xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision d2168146)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30 
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 	case CPU_CAVIUM_OCTEON3:
89 		return 1;
90 	default:
91 		return 0;
92 	}
93 }
94 
95 static int use_lwx_insns(void)
96 {
97 	switch (current_cpu_type()) {
98 	case CPU_CAVIUM_OCTEON2:
99 	case CPU_CAVIUM_OCTEON3:
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
108 {
109 	return true;
110 }
111 static int scratchpad_offset(int i)
112 {
113 	/*
114 	 * CVMSEG starts at address -32768 and extends for
115 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
116 	 */
117 	i += 1; /* Kernel use starts at the top and works down. */
118 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
119 }
120 #else
121 static bool scratchpad_available(void)
122 {
123 	return false;
124 }
125 static int scratchpad_offset(int i)
126 {
127 	BUG();
128 	/* Really unreachable, but evidently some GCC want this. */
129 	return 0;
130 }
131 #endif
132 /*
133  * Found by experiment: At least some revisions of the 4kc throw under
134  * some circumstances a machine check exception, triggered by invalid
135  * values in the index register.  Delaying the tlbp instruction until
136  * after the next branch,  plus adding an additional nop in front of
137  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138  * why; it's not an issue caused by the core RTL.
139  *
140  */
141 static int m4kc_tlbp_war(void)
142 {
143 	return (current_cpu_data.processor_id & 0xffff00) ==
144 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
145 }
146 
147 /* Handle labels (which must be positive integers). */
148 enum label_id {
149 	label_second_part = 1,
150 	label_leave,
151 	label_vmalloc,
152 	label_vmalloc_done,
153 	label_tlbw_hazard_0,
154 	label_split = label_tlbw_hazard_0 + 8,
155 	label_tlbl_goaround1,
156 	label_tlbl_goaround2,
157 	label_nopage_tlbl,
158 	label_nopage_tlbs,
159 	label_nopage_tlbm,
160 	label_smp_pgtable_change,
161 	label_r3000_write_probe_fail,
162 	label_large_segbits_fault,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 	label_tlb_huge_update,
165 #endif
166 };
167 
168 UASM_L_LA(_second_part)
169 UASM_L_LA(_leave)
170 UASM_L_LA(_vmalloc)
171 UASM_L_LA(_vmalloc_done)
172 /* _tlbw_hazard_x is handled differently.  */
173 UASM_L_LA(_split)
174 UASM_L_LA(_tlbl_goaround1)
175 UASM_L_LA(_tlbl_goaround2)
176 UASM_L_LA(_nopage_tlbl)
177 UASM_L_LA(_nopage_tlbs)
178 UASM_L_LA(_nopage_tlbm)
179 UASM_L_LA(_smp_pgtable_change)
180 UASM_L_LA(_r3000_write_probe_fail)
181 UASM_L_LA(_large_segbits_fault)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update)
184 #endif
185 
186 static int hazard_instance;
187 
188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
200 {
201 	switch (instance) {
202 	case 0 ... 7:
203 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
204 		break;
205 	default:
206 		BUG();
207 	}
208 }
209 
210 /*
211  * pgtable bits are assigned dynamically depending on processor feature
212  * and statically based on kernel configuration.  This spits out the actual
213  * values the kernel is using.	Required to make sense from disassembled
214  * TLB exception handlers.
215  */
216 static void output_pgtable_bits_defines(void)
217 {
218 #define pr_define(fmt, ...)					\
219 	pr_debug("#define " fmt, ##__VA_ARGS__)
220 
221 	pr_debug("#include <asm/asm.h>\n");
222 	pr_debug("#include <asm/regdef.h>\n");
223 	pr_debug("\n");
224 
225 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
226 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
227 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
228 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
229 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
232 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
233 #endif
234 	if (cpu_has_rixi) {
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
237 #endif
238 #ifdef _PAGE_NO_READ_SHIFT
239 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 #endif
241 	}
242 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
243 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
244 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
245 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
246 	pr_debug("\n");
247 }
248 
249 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
250 {
251 	int i;
252 
253 	pr_debug("LEAF(%s)\n", symbol);
254 
255 	pr_debug("\t.set push\n");
256 	pr_debug("\t.set noreorder\n");
257 
258 	for (i = 0; i < count; i++)
259 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
260 
261 	pr_debug("\t.set\tpop\n");
262 
263 	pr_debug("\tEND(%s)\n", symbol);
264 }
265 
266 /* The only general purpose registers allowed in TLB handlers. */
267 #define K0		26
268 #define K1		27
269 
270 /* Some CP0 registers */
271 #define C0_INDEX	0, 0
272 #define C0_ENTRYLO0	2, 0
273 #define C0_TCBIND	2, 2
274 #define C0_ENTRYLO1	3, 0
275 #define C0_CONTEXT	4, 0
276 #define C0_PAGEMASK	5, 0
277 #define C0_BADVADDR	8, 0
278 #define C0_ENTRYHI	10, 0
279 #define C0_EPC		14, 0
280 #define C0_XCONTEXT	20, 0
281 
282 #ifdef CONFIG_64BIT
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
284 #else
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
286 #endif
287 
288 /* The worst case length of the handler is around 18 instructions for
289  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290  * Maximum space available is 32 instructions for R3000 and 64
291  * instructions for R4000.
292  *
293  * We deliberately chose a buffer size of 128, so we won't scribble
294  * over anything important on overflow before we panic.
295  */
296 static u32 tlb_handler[128];
297 
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels[128];
300 static struct uasm_reloc relocs[128];
301 
302 static int check_for_high_segbits;
303 
304 static unsigned int kscratch_used_mask;
305 
306 static inline int __maybe_unused c0_kscratch(void)
307 {
308 	switch (current_cpu_type()) {
309 	case CPU_XLP:
310 	case CPU_XLR:
311 		return 22;
312 	default:
313 		return 31;
314 	}
315 }
316 
317 static int allocate_kscratch(void)
318 {
319 	int r;
320 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
321 
322 	r = ffs(a);
323 
324 	if (r == 0)
325 		return -1;
326 
327 	r--; /* make it zero based */
328 
329 	kscratch_used_mask |= (1 << r);
330 
331 	return r;
332 }
333 
334 static int scratch_reg;
335 static int pgd_reg;
336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
337 
338 static struct work_registers build_get_work_registers(u32 **p)
339 {
340 	struct work_registers r;
341 
342 	if (scratch_reg >= 0) {
343 		/* Save in CPU local C0_KScratch? */
344 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
345 		r.r1 = K0;
346 		r.r2 = K1;
347 		r.r3 = 1;
348 		return r;
349 	}
350 
351 	if (num_possible_cpus() > 1) {
352 		/* Get smp_processor_id */
353 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
354 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
355 
356 		/* handler_reg_save index in K0 */
357 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
358 
359 		UASM_i_LA(p, K1, (long)&handler_reg_save);
360 		UASM_i_ADDU(p, K0, K0, K1);
361 	} else {
362 		UASM_i_LA(p, K0, (long)&handler_reg_save);
363 	}
364 	/* K0 now points to save area, save $1 and $2  */
365 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
366 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
367 
368 	r.r1 = K1;
369 	r.r2 = 1;
370 	r.r3 = 2;
371 	return r;
372 }
373 
374 static void build_restore_work_registers(u32 **p)
375 {
376 	if (scratch_reg >= 0) {
377 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
378 		return;
379 	}
380 	/* K0 already points to save area, restore $1 and $2  */
381 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
382 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
383 }
384 
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
386 
387 /*
388  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389  * we cannot do r3000 under these circumstances.
390  *
391  * Declare pgd_current here instead of including mmu_context.h to avoid type
392  * conflicts for tlbmiss_handler_setup_pgd
393  */
394 extern unsigned long pgd_current[];
395 
396 /*
397  * The R3000 TLB handler is simple.
