;
1423 						split++;
1424 					}
1425 				}
1426 
1427 				/* Copy the rest of the handler. */
1428 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1429 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1430 					    (p - split);
1431 			}
1432 		}
1433 		break;
1434 	}
1435 
1436 	uasm_resolve_relocs(relocs, labels);
1437 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1438 		 final_len);
1439 
1440 	memcpy((void *)ebase, final_handler, 0x100);
1441 	local_flush_icache_range(ebase, ebase + 0x100);
1442 	dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1443 }
1444 
1445 static void setup_pw(void)
1446 {
1447 	unsigned int pwctl;
1448 	unsigned long pgd_i, pgd_w;
1449 #ifndef __PAGETABLE_PMD_FOLDED
1450 	unsigned long pmd_i, pmd_w;
1451 #endif
1452 	unsigned long pt_i, pt_w;
1453 	unsigned long pte_i, pte_w;
1454 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1455 	unsigned long psn;
1456 
1457 	psn = ilog2(_PAGE_HUGE);     /* bit used to indicate huge page */
1458 #endif
1459 	pgd_i = PGDIR_SHIFT;  /* 1st level PGD */
1460 #ifndef __PAGETABLE_PMD_FOLDED
1461 	pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_TABLE_ORDER;
1462 
1463 	pmd_i = PMD_SHIFT;    /* 2nd level PMD */
1464 	pmd_w = PMD_SHIFT - PAGE_SHIFT;
1465 #else
1466 	pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_TABLE_ORDER;
1467 #endif
1468 
1469 	pt_i  = PAGE_SHIFT;    /* 3rd level PTE */
1470 	pt_w  = PAGE_SHIFT - 3;
1471 
1472 	pte_i = ilog2(_PAGE_GLOBAL);
1473 	pte_w = 0;
1474 	pwctl = 1 << 30; /* Set PWDirExt */
1475 
1476 #ifndef __PAGETABLE_PMD_FOLDED
1477 	write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1478 	write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1479 #else
1480 	write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1481 	write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1482 #endif
1483 
1484 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1485 	pwctl |= (1 << 6 | psn);
1486 #endif
1487 	write_c0_pwctl(pwctl);
1488 	write_c0_kpgd((long)swapper_pg_dir);
1489 	kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1490 }
1491 
1492 static void build_loongson3_tlb_refill_handler(void)
1493 {
1494 	u32 *p = tlb_handler;
1495 	struct uasm_label *l = labels;
1496 	struct uasm_reloc *r = relocs;
1497 
1498 	memset(labels, 0, sizeof(labels));
1499 	memset(relocs, 0, sizeof(relocs));
1500 	memset(tlb_handler, 0, sizeof(tlb_handler));
1501 
1502 	if (check_for_high_segbits) {
1503 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1504 		uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1505 		uasm_il_beqz(&p, &r, K1, label_vmalloc);
1506 		uasm_i_nop(&p);
1507 
1508 		uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1509 		uasm_i_nop(&p);
1510 		uasm_l_vmalloc(&l, p);
1511 	}
1512 
1513 	uasm_i_dmfc0(&p, K1, C0_PGD);
1514 
1515 	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
1516 #ifndef __PAGETABLE_PMD_FOLDED
1517 	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
1518 #endif
1519 	uasm_i_ldpte(&p, K1, 0);      /* even */
1520 	uasm_i_ldpte(&p, K1, 1);      /* odd */
1521 	uasm_i_tlbwr(&p);
1522 
1523 	/* restore page mask */
1524 	if (PM_DEFAULT_MASK >> 16) {
1525 		uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1526 		uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1527 		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1528 	} else if (PM_DEFAULT_MASK) {
1529 		uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1530 		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1531 	} else {
1532 		uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1533 	}
1534 
1535 	uasm_i_eret(&p);
1536 
1537 	if (check_for_high_segbits) {
1538 		uasm_l_large_segbits_fault(&l, p);
1539 		UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1540 		uasm_i_jr(&p, K1);
1541 		uasm_i_nop(&p);
1542 	}
1543 
1544 	uasm_resolve_relocs(relocs, labels);
1545 	memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1546 	local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1547 	dump_handler("loongson3_tlb_refill",
1548 		     (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1549 }
1550 
1551 static void build_setup_pgd(void)
1552 {
1553 	const int a0 = 4;
1554 	const int __maybe_unused a1 = 5;
1555 	const int __maybe_unused a2 = 6;
1556 	u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1557 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1558 	long pgdc = (long)pgd_current;
1559 #endif
1560 
1561 	memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1562 	memset(labels, 0, sizeof(labels));
1563 	memset(relocs, 0, sizeof(relocs));
1564 	pgd_reg = allocate_kscratch();
1565 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1566 	if (pgd_reg == -1) {
1567 		struct uasm_label *l = labels;
1568 		struct uasm_reloc *r = relocs;
1569 
1570 		/* PGD << 11 in c0_Context */
1571 		/*
1572 		 * If it is a ckseg0 address, convert to a physical
1573 		 * address.  Shifting right by 29 and adding 4 will
1574 		 * result in zero for these addresses.