398  */
399 static void build_r3000_tlb_refill_handler(void)
400 {
401 	long pgdc = (long)pgd_current;
402 	u32 *p;
403 
404 	memset(tlb_handler, 0, sizeof(tlb_handler));
405 	p = tlb_handler;
406 
407 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
408 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
409 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
410 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
411 	uasm_i_sll(&p, K0, K0, 2);
412 	uasm_i_addu(&p, K1, K1, K0);
413 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
414 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
415 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
416 	uasm_i_addu(&p, K1, K1, K0);
417 	uasm_i_lw(&p, K0, 0, K1);
418 	uasm_i_nop(&p); /* load delay */
419 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
420 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
421 	uasm_i_tlbwr(&p); /* cp0 delay */
422 	uasm_i_jr(&p, K1);
423 	uasm_i_rfe(&p); /* branch delay */
424 
425 	if (p > tlb_handler + 32)
426 		panic("TLB refill handler space exceeded");
427 
428 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 		 (unsigned int)(p - tlb_handler));
430 
431 	memcpy((void *)ebase, tlb_handler, 0x80);
432 
433 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
434 }
435 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
436 
437 /*
438  * The R4000 TLB handler is much more complicated. We have two
439  * consecutive handler areas with 32 instructions space each.
440  * Since they aren't used at the same time, we can overflow in the
441  * other one.To keep things simple, we first assume linear space,
442  * then we relocate it to the final handler layout as needed.
443  */
444 static u32 final_handler[64];
445 
446 /*
447  * Hazards
448  *
449  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
450  * 2. A timing hazard exists for the TLBP instruction.
451  *
452  *	stalling_instruction
453  *	TLBP
454  *
455  * The JTLB is being read for the TLBP throughout the stall generated by the
456  * previous instruction. This is not really correct as the stalling instruction
457  * can modify the address used to access the JTLB.  The failure symptom is that
458  * the TLBP instruction will use an address created for the stalling instruction
459  * and not the address held in C0_ENHI and thus report the wrong results.
460  *
461  * The software work-around is to not allow the instruction preceding the TLBP
462  * to stall - make it an NOP or some other instruction guaranteed not to stall.
463  *
464  * Errata 2 will not be fixed.	This errata is also on the R5000.
465  *
466  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
467  */
468 static void __maybe_unused build_tlb_probe_entry(u32 **p)
469 {
470 	switch (current_cpu_type()) {
471 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
472 	case CPU_R4600:
473 	case CPU_R4700:
474 	case CPU_R5000:
475 	case CPU_NEVADA:
476 		uasm_i_nop(p);
477 		uasm_i_tlbp(p);
478 		break;
479 
480 	default:
481 		uasm_i_tlbp(p);
482 		break;
483 	}
484 }
485 
486 /*
487  * Write random or indexed TLB entry, and care about the hazards from
488  * the preceding mtc0 and for the following eret.
489  */
490 enum tlb_write_entry { tlb_random, tlb_indexed };
491 
492 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
493 				  struct uasm_reloc **r,
494 				  enum tlb_write_entry wmode)
495 {
496 	void(*tlbw)(u32 **) = NULL;
497 
498 	switch (wmode) {
499 	case tlb_random: tlbw = uasm_i_tlbwr; break;
500 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
501 	}
502 
503 	if (cpu_has_mips_r2) {
504 		/*
505 		 * The architecture spec says an ehb is required here,
506 		 * but a number of cores do not have the hazard and
507 		 * using an ehb causes an expensive pipeline stall.
508 		 */
509 		switch (current_cpu_type()) {
510 		case CPU_M14KC:
511 		case CPU_74K:
512 		case CPU_1074K:
513 		case CPU_PROAPTIV:
514 		case CPU_P5600:
515 		case CPU_M5150:
516 			break;
517 
518 		default:
519 			uasm_i_ehb(p);
520 			break;
521 		}
522 		tlbw(p);
523 		return;
524 	}
525 
526 	switch (current_cpu_type()) {
527 	case CPU_R4000PC:
528 	case CPU_R4000SC:
529 	case CPU_R4000MC:
530 	case CPU_R4400PC:
531 	case CPU_R4400SC:
532 	case CPU_R4400MC:
533 		/*
534 		 * This branch uses up a mtc0 hazard nop slot and saves
535 		 * two nops after the tlbw instruction.
536 		 */
537 		uasm_bgezl_hazard(p, r, hazard_instance);
538 		tlbw(p);
539 		uasm_bgezl_label(l, p, hazard_instance);
540 		hazard_instance++;
541 		uasm_i_nop(p);
542 		break;
543 
544 	case CPU_R4600:
545 	case CPU_R4700:
546 		uasm_i_nop(p);
547 		tlbw(p);
548 		uasm_i_nop(p);
549 		break;
550 
551 	case CPU_R5000:
552 	case CPU_NEVADA:
553 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
554 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
555 		tlbw(p);
556 		break;
557 
558 	case CPU_R4300:
559 	case CPU_5KC:
560 	case CPU_TX49XX:
561 	case CPU_PR4450:
562 	case CPU_XLR:
563 		uasm_i_nop(p);
564 		tlbw(p);
565 		break;
566 
567 	case CPU_R10000:
568 	case CPU_R12000:
569 	case CPU_R14000:
570 	case CPU_4KC:
571 	case CPU_4KEC:
572 	case CPU_M14KC:
573 	case CPU_M14KEC:
574 	case CPU_SB1:
575 	case CPU_SB1A:
576 	case CPU_4KSC:
577 	case CPU_20KC:
578 	case CPU_25KF:
579 	case CPU_BMIPS32:
580 	case CPU_BMIPS3300:
581 	case CPU_BMIPS4350:
582 	case CPU_BMIPS4380:
583 	case CPU_BMIPS5000:
584 	case CPU_LOONGSON2:
585 	case CPU_LOONGSON3:
586 	case CPU_R5500:
587 		if (m4kc_tlbp_war())
588 			uasm_i_nop(p);
589 	case CPU_ALCHEMY:
590 		tlbw(p);
591 		break;
592 
593 	case CPU_RM7000:
594 		uasm_i_nop(p);
595 		uasm_i_nop(p);
596 		uasm_i_nop(p);
597 		uasm_i_nop(p);
598 		tlbw(p);
599 		break;
600 
601 	case CPU_VR4111:
602 	case CPU_VR4121:
603 	case CPU_VR4122:
604 	case CPU_VR4181:
605 	case CPU_VR4181A:
606 		uasm_i_nop(p);
607 		uasm_i_nop(p);
608 		tlbw(p);
609 		uasm_i_nop(p);
610 		uasm_i_nop(p);
611 		break;
612 
613 	case CPU_VR4131:
614 	case CPU_VR4133:
615 	case CPU_R5432:
616 		uasm_i_nop(p);
617 		uasm_i_nop(p);
618 		tlbw(p);
619 		break;
620 
621 	case CPU_JZRISC:
622 		tlbw(p);
623 		uasm_i_nop(p);
624 		break;
625 
626 	default:
627 		panic("No TLB refill handler yet (CPU type: %d)",
628 		      current_cpu_type());
629 		break;
630 	}
631 }
632 
633 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
634 							unsigned int reg)
635 {
636 	if (cpu_has_rixi) {
637 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
638 	} else {
639 #ifdef CONFIG_64BIT_PHYS_ADDR
640 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
641 #else
642 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
643 #endif
644 	}
645 }
646 
647 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
648 
649 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
650 				   unsigned int tmp, enum label_id lid,
651 				   int restore_scratch)
652 {
653 	if (restore_scratch) {
654 		/* Reset default page size */
655 		if (PM_DEFAULT_MASK >> 16) {
656 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
657 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
658 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
659 			uasm_il_b(p, r, lid);
660 		} else if (PM_DEFAULT_MASK) {
661 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
662 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
663 			uasm_il_b(p, r, lid);
664 		} else {
665 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
666 			uasm_il_b(p, r, lid);
667 		}
668 		if (scratch_reg >= 0)
669 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
670 		else
671 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
672 	} else {
673 		/* Reset default page size */
674 		if (PM_DEFAULT_MASK >> 16) {
675 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
676 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
677 			uasm_il_b(p, r, lid);
678 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 		} else if (PM_DEFAULT_MASK) {
680 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
681 			uasm_il_b(p, r, lid);
682 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
683 		} else {
684 			uasm_il_b(p, r, lid);
685 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
686 		}
687 	}
688 }
689 
690 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
691 				       struct uasm_reloc **r,
692 				       unsigned int tmp,
693 				       enum tlb_write_entry wmode,
694 				       int restore_scratch)
695 {
696 	/* Set huge page tlb entry size */
697 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
698 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
699 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
700 
701 	build_tlb_write_entry(p, l, r, wmode);
702 
703 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
704 }
705 
706 /*
707  * Check if Huge PTE is present, if so then jump to LABEL.