1575 		 *
1576 		 */
1577 		UASM_i_SRA(&p, a1, a0, 29);
1578 		UASM_i_ADDIU(&p, a1, a1, 4);
1579 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1580 		uasm_i_nop(&p);
1581 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1582 		uasm_l_tlbl_goaround1(&l, p);
1583 		UASM_i_SLL(&p, a0, a0, 11);
1584 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1585 		uasm_i_jr(&p, 31);
1586 		uasm_i_ehb(&p);
1587 	} else {
1588 		/* PGD in c0_KScratch */
1589 		if (cpu_has_ldpte)
1590 			UASM_i_MTC0(&p, a0, C0_PWBASE);
1591 		else
1592 			UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1593 		uasm_i_jr(&p, 31);
1594 		uasm_i_ehb(&p);
1595 	}
1596 #else
1597 #ifdef CONFIG_SMP
1598 	/* Save PGD to pgd_current[smp_processor_id()] */
1599 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1600 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1601 	UASM_i_LA_mostly(&p, a2, pgdc);
1602 	UASM_i_ADDU(&p, a2, a2, a1);
1603 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1604 #else
1605 	UASM_i_LA_mostly(&p, a2, pgdc);
1606 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1607 #endif /* SMP */
1608 
1609 	/* if pgd_reg is allocated, save PGD also to scratch register */
1610 	if (pgd_reg != -1) {
1611 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1612 		uasm_i_jr(&p, 31);
1613 		uasm_i_ehb(&p);
1614 	} else {
1615 		uasm_i_jr(&p, 31);
1616 		uasm_i_nop(&p);
1617 	}
1618 #endif
1619 	if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1620 		panic("tlbmiss_handler_setup_pgd space exceeded");
1621 
1622 	uasm_resolve_relocs(relocs, labels);
1623 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1624 		 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1625 
1626 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1627 					tlbmiss_handler_setup_pgd_end);
1628 }
1629 
1630 static void
1631 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1632 {
1633 #ifdef CONFIG_SMP
1634 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1635 		uasm_i_sync(p, 0);
1636 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1637 	if (cpu_has_64bits)
1638 		uasm_i_lld(p, pte, 0, ptr);
1639 	else
1640 # endif
1641 		UASM_i_LL(p, pte, 0, ptr);
1642 #else
1643 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1644 	if (cpu_has_64bits)
1645 		uasm_i_ld(p, pte, 0, ptr);
1646 	else
1647 # endif
1648 		UASM_i_LW(p, pte, 0, ptr);
1649 #endif
1650 }
1651 
1652 static void
1653 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1654 	unsigned int mode, unsigned int scratch)
1655 {
1656 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1657 	unsigned int swmode = mode & ~hwmode;
1658 
1659 	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1660 		uasm_i_lui(p, scratch, swmode >> 16);
1661 		uasm_i_or(p, pte, pte, scratch);
1662 		BUG_ON(swmode & 0xffff);
1663 	} else {
1664 		uasm_i_ori(p, pte, pte, mode);
1665 	}
1666 
1667 #ifdef CONFIG_SMP
1668 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1669 	if (cpu_has_64bits)
1670 		uasm_i_scd(p, pte, 0, ptr);
1671 	else
1672 # endif
1673 		UASM_i_SC(p, pte, 0, ptr);
1674 
1675 	if (r10000_llsc_war())
1676 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1677 	else
1678 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1679 
1680 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1681 	if (!cpu_has_64bits) {
1682 		/* no uasm_i_nop needed */
1683 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1684 		uasm_i_ori(p, pte, pte, hwmode);
1685 		BUG_ON(hwmode & ~0xffff);
1686 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1687 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1688 		/* no uasm_i_nop needed */
1689 		uasm_i_lw(p, pte, 0, ptr);
1690 	} else
1691 		uasm_i_nop(p);
1692 # else
1693 	uasm_i_nop(p);
1694 # endif
1695 #else
1696 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1697 	if (cpu_has_64bits)
1698 		uasm_i_sd(p, pte, 0, ptr);
1699 	else
1700 # endif
1701 		UASM_i_SW(p, pte, 0, ptr);
1702 
1703 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1704 	if (!cpu_has_64bits) {
1705 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1706 		uasm_i_ori(p, pte, pte, hwmode);
1707 		BUG_ON(hwmode & ~0xffff);
1708 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1709 		uasm_i_lw(p, pte, 0, ptr);
1710 	}
1711 # endif
1712 #endif
1713 }
1714 
1715 /*
1716  * Check if PTE is present, if not then jump to LABEL. PTR points to
1717  * the page table where this PTE is located, PTE will be re-loaded
1718  * with it's original value.