708  */
709 static void
710 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
711 		  unsigned int pmd, int lid)
712 {
713 	UASM_i_LW(p, tmp, 0, pmd);
714 	if (use_bbit_insns()) {
715 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
716 	} else {
717 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
718 		uasm_il_bnez(p, r, tmp, lid);
719 	}
720 }
721 
722 static void build_huge_update_entries(u32 **p, unsigned int pte,
723 				      unsigned int tmp)
724 {
725 	int small_sequence;
726 
727 	/*
728 	 * A huge PTE describes an area the size of the
729 	 * configured huge page size. This is twice the
730 	 * of the large TLB entry size we intend to use.
731 	 * A TLB entry half the size of the configured
732 	 * huge page size is configured into entrylo0
733 	 * and entrylo1 to cover the contiguous huge PTE
734 	 * address space.
735 	 */
736 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
737 
738 	/* We can clobber tmp.	It isn't used after this.*/
739 	if (!small_sequence)
740 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
741 
742 	build_convert_pte_to_entrylo(p, pte);
743 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
744 	/* convert to entrylo1 */
745 	if (small_sequence)
746 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
747 	else
748 		UASM_i_ADDU(p, pte, pte, tmp);
749 
750 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
751 }
752 
753 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
754 				    struct uasm_label **l,
755 				    unsigned int pte,
756 				    unsigned int ptr)
757 {
758 #ifdef CONFIG_SMP
759 	UASM_i_SC(p, pte, 0, ptr);
760 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
761 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
762 #else
763 	UASM_i_SW(p, pte, 0, ptr);
764 #endif
765 	build_huge_update_entries(p, pte, ptr);
766 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
767 }
768 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
769 
770 #ifdef CONFIG_64BIT
771 /*
772  * TMP and PTR are scratch.
773  * TMP will be clobbered, PTR will hold the pmd entry.
774  */
775 static void
776 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
777 		 unsigned int tmp, unsigned int ptr)
778 {
779 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
780 	long pgdc = (long)pgd_current;
781 #endif
782 	/*
783 	 * The vmalloc handling is not in the hotpath.
784 	 */
785 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
786 
787 	if (check_for_high_segbits) {
788 		/*
789 		 * The kernel currently implicitely assumes that the
790 		 * MIPS SEGBITS parameter for the processor is
791 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
792 		 * allocate virtual addresses outside the maximum
793 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
794 		 * that doesn't prevent user code from accessing the
795 		 * higher xuseg addresses.  Here, we make sure that
796 		 * everything but the lower xuseg addresses goes down
797 		 * the module_alloc/vmalloc path.
798 		 */
799 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
800 		uasm_il_bnez(p, r, ptr, label_vmalloc);
801 	} else {
802 		uasm_il_bltz(p, r, tmp, label_vmalloc);
803 	}
804 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
805 
806 	if (pgd_reg != -1) {
807 		/* pgd is in pgd_reg */
808 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
809 	} else {
810 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
811 		/*
812 		 * &pgd << 11 stored in CONTEXT [23..63].
813 		 */
814 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
815 
816 		/* Clear lower 23 bits of context. */
817 		uasm_i_dins(p, ptr, 0, 0, 23);
818 
819 		/* 1 0	1 0 1  << 6  xkphys cached */
820 		uasm_i_ori(p, ptr, ptr, 0x540);
821 		uasm_i_drotr(p, ptr, ptr, 11);
822 #elif defined(CONFIG_SMP)
823 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
824 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
825 		UASM_i_LA_mostly(p, tmp, pgdc);
826 		uasm_i_daddu(p, ptr, ptr, tmp);
827 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
828 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
829 #else
830 		UASM_i_LA_mostly(p, ptr, pgdc);
831 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
832 #endif
833 	}
834 
835 	uasm_l_vmalloc_done(l, *p);
836 
837 	/* get pgd offset in bytes */
838 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
839 
840 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
841 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
842 #ifndef __PAGETABLE_PMD_FOLDED
843 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
844 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
845 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
846 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
847 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
848 #endif
849 }
850 
851 /*
852  * BVADDR is the faulting address, PTR is scratch.
853  * PTR will hold the pgd for vmalloc.
854  */
855 static void
856 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
857 			unsigned int bvaddr, unsigned int ptr,
858 			enum vmalloc64_mode mode)
859 {
860 	long swpd = (long)swapper_pg_dir;
861 	int single_insn_swpd;
862 	int did_vmalloc_branch = 0;
863 
864 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
865 
866 	uasm_l_vmalloc(l, *p);
867 
868 	if (mode != not_refill && check_for_high_segbits) {
869 		if (single_insn_swpd) {
870 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
871 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
872 			did_vmalloc_branch = 1;
873 			/* fall through */
874 		} else {
875 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
876 		}
877 	}
878 	if (!did_vmalloc_branch) {
879 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
880 			uasm_il_b(p, r, label_vmalloc_done);
881 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
882 		} else {
883 			UASM_i_LA_mostly(p, ptr, swpd);
884 			uasm_il_b(p, r, label_vmalloc_done);
885 			if (uasm_in_compat_space_p(swpd))
886 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
887 			else
888 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
889 		}
890 	}
891 	if (mode != not_refill && check_for_high_segbits) {
892 		uasm_l_large_segbits_fault(l, *p);
893 		/*
894 		 * We get here if we are an xsseg address, or if we are
895 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
896 		 *
897 		 * Ignoring xsseg (assume disabled so would generate
898 		 * (address errors?), the only remaining possibility
899 		 * is the upper xuseg addresses.  On processors with
900 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
901 		 * addresses would have taken an address error. We try
902 		 * to mimic that here by taking a load/istream page
903 		 * fault.
904 		 */
905 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
906 		uasm_i_jr(p, ptr);
907 
908 		if (mode == refill_scratch) {
909 			if (scratch_reg >= 0)
910 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
911 			else
912 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
913 		} else {
914 			uasm_i_nop(p);
915 		}
916 	}
917 }
918 
919 #else /* !CONFIG_64BIT */
920 
921 /*
922  * TMP and PTR are scratch.
923  * TMP will be clobbered, PTR will hold the pgd entry.
924  */
925 static void __maybe_unused
926 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
927 {
928 	if (pgd_reg != -1) {
929 		/* pgd is in pgd_reg */
930 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
931 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
932 	} else {
933 		long pgdc = (long)pgd_current;
934 
935 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
936 #ifdef CONFIG_SMP
937 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
938 		UASM_i_LA_mostly(p, tmp, pgdc);
939 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
940 		uasm_i_addu(p, ptr, tmp, ptr);
941 #else
942 		UASM_i_LA_mostly(p, ptr, pgdc);
943 #endif
944 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
945 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
946 	}
947 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
948 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
949 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
950 }
951 
952 #endif /* !CONFIG_64BIT */
953 
954 static void build_adjust_context(u32 **p, unsigned int ctx)
955 {
956 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
957 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
958 
959 	switch (current_cpu_type()) {
960 	case CPU_VR41XX:
961 	case CPU_VR4111:
962 	case CPU_VR4121:
963 	case CPU_VR4122:
964 	case CPU_VR4131:
965 	case CPU_VR4181:
966 	case CPU_VR4181A:
967 	case CPU_VR4133:
968 		shift += 2;
969 		break;
970 
971 	default:
972 		break;
973 	}
974 
975 	if (shift)
976 		UASM_i_SRL(p, ctx, ctx, shift);
977 	uasm_i_andi(p, ctx, ctx, mask);
978 }
979 
980 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
981 {
982 	/*
983 	 * Bug workaround for the Nevada. It seems as if under certain
984 	 * circumstances the move from cp0_context might produce a
985 	 * bogus result when the mfc0 instruction and its consumer are
986 	 * in a different cacheline or a load instruction, probably any
987 	 * memory reference, is between them.
988 	 */
989 	switch (current_cpu_type()) {
990 	case CPU_NEVADA:
991 		UASM_i_LW(p, ptr, 0, ptr);
992 		GET_CONTEXT(p, tmp); /* get context reg */
993 		break;
994 
995 	default:
996 		GET_CONTEXT(p, tmp); /* get context reg */
997 		UASM_i_LW(p, ptr, 0, ptr);
998 		break;
999 	}
1000 
1001 	build_adjust_context(p, tmp);
1002 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1003 }
1004 
1005 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1006 {
1007 	/*
1008 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1009 	 * Kernel is a special case. Only a few CPUs use it.
1010 	 */
1011 #ifdef CONFIG_64BIT_PHYS_ADDR
1012 	if (cpu_has_64bits) {
1013 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1014 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1015 		if (cpu_has_rixi) {
1016 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1017 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1018 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1019 		} else {
1020 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1021 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1022 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1023 		}
1024 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1025 	} else {
1026 		int pte_off_even = sizeof(pte_t) / 2;
1027 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1028 
1029 		/* The pte entries are pre-shifted */
1030 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1031 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1032 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1033 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1034 	}
1035 #else
1036 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1037 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1038 	if (r45k_bvahwbug())
1039 		build_tlb_probe_entry(p);
1040 	if (cpu_has_rixi) {
1041 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1042 		if (r4k_250MHZhwbug())
1043 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1044 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1045 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1046 	} else {
1047 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1048 		if (r4k_250MHZhwbug())
1049 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1050 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1051 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1052 		if (r45k_bvahwbug())
1053 			uasm_i_mfc0(p, tmp, C0_INDEX);
1054 	}
1055 	if (r4k_250MHZhwbug())
1056 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1057 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058 #endif
1059 }
1060 
1061 struct mips_huge_tlb_info {
1062 	int huge_pte;
1063 	int restore_scratch;
1064 };
1065 
1066 static struct mips_huge_tlb_info
1067 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1068 			       struct uasm_reloc **r, unsigned int tmp,
1069 			       unsigned int ptr, int c0_scratch_reg)
1070 {
1071 	struct mips_huge_tlb_info rv;
1072 	unsigned int even, odd;
1073 	int vmalloc_branch_delay_filled = 0;
1074 	const int scratch = 1; /* Our extra working register */
1075 
1076 	rv.huge_pte = scratch;
1077 	rv.restore_scratch = 0;
1078 
1079 	if (check_for_high_segbits) {
1080 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1081 
1082 		if (pgd_reg != -1)
1083 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1084 		else
1085 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1086 
1087 		if (c0_scratch_reg >= 0)
1088 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1089 		else
1090 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1091 
1092 		uasm_i_dsrl_safe(p, scratch, tmp,
1093 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1094 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1095 
1096 		if (pgd_reg == -1) {
1097 			vmalloc_branch_delay_filled = 1;
1098 			/* Clear lower 23 bits of context. */
1099 			uasm_i_dins(p, ptr, 0, 0, 23);
1100 		}
1101 	} else {
1102 		if (pgd_reg != -1)
1103 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1104 		else
1105 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1106 
1107 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1108 
1109 		if (c0_scratch_reg >= 0)
1110 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1111 		else
1112 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1113 
1114 		if (pgd_reg == -1)
1115 			/* Clear lower 23 bits of context. */
1116 			uasm_i_dins(p, ptr, 0, 0, 23);
1117 
1118 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1119 	}
1120 
1121 	if (pgd_reg == -1) {
1122 		vmalloc_branch_delay_filled = 1;
1123 		/* 1 0	1 0 1  << 6  xkphys cached */
1124 		uasm_i_ori(p, ptr, ptr, 0x540);
1125 		uasm_i_drotr(p, ptr, ptr, 11);
1126 	}
1127 
1128 #ifdef __PAGETABLE_PMD_FOLDED
1129 #define LOC_PTEP scratch
1130 #else
1131 #define LOC_PTEP ptr
1132 #endif
1133 
1134 	if (!vmalloc_branch_delay_filled)
1135 		/* get pgd offset in bytes */
1136 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1137 
1138 	uasm_l_vmalloc_done(l, *p);
1139 
1140 	/*
1141 	 *			   tmp		ptr
1142 	 * fall-through case =	 badvaddr  *pgd_current
1143 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1144 	 */
1145 
1146 	if (vmalloc_branch_delay_filled)
1147 		/* get pgd offset in bytes */
1148 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1149 
1150 #ifdef __PAGETABLE_PMD_FOLDED
1151 	GET_CONTEXT(p, tmp); /* get context reg */
1152 #endif
1153 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1154 
1155 	if (use_lwx_insns()) {
1156 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1157 	} else {
1158 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1159 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1160 	}
1161 
1162 #ifndef __PAGETABLE_PMD_FOLDED
1163 	/* get pmd offset in bytes */
1164 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1165 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1166 	GET_CONTEXT(p, tmp); /* get context reg */
1167 
1168 	if (use_lwx_insns()) {
1169 		UASM_i_LWX(p, scratch, scratch, ptr);
1170 	} else {
1171 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1172 		UASM_i_LW(p, scratch, 0, ptr);
1173 	}
1174 #endif
1175 	/* Adjust the context during the load latency. */
1176 	build_adjust_context(p, tmp);
1177 
1178 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1179 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1180 	/*
1181 	 * The in the LWX case we don't want to do the load in the
1182 	 * delay slot.	It cannot issue in the same cycle and may be
1183 	 * speculative and unneeded.
1184 	 */
1185 	if (use_lwx_insns())
1186 		uasm_i_nop(p);
1187 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1188 
1189 
1190 	/* build_update_entries */
1191 	if (use_lwx_insns()) {
1192 		even = ptr;
1193 		odd = tmp;
1194 		UASM_i_LWX(p, even, scratch, tmp);
1195 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1196 		UASM_i_LWX(p, odd, scratch, tmp);
1197 	} else {
1198 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1199 		even = tmp;
1200 		odd = ptr;
1201 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1202 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1203 	}
1204 	if (cpu_has_rixi) {
1205 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1206 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1207 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1208 	} else {
1209 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1210 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1211 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1212 	}
1213 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1214 
1215 	if (c0_scratch_reg >= 0) {
1216 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217 		build_tlb_write_entry(p, l, r, tlb_random);
1218 		uasm_l_leave(l, *p);
1219 		rv.restore_scratch = 1;
1220 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1221 		build_tlb_write_entry(p, l, r, tlb_random);
1222 		uasm_l_leave(l, *p);
1223 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224 	} else {
1225 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226 		build_tlb_write_entry(p, l, r, tlb_random);
1227 		uasm_l_leave(l, *p);
1228 		rv.restore_scratch = 1;
1229 	}
1230 
1231 	uasm_i_eret(p); /* return from trap */
1232 
1233 	return rv;
1234 }
1235 
1236 /*
1237  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1239  * slots before the XTLB refill exception handler which belong to the
1240  * unused TLB refill exception.