1719  */
1720 static void
1721 build_pte_present(u32 **p, struct uasm_reloc **r,
1722 		  int pte, int ptr, int scratch, enum label_id lid)
1723 {
1724 	int t = scratch >= 0 ? scratch : pte;
1725 	int cur = pte;
1726 
1727 	if (cpu_has_rixi) {
1728 		if (use_bbit_insns()) {
1729 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1730 			uasm_i_nop(p);
1731 		} else {
1732 			if (_PAGE_PRESENT_SHIFT) {
1733 				uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1734 				cur = t;
1735 			}
1736 			uasm_i_andi(p, t, cur, 1);
1737 			uasm_il_beqz(p, r, t, lid);
1738 			if (pte == t)
1739 				/* You lose the SMP race :-(*/
1740 				iPTE_LW(p, pte, ptr);
1741 		}
1742 	} else {
1743 		if (_PAGE_PRESENT_SHIFT) {
1744 			uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1745 			cur = t;
1746 		}
1747 		uasm_i_andi(p, t, cur,
1748 			(_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1749 		uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1750 		uasm_il_bnez(p, r, t, lid);
1751 		if (pte == t)
1752 			/* You lose the SMP race :-(*/
1753 			iPTE_LW(p, pte, ptr);
1754 	}
1755 }
1756 
1757 /* Make PTE valid, store result in PTR. */
1758 static void
1759 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1760 		 unsigned int ptr, unsigned int scratch)
1761 {
1762 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1763 
1764 	iPTE_SW(p, r, pte, ptr, mode, scratch);
1765 }
1766 
1767 /*
1768  * Check if PTE can be written to, if not branch to LABEL. Regardless
1769  * restore PTE with value from PTR when done.
1770  */
1771 static void
1772 build_pte_writable(u32 **p, struct uasm_reloc **r,
1773 		   unsigned int pte, unsigned int ptr, int scratch,
1774 		   enum label_id lid)
1775 {
1776 	int t = scratch >= 0 ? scratch : pte;
1777 	int cur = pte;
1778 
1779 	if (_PAGE_PRESENT_SHIFT) {
1780 		uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1781 		cur = t;
1782 	}
1783 	uasm_i_andi(p, t, cur,
1784 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1785 	uasm_i_xori(p, t, t,
1786 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1787 	uasm_il_bnez(p, r, t, lid);
1788 	if (pte == t)
1789 		/* You lose the SMP race :-(*/
1790 		iPTE_LW(p, pte, ptr);
1791 	else
1792 		uasm_i_nop(p);
1793 }
1794 
1795 /* Make PTE writable, update software status bits as well, then store
1796  * at PTR.
1797  */
1798 static void
1799 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1800 		 unsigned int ptr, unsigned int scratch)
1801 {
1802 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1803 			     | _PAGE_DIRTY);
1804 
1805 	iPTE_SW(p, r, pte, ptr, mode, scratch);
1806 }
1807 
1808 /*
1809  * Check if PTE can be modified, if not branch to LABEL. Regardless
1810  * restore PTE with value from PTR when done.
1811  */
1812 static void
1813 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1814 		     unsigned int pte, unsigned int ptr, int scratch,
1815 		     enum label_id lid)
1816 {
1817 	if (use_bbit_insns()) {
1818 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1819 		uasm_i_nop(p);
1820 	} else {
1821 		int t = scratch >= 0 ? scratch : pte;
1822 		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1823 		uasm_i_andi(p, t, t, 1);
1824 		uasm_il_beqz(p, r, t, lid);
1825 		if (pte == t)
1826 			/* You lose the SMP race :-(*/
1827 			iPTE_LW(p, pte, ptr);
1828 	}
1829 }
1830 
1831 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1832 
1833 
1834 /*
1835  * R3000 style TLB load/store/modify handlers.
1836  */
1837 
1838 /*
1839  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1840  * Then it returns.
1841  */
1842 static void
1843 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1844 {
1845 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1846 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1847 	uasm_i_tlbwi(p);
1848 	uasm_i_jr(p, tmp);
1849 	uasm_i_rfe(p); /* branch delay */
1850 }
1851 
1852 /*
1853  * This places the pte into ENTRYLO0 and writes it with tlbwi
1854  * or tlbwr as appropriate.  This is because the index register
1855  * may have the probe fail bit set as a result of a trap on a
1856  * kseg2 access, i.e. without refill.  Then it returns.