1241  */
1242 #define MIPS64_REFILL_INSNS 32
1243 
1244 static void build_r4000_tlb_refill_handler(void)
1245 {
1246 	u32 *p = tlb_handler;
1247 	struct uasm_label *l = labels;
1248 	struct uasm_reloc *r = relocs;
1249 	u32 *f;
1250 	unsigned int final_len;
1251 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1252 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1253 
1254 	memset(tlb_handler, 0, sizeof(tlb_handler));
1255 	memset(labels, 0, sizeof(labels));
1256 	memset(relocs, 0, sizeof(relocs));
1257 	memset(final_handler, 0, sizeof(final_handler));
1258 
1259 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1261 							  scratch_reg);
1262 		vmalloc_mode = refill_scratch;
1263 	} else {
1264 		htlb_info.huge_pte = K0;
1265 		htlb_info.restore_scratch = 0;
1266 		vmalloc_mode = refill_noscratch;
1267 		/*
1268 		 * create the plain linear handler
1269 		 */
1270 		if (bcm1250_m3_war()) {
1271 			unsigned int segbits = 44;
1272 
1273 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1274 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1275 			uasm_i_xor(&p, K0, K0, K1);
1276 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1277 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1278 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1279 			uasm_i_or(&p, K0, K0, K1);
1280 			uasm_il_bnez(&p, &r, K0, label_leave);
1281 			/* No need for uasm_i_nop */
1282 		}
1283 
1284 #ifdef CONFIG_64BIT
1285 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1286 #else
1287 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1288 #endif
1289 
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1292 #endif
1293 
1294 		build_get_ptep(&p, K0, K1);
1295 		build_update_entries(&p, K0, K1);
1296 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1297 		uasm_l_leave(&l, p);
1298 		uasm_i_eret(&p); /* return from trap */
1299 	}
1300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301 	uasm_l_tlb_huge_update(&l, p);
1302 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1303 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1304 				   htlb_info.restore_scratch);
1305 #endif
1306 
1307 #ifdef CONFIG_64BIT
1308 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1309 #endif
1310 
1311 	/*
1312 	 * Overflow check: For the 64bit handler, we need at least one
1313 	 * free instruction slot for the wrap-around branch. In worst
1314 	 * case, if the intended insertion point is a delay slot, we
1315 	 * need three, with the second nop'ed and the third being
1316 	 * unused.
1317 	 */
1318 	switch (boot_cpu_type()) {
1319 	default:
1320 		if (sizeof(long) == 4) {
1321 	case CPU_LOONGSON2:
1322 		/* Loongson2 ebase is different than r4k, we have more space */
1323 			if ((p - tlb_handler) > 64)
1324 				panic("TLB refill handler space exceeded");
1325 			/*
1326 			 * Now fold the handler in the TLB refill handler space.
1327 			 */
1328 			f = final_handler;
1329 			/* Simplest case, just copy the handler. */
1330 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1331 			final_len = p - tlb_handler;
1332 			break;
1333 		} else {
1334 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1335 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1336 				&& uasm_insn_has_bdelay(relocs,
1337 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1338 				panic("TLB refill handler space exceeded");
1339 			/*
1340 			 * Now fold the handler in the TLB refill handler space.
1341 			 */
1342 			f = final_handler + MIPS64_REFILL_INSNS;
1343 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1344 				/* Just copy the handler. */
1345 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1346 				final_len = p - tlb_handler;
1347 			} else {
1348 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1349 				const enum label_id ls = label_tlb_huge_update;
1350 #else
1351 				const enum label_id ls = label_vmalloc;
1352 #endif
1353 				u32 *split;
1354 				int ov = 0;
1355 				int i;
1356 
1357 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1358 					;
1359 				BUG_ON(i == ARRAY_SIZE(labels));
1360 				split = labels[i].addr;
1361 
1362 				/*
1363 				 * See if we have overflown one way or the other.
1364 				 */
1365 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1366 				    split < p - MIPS64_REFILL_INSNS)
1367 					ov = 1;
1368 
1369 				if (ov) {
1370 					/*
1371 					 * Split two instructions before the end.  One
1372 					 * for the branch and one for the instruction
1373 					 * in the delay slot.
1374 					 */
1375 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1376 
1377 					/*
1378 					 * If the branch would fall in a delay slot,
1379 					 * we must back up an additional instruction
1380 					 * so that it is no longer in a delay slot.
1381 					 */
1382 					if (uasm_insn_has_bdelay(relocs, split - 1))
1383 						split--;
1384 				}
1385 				/* Copy first part of the handler. */
1386 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1387 				f += split - tlb_handler;
1388 
1389 				if (ov) {
1390 					/* Insert branch. */
1391 					uasm_l_split(&l, final_handler);
1392 					uasm_il_b(&f, &r, label_split);
1393 					if (uasm_insn_has_bdelay(relocs, split))
1394 						uasm_i_nop(&f);
1395 					else {
1396 						uasm_copy_handler(relocs, labels,
1397 								  split, split + 1, f);
1398 						uasm_move_labels(labels, f, f + 1, -1);
1399 						f++;
1400 						split++;
1401 					}
1402 				}
1403 
1404 				/* Copy the rest of the handler. */
1405 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1406 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1407 					    (p - split);
1408 			}
1409 		}
1410 		break;
1411 	}
1412 
1413 	uasm_resolve_relocs(relocs, labels);
1414 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1415 		 final_len);
1416 
1417 	memcpy((void *)ebase, final_handler, 0x100);
1418 
1419 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1420 }
1421 
1422 extern u32 handle_tlbl[], handle_tlbl_end[];
1423 extern u32 handle_tlbs[], handle_tlbs_end[];
1424 extern u32 handle_tlbm[], handle_tlbm_end[];
1425 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1426 extern u32 tlbmiss_handler_setup_pgd_end[];
1427 
1428 static void build_setup_pgd(void)
1429 {
1430 	const int a0 = 4;
1431 	const int __maybe_unused a1 = 5;
1432 	const int __maybe_unused a2 = 6;
1433 	u32 *p = tlbmiss_handler_setup_pgd_start;
1434 	const int tlbmiss_handler_setup_pgd_size =
1435 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1436 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1437 	long pgdc = (long)pgd_current;
1438 #endif
1439 
1440 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1441 					sizeof(tlbmiss_handler_setup_pgd[0]));
1442 	memset(labels, 0, sizeof(labels));
1443 	memset(relocs, 0, sizeof(relocs));
1444 	pgd_reg = allocate_kscratch();
1445 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1446 	if (pgd_reg == -1) {
1447 		struct uasm_label *l = labels;
1448 		struct uasm_reloc *r = relocs;
1449 
1450 		/* PGD << 11 in c0_Context */
1451 		/*
1452 		 * If it is a ckseg0 address, convert to a physical
1453 		 * address.  Shifting right by 29 and adding 4 will
1454 		 * result in zero for these addresses.