1857  */
1858 static void
1859 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1860 			     struct uasm_reloc **r, unsigned int pte,
1861 			     unsigned int tmp)
1862 {
1863 	uasm_i_mfc0(p, tmp, C0_INDEX);
1864 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1865 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1866 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1867 	uasm_i_tlbwi(p); /* cp0 delay */
1868 	uasm_i_jr(p, tmp);
1869 	uasm_i_rfe(p); /* branch delay */
1870 	uasm_l_r3000_write_probe_fail(l, *p);
1871 	uasm_i_tlbwr(p); /* cp0 delay */
1872 	uasm_i_jr(p, tmp);
1873 	uasm_i_rfe(p); /* branch delay */
1874 }
1875 
1876 static void
1877 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1878 				   unsigned int ptr)
1879 {
1880 	long pgdc = (long)pgd_current;
1881 
1882 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1883 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1884 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1885 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1886 	uasm_i_sll(p, pte, pte, 2);
1887 	uasm_i_addu(p, ptr, ptr, pte);
1888 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1889 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1890 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1891 	uasm_i_addu(p, ptr, ptr, pte);
1892 	uasm_i_lw(p, pte, 0, ptr);
1893 	uasm_i_tlbp(p); /* load delay */
1894 }
1895 
1896 static void build_r3000_tlb_load_handler(void)
1897 {
1898 	u32 *p = (u32 *)handle_tlbl;
1899 	struct uasm_label *l = labels;
1900 	struct uasm_reloc *r = relocs;
1901 
1902 	memset(p, 0, handle_tlbl_end - (char *)p);
1903 	memset(labels, 0, sizeof(labels));
1904 	memset(relocs, 0, sizeof(relocs));
1905 
1906 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1907 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1908 	uasm_i_nop(&p); /* load delay */
1909 	build_make_valid(&p, &r, K0, K1, -1);
1910 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1911 
1912 	uasm_l_nopage_tlbl(&l, p);
1913 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1914 	uasm_i_nop(&p);
1915 
1916 	if (p >= (u32 *)handle_tlbl_end)
1917 		panic("TLB load handler fastpath space exceeded");
1918 
1919 	uasm_resolve_relocs(relocs, labels);
1920 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1921 		 (unsigned int)(p - (u32 *)handle_tlbl));
1922 
1923 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1924 }
1925 
1926 static void build_r3000_tlb_store_handler(void)
1927 {
1928 	u32 *p = (u32 *)handle_tlbs;
1929 	struct uasm_label *l = labels;
1930 	struct uasm_reloc *r = relocs;
1931 
1932 	memset(p, 0, handle_tlbs_end - (char *)p);
1933 	memset(labels, 0, sizeof(labels));
1934 	memset(relocs, 0, sizeof(relocs));
1935 
1936 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1937 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1938 	uasm_i_nop(&p); /* load delay */
1939 	build_make_write(&p, &r, K0, K1, -1);
1940 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1941 
1942 	uasm_l_nopage_tlbs(&l, p);
1943 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1944 	uasm_i_nop(&p);
1945 
1946 	if (p >= (u32 *)handle_tlbs_end)
1947 		panic("TLB store handler fastpath space exceeded");
1948 
1949 	uasm_resolve_relocs(relocs, labels);
1950 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1951 		 (unsigned int)(p - (u32 *)handle_tlbs));
1952 
1953 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1954 }
1955 
1956 static void build_r3000_tlb_modify_handler(void)
1957 {
1958 	u32 *p = (u32 *)handle_tlbm;
1959 	struct uasm_label *l = labels;
1960 	struct uasm_reloc *r = relocs;
1961 
1962 	memset(p, 0, handle_tlbm_end - (char *)p);
1963 	memset(labels, 0, sizeof(labels));
1964 	memset(relocs, 0, sizeof(relocs));
1965 
1966 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1967 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1968 	uasm_i_nop(&p); /* load delay */
1969 	build_make_write(&p, &r, K0, K1, -1);
1970 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1971 
1972 	uasm_l_nopage_tlbm(&l, p);
1973 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1974 	uasm_i_nop(&p);
1975 
1976 	if (p >= (u32 *)handle_tlbm_end)
1977 		panic("TLB modify handler fastpath space exceeded");
1978 
1979 	uasm_resolve_relocs(relocs, labels);
1980 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1981 		 (unsigned int)(p - (u32 *)handle_tlbm));
1982 
1983 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
1984 }
1985 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1986 
1987 static bool cpu_has_tlbex_tlbp_race(void)
1988 {
1989 	/*
1990 	 * When a Hardware Table Walker is running it can replace TLB entries
1991 	 * at any time, leading to a race between it & the CPU.
1992 	 */
1993 	if (cpu_has_htw)
1994 		return true;
1995 
1996 	/*
1997 	 * If the CPU shares FTLB RAM with its siblings then our entry may be
1998 	 * replaced at any time by a sibling performing a write to the FTLB.
1999 	 */
2000 	if (cpu_has_shared_ftlb_ram)
2001 		return true;
2002 
2003 	/* In all other cases there ought to be no race condition to handle */
2004 	return false;
2005 }
2006 
2007 /*
2008  * R4000 style TLB load/store/modify handlers.