1455 		 *
1456 		 */
1457 		UASM_i_SRA(&p, a1, a0, 29);
1458 		UASM_i_ADDIU(&p, a1, a1, 4);
1459 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1460 		uasm_i_nop(&p);
1461 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1462 		uasm_l_tlbl_goaround1(&l, p);
1463 		UASM_i_SLL(&p, a0, a0, 11);
1464 		uasm_i_jr(&p, 31);
1465 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1466 	} else {
1467 		/* PGD in c0_KScratch */
1468 		uasm_i_jr(&p, 31);
1469 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1470 	}
1471 #else
1472 #ifdef CONFIG_SMP
1473 	/* Save PGD to pgd_current[smp_processor_id()] */
1474 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1475 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1476 	UASM_i_LA_mostly(&p, a2, pgdc);
1477 	UASM_i_ADDU(&p, a2, a2, a1);
1478 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1479 #else
1480 	UASM_i_LA_mostly(&p, a2, pgdc);
1481 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1482 #endif /* SMP */
1483 	uasm_i_jr(&p, 31);
1484 
1485 	/* if pgd_reg is allocated, save PGD also to scratch register */
1486 	if (pgd_reg != -1)
1487 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1488 	else
1489 		uasm_i_nop(&p);
1490 #endif
1491 	if (p >= tlbmiss_handler_setup_pgd_end)
1492 		panic("tlbmiss_handler_setup_pgd space exceeded");
1493 
1494 	uasm_resolve_relocs(relocs, labels);
1495 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1496 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1497 
1498 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1499 					tlbmiss_handler_setup_pgd_size);
1500 }
1501 
1502 static void
1503 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1504 {
1505 #ifdef CONFIG_SMP
1506 # ifdef CONFIG_64BIT_PHYS_ADDR
1507 	if (cpu_has_64bits)
1508 		uasm_i_lld(p, pte, 0, ptr);
1509 	else
1510 # endif
1511 		UASM_i_LL(p, pte, 0, ptr);
1512 #else
1513 # ifdef CONFIG_64BIT_PHYS_ADDR
1514 	if (cpu_has_64bits)
1515 		uasm_i_ld(p, pte, 0, ptr);
1516 	else
1517 # endif
1518 		UASM_i_LW(p, pte, 0, ptr);
1519 #endif
1520 }
1521 
1522 static void
1523 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1524 	unsigned int mode)
1525 {
1526 #ifdef CONFIG_64BIT_PHYS_ADDR
1527 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1528 #endif
1529 
1530 	uasm_i_ori(p, pte, pte, mode);
1531 #ifdef CONFIG_SMP
1532 # ifdef CONFIG_64BIT_PHYS_ADDR
1533 	if (cpu_has_64bits)
1534 		uasm_i_scd(p, pte, 0, ptr);
1535 	else
1536 # endif
1537 		UASM_i_SC(p, pte, 0, ptr);
1538 
1539 	if (r10000_llsc_war())
1540 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1541 	else
1542 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1543 
1544 # ifdef CONFIG_64BIT_PHYS_ADDR
1545 	if (!cpu_has_64bits) {
1546 		/* no uasm_i_nop needed */
1547 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1548 		uasm_i_ori(p, pte, pte, hwmode);
1549 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1550 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551 		/* no uasm_i_nop needed */
1552 		uasm_i_lw(p, pte, 0, ptr);
1553 	} else
1554 		uasm_i_nop(p);
1555 # else
1556 	uasm_i_nop(p);
1557 # endif
1558 #else
1559 # ifdef CONFIG_64BIT_PHYS_ADDR
1560 	if (cpu_has_64bits)
1561 		uasm_i_sd(p, pte, 0, ptr);
1562 	else
1563 # endif
1564 		UASM_i_SW(p, pte, 0, ptr);
1565 
1566 # ifdef CONFIG_64BIT_PHYS_ADDR
1567 	if (!cpu_has_64bits) {
1568 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1569 		uasm_i_ori(p, pte, pte, hwmode);
1570 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1571 		uasm_i_lw(p, pte, 0, ptr);
1572 	}
1573 # endif
1574 #endif
1575 }
1576 
1577 /*
1578  * Check if PTE is present, if not then jump to LABEL. PTR points to
1579  * the page table where this PTE is located, PTE will be re-loaded
1580  * with it's original value.
1581  */
1582 static void
1583 build_pte_present(u32 **p, struct uasm_reloc **r,
1584 		  int pte, int ptr, int scratch, enum label_id lid)
1585 {
1586 	int t = scratch >= 0 ? scratch : pte;
1587 
1588 	if (cpu_has_rixi) {
1589 		if (use_bbit_insns()) {
1590 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1591 			uasm_i_nop(p);
1592 		} else {
1593 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1594 			uasm_il_beqz(p, r, t, lid);
1595 			if (pte == t)
1596 				/* You lose the SMP race :-(*/
1597 				iPTE_LW(p, pte, ptr);
1598 		}
1599 	} else {
1600 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1601 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1602 		uasm_il_bnez(p, r, t, lid);
1603 		if (pte == t)
1604 			/* You lose the SMP race :-(*/
1605 			iPTE_LW(p, pte, ptr);
1606 	}
1607 }
1608 
1609 /* Make PTE valid, store result in PTR. */
1610 static void
1611 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1612 		 unsigned int ptr)
1613 {
1614 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1615 
1616 	iPTE_SW(p, r, pte, ptr, mode);
1617 }
1618 
1619 /*
1620  * Check if PTE can be written to, if not branch to LABEL. Regardless
1621  * restore PTE with value from PTR when done.
1622  */
1623 static void
1624 build_pte_writable(u32 **p, struct uasm_reloc **r,
1625 		   unsigned int pte, unsigned int ptr, int scratch,
1626 		   enum label_id lid)
1627 {
1628 	int t = scratch >= 0 ? scratch : pte;
1629 
1630 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1631 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1632 	uasm_il_bnez(p, r, t, lid);
1633 	if (pte == t)
1634 		/* You lose the SMP race :-(*/
1635 		iPTE_LW(p, pte, ptr);
1636 	else
1637 		uasm_i_nop(p);
1638 }
1639 
1640 /* Make PTE writable, update software status bits as well, then store
1641  * at PTR.
1642  */
1643 static void
1644 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1645 		 unsigned int ptr)
1646 {
1647 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1648 			     | _PAGE_DIRTY);
1649 
1650 	iPTE_SW(p, r, pte, ptr, mode);
1651 }
1652 
1653 /*
1654  * Check if PTE can be modified, if not branch to LABEL. Regardless
1655  * restore PTE with value from PTR when done.
1656  */
1657 static void
1658 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1659 		     unsigned int pte, unsigned int ptr, int scratch,
1660 		     enum label_id lid)
1661 {
1662 	if (use_bbit_insns()) {
1663 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1664 		uasm_i_nop(p);
1665 	} else {
1666 		int t = scratch >= 0 ? scratch : pte;
1667 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1668 		uasm_il_beqz(p, r, t, lid);
1669 		if (pte == t)
1670 			/* You lose the SMP race :-(*/
1671 			iPTE_LW(p, pte, ptr);
1672 	}
1673 }
1674 
1675 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1676 
1677 
1678 /*
1679  * R3000 style TLB load/store/modify handlers.
1680  */
1681 
1682 /*
1683  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1684  * Then it returns.
1685  */
1686 static void
1687 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1688 {
1689 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1690 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1691 	uasm_i_tlbwi(p);
1692 	uasm_i_jr(p, tmp);
1693 	uasm_i_rfe(p); /* branch delay */
1694 }
1695 
1696 /*
1697  * This places the pte into ENTRYLO0 and writes it with tlbwi
1698  * or tlbwr as appropriate.  This is because the index register
1699  * may have the probe fail bit set as a result of a trap on a
1700  * kseg2 access, i.e. without refill.  Then it returns.