2009  */
2010 static struct work_registers
2011 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2012 				   struct uasm_reloc **r)
2013 {
2014 	struct work_registers wr = build_get_work_registers(p);
2015 
2016 #ifdef CONFIG_64BIT
2017 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2018 #else
2019 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2020 #endif
2021 
2022 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2023 	/*
2024 	 * For huge tlb entries, pmd doesn't contain an address but
2025 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2026 	 * see if we need to jump to huge tlb processing.
2027 	 */
2028 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2029 #endif
2030 
2031 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2032 	UASM_i_LW(p, wr.r2, 0, wr.r2);
2033 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT - PTE_T_LOG2);
2034 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2035 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2036 
2037 #ifdef CONFIG_SMP
2038 	uasm_l_smp_pgtable_change(l, *p);
2039 #endif
2040 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2041 	if (!m4kc_tlbp_war()) {
2042 		build_tlb_probe_entry(p);
2043 		if (cpu_has_tlbex_tlbp_race()) {
2044 			/* race condition happens, leaving */
2045 			uasm_i_ehb(p);
2046 			uasm_i_mfc0(p, wr.r3, C0_INDEX);
2047 			uasm_il_bltz(p, r, wr.r3, label_leave);
2048 			uasm_i_nop(p);
2049 		}
2050 	}
2051 	return wr;
2052 }
2053 
2054 static void
2055 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2056 				   struct uasm_reloc **r, unsigned int tmp,
2057 				   unsigned int ptr)
2058 {
2059 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2060 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2061 	build_update_entries(p, tmp, ptr);
2062 	build_tlb_write_entry(p, l, r, tlb_indexed);
2063 	uasm_l_leave(l, *p);
2064 	build_restore_work_registers(p);
2065 	uasm_i_eret(p); /* return from trap */
2066 
2067 #ifdef CONFIG_64BIT
2068 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2069 #endif
2070 }
2071 
2072 static void build_r4000_tlb_load_handler(void)
2073 {
2074 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2075 	struct uasm_label *l = labels;
2076 	struct uasm_reloc *r = relocs;
2077 	struct work_registers wr;
2078 
2079 	memset(p, 0, handle_tlbl_end - (char *)p);
2080 	memset(labels, 0, sizeof(labels));
2081 	memset(relocs, 0, sizeof(relocs));
2082 
2083 	if (bcm1250_m3_war()) {
2084 		unsigned int segbits = 44;
2085 
2086 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2087 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2088 		uasm_i_xor(&p, K0, K0, K1);
2089 		uasm_i_dsrl_safe(&p, K1, K0, 62);
2090 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2091 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2092 		uasm_i_or(&p, K0, K0, K1);
2093 		uasm_il_bnez(&p, &r, K0, label_leave);
2094 		/* No need for uasm_i_nop */
2095 	}
2096 
2097 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2098 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2099 	if (m4kc_tlbp_war())
2100 		build_tlb_probe_entry(&p);
2101 
2102 	if (cpu_has_rixi && !cpu_has_rixiex) {
2103 		/*
2104 		 * If the page is not _PAGE_VALID, RI or XI could not
2105 		 * have triggered it.  Skip the expensive test..
2106 		 */
2107 		if (use_bbit_insns()) {
2108 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2109 				      label_tlbl_goaround1);
2110 		} else {
2111 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2112 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2113 		}
2114 		uasm_i_nop(&p);
2115 
2116 		/*
2117 		 * Warn if something may race with us & replace the TLB entry
2118 		 * before we read it here. Everything with such races should
2119 		 * also have dedicated RiXi exception handlers, so this
2120 		 * shouldn't be hit.
2121 		 */
2122 		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2123 
2124 		uasm_i_tlbr(&p);
2125 
2126 		switch (current_cpu_type()) {
2127 		case CPU_CAVIUM_OCTEON:
2128 		case CPU_CAVIUM_OCTEON_PLUS:
2129 		case CPU_CAVIUM_OCTEON2:
2130 			break;
2131 		default:
2132 			if (cpu_has_mips_r2_exec_hazard)
2133 				uasm_i_ehb(&p);
2134 			break;
2135 		}
2136 
2137 		/* Examine  entrylo 0 or 1 based on ptr. */
2138 		if (use_bbit_insns()) {
2139 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2140 		} else {
2141 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2142 			uasm_i_beqz(&p, wr.r3, 8);
2143 		}
2144 		/* load it in the delay slot*/
2145 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2146 		/* load it if ptr is odd */
2147 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2148 		/*
2149 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2150 		 * XI must have triggered it.
2151 		 */
2152 		if (use_bbit_insns()) {
2153 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2154 			uasm_i_nop(&p);
2155 			uasm_l_tlbl_goaround1(&l, p);
2156 		} else {
2157 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2158 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2159 			uasm_i_nop(&p);
2160 		}
2161 		uasm_l_tlbl_goaround1(&l, p);
2162 	}
2163 	build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2164 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2165 
2166 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2167 	/*
2168 	 * This is the entry point when build_r4000_tlbchange_handler_head
2169 	 * spots a huge page.