1701  */
1702 static void
1703 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1704 			     struct uasm_reloc **r, unsigned int pte,
1705 			     unsigned int tmp)
1706 {
1707 	uasm_i_mfc0(p, tmp, C0_INDEX);
1708 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1709 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1710 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1711 	uasm_i_tlbwi(p); /* cp0 delay */
1712 	uasm_i_jr(p, tmp);
1713 	uasm_i_rfe(p); /* branch delay */
1714 	uasm_l_r3000_write_probe_fail(l, *p);
1715 	uasm_i_tlbwr(p); /* cp0 delay */
1716 	uasm_i_jr(p, tmp);
1717 	uasm_i_rfe(p); /* branch delay */
1718 }
1719 
1720 static void
1721 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1722 				   unsigned int ptr)
1723 {
1724 	long pgdc = (long)pgd_current;
1725 
1726 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1727 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1728 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1729 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1730 	uasm_i_sll(p, pte, pte, 2);
1731 	uasm_i_addu(p, ptr, ptr, pte);
1732 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1733 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1734 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1735 	uasm_i_addu(p, ptr, ptr, pte);
1736 	uasm_i_lw(p, pte, 0, ptr);
1737 	uasm_i_tlbp(p); /* load delay */
1738 }
1739 
1740 static void build_r3000_tlb_load_handler(void)
1741 {
1742 	u32 *p = handle_tlbl;
1743 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1744 	struct uasm_label *l = labels;
1745 	struct uasm_reloc *r = relocs;
1746 
1747 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1748 	memset(labels, 0, sizeof(labels));
1749 	memset(relocs, 0, sizeof(relocs));
1750 
1751 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1752 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1753 	uasm_i_nop(&p); /* load delay */
1754 	build_make_valid(&p, &r, K0, K1);
1755 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1756 
1757 	uasm_l_nopage_tlbl(&l, p);
1758 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1759 	uasm_i_nop(&p);
1760 
1761 	if (p >= handle_tlbl_end)
1762 		panic("TLB load handler fastpath space exceeded");
1763 
1764 	uasm_resolve_relocs(relocs, labels);
1765 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1766 		 (unsigned int)(p - handle_tlbl));
1767 
1768 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1769 }
1770 
1771 static void build_r3000_tlb_store_handler(void)
1772 {
1773 	u32 *p = handle_tlbs;
1774 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1775 	struct uasm_label *l = labels;
1776 	struct uasm_reloc *r = relocs;
1777 
1778 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1779 	memset(labels, 0, sizeof(labels));
1780 	memset(relocs, 0, sizeof(relocs));
1781 
1782 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1783 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1784 	uasm_i_nop(&p); /* load delay */
1785 	build_make_write(&p, &r, K0, K1);
1786 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1787 
1788 	uasm_l_nopage_tlbs(&l, p);
1789 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1790 	uasm_i_nop(&p);
1791 
1792 	if (p >= handle_tlbs_end)
1793 		panic("TLB store handler fastpath space exceeded");
1794 
1795 	uasm_resolve_relocs(relocs, labels);
1796 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1797 		 (unsigned int)(p - handle_tlbs));
1798 
1799 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1800 }
1801 
1802 static void build_r3000_tlb_modify_handler(void)
1803 {
1804 	u32 *p = handle_tlbm;
1805 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1806 	struct uasm_label *l = labels;
1807 	struct uasm_reloc *r = relocs;
1808 
1809 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1810 	memset(labels, 0, sizeof(labels));
1811 	memset(relocs, 0, sizeof(relocs));
1812 
1813 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1814 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1815 	uasm_i_nop(&p); /* load delay */
1816 	build_make_write(&p, &r, K0, K1);
1817 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1818 
1819 	uasm_l_nopage_tlbm(&l, p);
1820 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1821 	uasm_i_nop(&p);
1822 
1823 	if (p >= handle_tlbm_end)
1824 		panic("TLB modify handler fastpath space exceeded");
1825 
1826 	uasm_resolve_relocs(relocs, labels);
1827 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1828 		 (unsigned int)(p - handle_tlbm));
1829 
1830 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1831 }
1832 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1833 
1834 /*
1835  * R4000 style TLB load/store/modify handlers.
1836  */
1837 static struct work_registers
1838 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1839 				   struct uasm_reloc **r)
1840 {
1841 	struct work_registers wr = build_get_work_registers(p);
1842 
1843 #ifdef CONFIG_64BIT
1844 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1845 #else
1846 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1847 #endif
1848 
1849 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1850 	/*
1851 	 * For huge tlb entries, pmd doesn't contain an address but
1852 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1853 	 * see if we need to jump to huge tlb processing.
1854 	 */
1855 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1856 #endif
1857 
1858 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1859 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1860 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1861 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1862 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1863 
1864 #ifdef CONFIG_SMP
1865 	uasm_l_smp_pgtable_change(l, *p);
1866 #endif
1867 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1868 	if (!m4kc_tlbp_war())
1869 		build_tlb_probe_entry(p);
1870 	return wr;
1871 }
1872 
1873 static void
1874 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1875 				   struct uasm_reloc **r, unsigned int tmp,
1876 				   unsigned int ptr)
1877 {
1878 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1879 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1880 	build_update_entries(p, tmp, ptr);
1881 	build_tlb_write_entry(p, l, r, tlb_indexed);
1882 	uasm_l_leave(l, *p);
1883 	build_restore_work_registers(p);
1884 	uasm_i_eret(p); /* return from trap */
1885 
1886 #ifdef CONFIG_64BIT
1887 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1888 #endif
1889 }
1890 
1891 static void build_r4000_tlb_load_handler(void)
1892 {
1893 	u32 *p = handle_tlbl;
1894 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1895 	struct uasm_label *l = labels;
1896 	struct uasm_reloc *r = relocs;
1897 	struct work_registers wr;
1898 
1899 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1900 	memset(labels, 0, sizeof(labels));
1901 	memset(relocs, 0, sizeof(relocs));
1902 
1903 	if (bcm1250_m3_war()) {
1904 		unsigned int segbits = 44;
1905 
1906 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1907 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1908 		uasm_i_xor(&p, K0, K0, K1);
1909 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1910 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1911 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1912 		uasm_i_or(&p, K0, K0, K1);
1913 		uasm_il_bnez(&p, &r, K0, label_leave);
1914 		/* No need for uasm_i_nop */
1915 	}
1916 
1917 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1918 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1919 	if (m4kc_tlbp_war())
1920 		build_tlb_probe_entry(&p);
1921 
1922 	if (cpu_has_rixi) {
1923 		/*
1924 		 * If the page is not _PAGE_VALID, RI or XI could not
1925 		 * have triggered it.  Skip the expensive test..
1926 		 */
1927 		if (use_bbit_insns()) {
1928 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1929 				      label_tlbl_goaround1);
1930 		} else {
1931 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1932 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1933 		}
1934 		uasm_i_nop(&p);
1935 
1936 		uasm_i_tlbr(&p);
1937 
1938 		switch (current_cpu_type()) {
1939 		default:
1940 			if (cpu_has_mips_r2) {
1941 				uasm_i_ehb(&p);
1942 
1943 		case CPU_CAVIUM_OCTEON:
1944 		case CPU_CAVIUM_OCTEON_PLUS:
1945 		case CPU_CAVIUM_OCTEON2:
1946 				break;
1947 			}
1948 		}
1949 
1950 		/* Examine  entrylo 0 or 1 based on ptr. */
1951 		if (use_bbit_insns()) {
1952 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1953 		} else {
1954 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1955 			uasm_i_beqz(&p, wr.r3, 8);
1956 		}
1957 		/* load it in the delay slot*/
1958 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1959 		/* load it if ptr is odd */
1960 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1961 		/*
1962 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1963 		 * XI must have triggered it.
1964 		 */
1965 		if (use_bbit_insns()) {
1966 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1967 			uasm_i_nop(&p);
1968 			uasm_l_tlbl_goaround1(&l, p);
1969 		} else {
1970 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1971 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1972 			uasm_i_nop(&p);
1973 		}
1974 		uasm_l_tlbl_goaround1(&l, p);
1975 	}
1976 	build_make_valid(&p, &r, wr.r1, wr.r2);
1977 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1978 
1979 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1980 	/*
1981 	 * This is the entry point when build_r4000_tlbchange_handler_head
1982 	 * spots a huge page.
1983 	 */
1984 	uasm_l_tlb_huge_update(&l, p);
1985 	iPTE_LW(&p, wr.r1, wr.r2);
1986 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1987 	build_tlb_probe_entry(&p);
1988 
1989 	if (cpu_has_rixi) {
1990 		/*
1991 		 * If the page is not _PAGE_VALID, RI or XI could not
1992 		 * have triggered it.  Skip the expensive test..