2170 	 */
2171 	uasm_l_tlb_huge_update(&l, p);
2172 	iPTE_LW(&p, wr.r1, wr.r2);
2173 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2174 	build_tlb_probe_entry(&p);
2175 
2176 	if (cpu_has_rixi && !cpu_has_rixiex) {
2177 		/*
2178 		 * If the page is not _PAGE_VALID, RI or XI could not
2179 		 * have triggered it.  Skip the expensive test..
2180 		 */
2181 		if (use_bbit_insns()) {
2182 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2183 				      label_tlbl_goaround2);
2184 		} else {
2185 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2186 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2187 		}
2188 		uasm_i_nop(&p);
2189 
2190 		/*
2191 		 * Warn if something may race with us & replace the TLB entry
2192 		 * before we read it here. Everything with such races should
2193 		 * also have dedicated RiXi exception handlers, so this
2194 		 * shouldn't be hit.
2195 		 */
2196 		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2197 
2198 		uasm_i_tlbr(&p);
2199 
2200 		switch (current_cpu_type()) {
2201 		case CPU_CAVIUM_OCTEON:
2202 		case CPU_CAVIUM_OCTEON_PLUS:
2203 		case CPU_CAVIUM_OCTEON2:
2204 			break;
2205 		default:
2206 			if (cpu_has_mips_r2_exec_hazard)
2207 				uasm_i_ehb(&p);
2208 			break;
2209 		}
2210 
2211 		/* Examine  entrylo 0 or 1 based on ptr. */
2212 		if (use_bbit_insns()) {
2213 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2214 		} else {
2215 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2216 			uasm_i_beqz(&p, wr.r3, 8);
2217 		}
2218 		/* load it in the delay slot*/
2219 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2220 		/* load it if ptr is odd */
2221 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2222 		/*
2223 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2224 		 * XI must have triggered it.
2225 		 */
2226 		if (use_bbit_insns()) {
2227 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2228 		} else {
2229 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2230 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2231 		}
2232 		if (PM_DEFAULT_MASK == 0)
2233 			uasm_i_nop(&p);
2234 		/*
2235 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2236 		 * it is restored in build_huge_tlb_write_entry.
2237 		 */
2238 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2239 
2240 		uasm_l_tlbl_goaround2(&l, p);
2241 	}
2242 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2243 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2244 #endif
2245 
2246 	uasm_l_nopage_tlbl(&l, p);
2247 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2248 		uasm_i_sync(&p, 0);
2249 	build_restore_work_registers(&p);
2250 #ifdef CONFIG_CPU_MICROMIPS
2251 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2252 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2253 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2254 		uasm_i_jr(&p, K0);
2255 	} else
2256 #endif
2257 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2258 	uasm_i_nop(&p);
2259 
2260 	if (p >= (u32 *)handle_tlbl_end)
2261 		panic("TLB load handler fastpath space exceeded");
2262 
2263 	uasm_resolve_relocs(relocs, labels);
2264 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2265 		 (unsigned int)(p - (u32 *)handle_tlbl));
2266 
2267 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2268 }
2269 
2270 static void build_r4000_tlb_store_handler(void)
2271 {
2272 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2273 	struct uasm_label *l = labels;
2274 	struct uasm_reloc *r = relocs;
2275 	struct work_registers wr;
2276 
2277 	memset(p, 0, handle_tlbs_end - (char *)p);
2278 	memset(labels, 0, sizeof(labels));
2279 	memset(relocs, 0, sizeof(relocs));
2280 
2281 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2282 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2283 	if (m4kc_tlbp_war())
2284 		build_tlb_probe_entry(&p);
2285 	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2286 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2287 
2288 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2289 	/*
2290 	 * This is the entry point when
2291 	 * build_r4000_tlbchange_handler_head spots a huge page.