1993 		 */
1994 		if (use_bbit_insns()) {
1995 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1996 				      label_tlbl_goaround2);
1997 		} else {
1998 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1999 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2000 		}
2001 		uasm_i_nop(&p);
2002 
2003 		uasm_i_tlbr(&p);
2004 
2005 		switch (current_cpu_type()) {
2006 		default:
2007 			if (cpu_has_mips_r2) {
2008 				uasm_i_ehb(&p);
2009 
2010 		case CPU_CAVIUM_OCTEON:
2011 		case CPU_CAVIUM_OCTEON_PLUS:
2012 		case CPU_CAVIUM_OCTEON2:
2013 				break;
2014 			}
2015 		}
2016 
2017 		/* Examine  entrylo 0 or 1 based on ptr. */
2018 		if (use_bbit_insns()) {
2019 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2020 		} else {
2021 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2022 			uasm_i_beqz(&p, wr.r3, 8);
2023 		}
2024 		/* load it in the delay slot*/
2025 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2026 		/* load it if ptr is odd */
2027 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2028 		/*
2029 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2030 		 * XI must have triggered it.
2031 		 */
2032 		if (use_bbit_insns()) {
2033 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2034 		} else {
2035 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2036 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2037 		}
2038 		if (PM_DEFAULT_MASK == 0)
2039 			uasm_i_nop(&p);
2040 		/*
2041 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2042 		 * it is restored in build_huge_tlb_write_entry.
2043 		 */
2044 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2045 
2046 		uasm_l_tlbl_goaround2(&l, p);
2047 	}
2048 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2049 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2050 #endif
2051 
2052 	uasm_l_nopage_tlbl(&l, p);
2053 	build_restore_work_registers(&p);
2054 #ifdef CONFIG_CPU_MICROMIPS
2055 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2056 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2057 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2058 		uasm_i_jr(&p, K0);
2059 	} else
2060 #endif
2061 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2062 	uasm_i_nop(&p);
2063 
2064 	if (p >= handle_tlbl_end)
2065 		panic("TLB load handler fastpath space exceeded");
2066 
2067 	uasm_resolve_relocs(relocs, labels);
2068 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2069 		 (unsigned int)(p - handle_tlbl));
2070 
2071 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2072 }
2073 
2074 static void build_r4000_tlb_store_handler(void)
2075 {
2076 	u32 *p = handle_tlbs;
2077 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2078 	struct uasm_label *l = labels;
2079 	struct uasm_reloc *r = relocs;
2080 	struct work_registers wr;
2081 
2082 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2083 	memset(labels, 0, sizeof(labels));
2084 	memset(relocs, 0, sizeof(relocs));
2085 
2086 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2087 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2088 	if (m4kc_tlbp_war())
2089 		build_tlb_probe_entry(&p);
2090 	build_make_write(&p, &r, wr.r1, wr.r2);
2091 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2092 
2093 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2094 	/*
2095 	 * This is the entry point when
2096 	 * build_r4000_tlbchange_handler_head spots a huge page.
2097 	 */
2098 	uasm_l_tlb_huge_update(&l, p);
2099 	iPTE_LW(&p, wr.r1, wr.r2);
2100 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2101 	build_tlb_probe_entry(&p);
2102 	uasm_i_ori(&p, wr.r1, wr.r1,
2103 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2104 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2105 #endif
2106 
2107 	uasm_l_nopage_tlbs(&l, p);
2108 	build_restore_work_registers(&p);
2109 #ifdef CONFIG_CPU_MICROMIPS
2110 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2111 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2112 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2113 		uasm_i_jr(&p, K0);
2114 	} else
2115 #endif
2116 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2117 	uasm_i_nop(&p);
2118 
2119 	if (p >= handle_tlbs_end)
2120 		panic("TLB store handler fastpath space exceeded");
2121 
2122 	uasm_resolve_relocs(relocs, labels);
2123 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2124 		 (unsigned int)(p - handle_tlbs));
2125 
2126 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2127 }
2128 
2129 static void build_r4000_tlb_modify_handler(void)
2130 {
2131 	u32 *p = handle_tlbm;
2132 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2133 	struct uasm_label *l = labels;
2134 	struct uasm_reloc *r = relocs;
2135 	struct work_registers wr;
2136 
2137 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2138 	memset(labels, 0, sizeof(labels));
2139 	memset(relocs, 0, sizeof(relocs));
2140 
2141 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2142 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2143 	if (m4kc_tlbp_war())
2144 		build_tlb_probe_entry(&p);
2145 	/* Present and writable bits set, set accessed and dirty bits. */
2146 	build_make_write(&p, &r, wr.r1, wr.r2);
2147 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2148 
2149 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2150 	/*
2151 	 * This is the entry point when
2152 	 * build_r4000_tlbchange_handler_head spots a huge page.
2153 	 */
2154 	uasm_l_tlb_huge_update(&l, p);
2155 	iPTE_LW(&p, wr.r1, wr.r2);
2156 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2157 	build_tlb_probe_entry(&p);
2158 	uasm_i_ori(&p, wr.r1, wr.r1,
2159 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2160 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2161 #endif
2162 
2163 	uasm_l_nopage_tlbm(&l, p);
2164 	build_restore_work_registers(&p);
2165 #ifdef CONFIG_CPU_MICROMIPS
2166 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2167 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2168 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2169 		uasm_i_jr(&p, K0);
2170 	} else
2171 #endif
2172 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2173 	uasm_i_nop(&p);
2174 
2175 	if (p >= handle_tlbm_end)
2176 		panic("TLB modify handler fastpath space exceeded");
2177 
2178 	uasm_resolve_relocs(relocs, labels);
2179 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2180 		 (unsigned int)(p - handle_tlbm));
2181 
2182 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2183 }
2184 
2185 static void flush_tlb_handlers(void)
2186 {
2187 	local_flush_icache_range((unsigned long)handle_tlbl,
2188 			   (unsigned long)handle_tlbl_end);
2189 	local_flush_icache_range((unsigned long)handle_tlbs,
2190 			   (unsigned long)handle_tlbs_end);
2191 	local_flush_icache_range((unsigned long)handle_tlbm,
2192 			   (unsigned long)handle_tlbm_end);
2193 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2194 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2195 }
2196 
2197 void build_tlb_refill_handler(void)
2198 {
2199 	/*
2200 	 * The refill handler is generated per-CPU, multi-node systems
2201 	 * may have local storage for it. The other handlers are only
2202 	 * needed once.
2203 	 */
2204 	static int run_once = 0;
2205 
2206 	output_pgtable_bits_defines();
2207 
2208 #ifdef CONFIG_64BIT
2209 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2210 #endif
2211 
2212 	switch (current_cpu_type()) {
2213 	case CPU_R2000:
2214 	case CPU_R3000:
2215 	case CPU_R3000A:
2216 	case CPU_R3081E:
2217 	case CPU_TX3912:
2218 	case CPU_TX3922:
2219 	case CPU_TX3927:
2220 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2221 		if (cpu_has_local_ebase)
2222 			build_r3000_tlb_refill_handler();
2223 		if (!run_once) {
2224 			if (!cpu_has_local_ebase)
2225 				build_r3000_tlb_refill_handler();
2226 			build_setup_pgd();
2227 			build_r3000_tlb_load_handler();
2228 			build_r3000_tlb_store_handler();
2229 			build_r3000_tlb_modify_handler();
2230 			flush_tlb_handlers();
2231 			run_once++;
2232 		}
2233 #else
2234 		panic("No R3000 TLB refill handler");
2235 #endif
2236 		break;
2237 
2238 	case CPU_R6000:
2239 	case CPU_R6000A:
2240 		panic("No R6000 TLB refill handler yet");
2241 		break;
2242 
2243 	case CPU_R8000:
2244 		panic("No R8000 TLB refill handler yet");
2245 		break;
2246 
2247 	default:
2248 		if (!run_once) {
2249 			scratch_reg = allocate_kscratch();
2250 			build_setup_pgd();
2251 			build_r4000_tlb_load_handler();
2252 			build_r4000_tlb_store_handler();
2253 			build_r4000_tlb_modify_handler();
2254 			if (!cpu_has_local_ebase)
2255 				build_r4000_tlb_refill_handler();
2256 			flush_tlb_handlers();
2257 			run_once++;
2258 		}
2259 		if (cpu_has_local_ebase)
2260 			build_r4000_tlb_refill_handler();
2261 	}
2262 }
2263