2292 	 */
2293 	uasm_l_tlb_huge_update(&l, p);
2294 	iPTE_LW(&p, wr.r1, wr.r2);
2295 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2296 	build_tlb_probe_entry(&p);
2297 	uasm_i_ori(&p, wr.r1, wr.r1,
2298 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2299 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2300 #endif
2301 
2302 	uasm_l_nopage_tlbs(&l, p);
2303 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2304 		uasm_i_sync(&p, 0);
2305 	build_restore_work_registers(&p);
2306 #ifdef CONFIG_CPU_MICROMIPS
2307 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2308 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2309 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2310 		uasm_i_jr(&p, K0);
2311 	} else
2312 #endif
2313 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2314 	uasm_i_nop(&p);
2315 
2316 	if (p >= (u32 *)handle_tlbs_end)
2317 		panic("TLB store handler fastpath space exceeded");
2318 
2319 	uasm_resolve_relocs(relocs, labels);
2320 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2321 		 (unsigned int)(p - (u32 *)handle_tlbs));
2322 
2323 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2324 }
2325 
2326 static void build_r4000_tlb_modify_handler(void)
2327 {
2328 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2329 	struct uasm_label *l = labels;
2330 	struct uasm_reloc *r = relocs;
2331 	struct work_registers wr;
2332 
2333 	memset(p, 0, handle_tlbm_end - (char *)p);
2334 	memset(labels, 0, sizeof(labels));
2335 	memset(relocs, 0, sizeof(relocs));
2336 
2337 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2338 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2339 	if (m4kc_tlbp_war())
2340 		build_tlb_probe_entry(&p);
2341 	/* Present and writable bits set, set accessed and dirty bits. */
2342 	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2343 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2344 
2345 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2346 	/*
2347 	 * This is the entry point when
2348 	 * build_r4000_tlbchange_handler_head spots a huge page.
2349 	 */
2350 	uasm_l_tlb_huge_update(&l, p);
2351 	iPTE_LW(&p, wr.r1, wr.r2);
2352 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2353 	build_tlb_probe_entry(&p);
2354 	uasm_i_ori(&p, wr.r1, wr.r1,
2355 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2356 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2357 #endif
2358 
2359 	uasm_l_nopage_tlbm(&l, p);
2360 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2361 		uasm_i_sync(&p, 0);
2362 	build_restore_work_registers(&p);
2363 #ifdef CONFIG_CPU_MICROMIPS
2364 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2365 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2366 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2367 		uasm_i_jr(&p, K0);
2368 	} else
2369 #endif
2370 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2371 	uasm_i_nop(&p);
2372 
2373 	if (p >= (u32 *)handle_tlbm_end)
2374 		panic("TLB modify handler fastpath space exceeded");
2375 
2376 	uasm_resolve_relocs(relocs, labels);
2377 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2378 		 (unsigned int)(p - (u32 *)handle_tlbm));
2379 
2380 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2381 }
2382 
2383 static void flush_tlb_handlers(void)
2384 {
2385 	local_flush_icache_range((unsigned long)handle_tlbl,
2386 			   (unsigned long)handle_tlbl_end);
2387 	local_flush_icache_range((unsigned long)handle_tlbs,
2388 			   (unsigned long)handle_tlbs_end);
2389 	local_flush_icache_range((unsigned long)handle_tlbm,
2390 			   (unsigned long)handle_tlbm_end);
2391 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2392 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2393 }
2394 
2395 static void print_htw_config(void)
2396 {
2397 	unsigned long config;
2398 	unsigned int pwctl;
2399 	const int field = 2 * sizeof(unsigned long);
2400 
2401 	config = read_c0_pwfield();
2402 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2403 		field, config,
2404 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2405 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2406 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2407 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2408 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2409 
2410 	config = read_c0_pwsize();
2411 	pr_debug("PWSize  (0x%0*lx): PS: 0x%lx  GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2412 		field, config,
2413 		(config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2414 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2415 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2416 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2417 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2418 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2419 
2420 	pwctl = read_c0_pwctl();
2421 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  XK: 0x%x  XS: 0x%x  XU: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2422 		pwctl,
2423 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2424 		(pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2425 		(pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2426 		(pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2427 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2428 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2429 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2430 }
2431 
2432 static void config_htw_params(void)
2433 {
2434 	unsigned long pwfield, pwsize, ptei;
2435 	unsigned int config;
2436 
2437 	/*
2438 	 * We are using 2-level page tables, so we only need to
2439 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2440 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2441 	 * write values less than 0xc in these fields because the entire
2442 	 * write will be dropped. As a result of which, we must preserve
2443 	 * the original reset values and overwrite only what we really want.
2444 	 */
2445 
2446 	pwfield = read_c0_pwfield();
2447 	/* re-initialize the GDI field */
2448 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2449 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2450 	/* re-initialize the PTI field including the even/odd bit */
2451 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2452 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2453 	if (CONFIG_PGTABLE_LEVELS >= 3) {
2454 		pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2455 		pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2456 	}
2457 	/* Set the PTEI right shift */
2458 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2459 	pwfield |= ptei;
2460 	write_c0_pwfield(pwfield);
2461 	/* Check whether the PTEI value is supported */
2462 	back_to_back_c0_hazard();
2463 	pwfield = read_c0_pwfield();
2464 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2465 		!= ptei) {
2466 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2467 			ptei);
2468 		/*
2469 		 * Drop option to avoid HTW being enabled via another path
2470 		 * (eg htw_reset())
2471 		 */
2472 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2473 		return;
2474 	}
2475 
2476 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2477 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2478 	if (CONFIG_PGTABLE_LEVELS >= 3)
2479 		pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2480 
2481 	/* Set pointer size to size of directory pointers */
2482 	if (IS_ENABLED(CONFIG_64BIT))
2483 		pwsize |= MIPS_PWSIZE_PS_MASK;
2484 	/* PTEs may be multiple pointers long (e.g. with XPA) */
2485 	pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2486 			& MIPS_PWSIZE_PTEW_MASK;
2487 
2488 	write_c0_pwsize(pwsize);
2489 
2490 	/* Make sure everything is set before we enable the HTW */
2491 	back_to_back_c0_hazard();
2492 
2493 	/*
2494 	 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2495 	 * the pwctl fields.
2496 	 */
2497 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2498 	if (IS_ENABLED(CONFIG_64BIT))
2499 		config |= MIPS_PWCTL_XU_MASK;
2500 	write_c0_pwctl(config);
2501 	pr_info("Hardware Page Table Walker enabled\n");
2502 
2503 	print_htw_config();
2504 }
2505 
2506 static void config_xpa_params(void)
2507 {
2508 #ifdef CONFIG_XPA
2509 	unsigned int pagegrain;
2510 
2511 	if (mips_xpa_disabled) {
2512 		pr_info("Extended Physical Addressing (XPA) disabled\n");
2513 		return;
2514 	}
2515 
2516 	pagegrain = read_c0_pagegrain();
2517 	write_c0_pagegrain(pagegrain | PG_ELPA);
2518 	back_to_back_c0_hazard();
2519 	pagegrain = read_c0_pagegrain();
2520 
2521 	if (pagegrain & PG_ELPA)
2522 		pr_info("Extended Physical Addressing (XPA) enabled\n");
2523 	else
2524 		panic("Extended Physical Addressing (XPA) disabled");
2525 #endif
2526 }
2527 
2528 static void check_pabits(void)
2529 {
2530 	unsigned long entry;
2531 	unsigned pabits, fillbits;
2532 
2533 	if (!cpu_has_rixi || _PAGE_NO_EXEC == 0) {
2534 		/*
2535 		 * We'll only be making use of the fact that we can rotate bits
2536 		 * into the fill if the CPU supports RIXI, so don't bother
2537 		 * probing this for CPUs which don't.
2538 		 */
2539 		return;
2540 	}
2541 
2542 	write_c0_entrylo0(~0ul);
2543 	back_to_back_c0_hazard();
2544 	entry = read_c0_entrylo0();
2545 
2546 	/* clear all non-PFN bits */
2547 	entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2548 	entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2549 
2550 	/* find a lower bound on PABITS, and upper bound on fill bits */
2551 	pabits = fls_long(entry) + 6;
2552 	fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2553 
2554 	/* minus the RI & XI bits */
2555 	fillbits -= min_t(unsigned, fillbits, 2);
2556 
2557 	if (fillbits >= ilog2(_PAGE_NO_EXEC))
2558 		fill_includes_sw_bits = true;
2559 
2560 	pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2561 }
2562 
2563 void build_tlb_refill_handler(void)
2564 {
2565 	/*
2566 	 * The refill handler is generated per-CPU, multi-node systems
2567 	 * may have local storage for it. The other handlers are only
2568 	 * needed once.
2569 	 */
2570 	static int run_once = 0;
2571 
2572 	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2573 		panic("Kernels supporting XPA currently require CPUs with RIXI");
2574 
2575 	output_pgtable_bits_defines();
2576 	check_pabits();
2577 
2578 #ifdef CONFIG_64BIT
2579 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
2580 #endif
2581 
2582 	if (cpu_has_3kex) {
2583 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2584 		if (!run_once) {
2585 			build_setup_pgd();
2586 			build_r3000_tlb_refill_handler();
2587 			build_r3000_tlb_load_handler();
2588 			build_r3000_tlb_store_handler();
2589 			build_r3000_tlb_modify_handler();
2590 			flush_tlb_handlers();
2591 			run_once++;
2592 		}
2593 #else
2594 		panic("No R3000 TLB refill handler");
2595 #endif
2596 		return;
2597 	}
2598 
2599 	if (cpu_has_ldpte)
2600 		setup_pw();
2601 
2602 	if (!run_once) {
2603 		scratch_reg = allocate_kscratch();
2604 		build_setup_pgd();
2605 		build_r4000_tlb_load_handler();
2606 		build_r4000_tlb_store_handler();
2607 		build_r4000_tlb_modify_handler();
2608 		if (cpu_has_ldpte)
2609 			build_loongson3_tlb_refill_handler();
2610 		else
2611 			build_r4000_tlb_refill_handler();
2612 		flush_tlb_handlers();
2613 		run_once++;
2614 	}
2615 	if (cpu_has_xpa)
2616 		config_xpa_params();
2617 	if (cpu_has_htw)
2618 		config_htw_params();
2619 }
2620