1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Synthesize TLB refill handlers at runtime. 7 * 8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki 10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 11 * Copyright (C) 2008, 2009 Cavium Networks, Inc. 12 * Copyright (C) 2011 MIPS Technologies, Inc. 13 * 14 * ... and the days got worse and worse and now you see 15 * I've gone completly out of my mind. 16 * 17 * They're coming to take me a away haha 18 * they're coming to take me a away hoho hihi haha 19 * to the funny farm where code is beautiful all the time ... 20 * 21 * (Condolences to Napoleon XIV) 22 */ 23 24 #include <linux/bug.h> 25 #include <linux/kernel.h> 26 #include <linux/types.h> 27 #include <linux/smp.h> 28 #include <linux/string.h> 29 #include <linux/init.h> 30 #include <linux/cache.h> 31 32 #include <asm/cacheflush.h> 33 #include <asm/cpu-type.h> 34 #include <asm/pgtable.h> 35 #include <asm/war.h> 36 #include <asm/uasm.h> 37 #include <asm/setup.h> 38 39 /* 40 * TLB load/store/modify handlers. 41 * 42 * Only the fastpath gets synthesized at runtime, the slowpath for 43 * do_page_fault remains normal asm. 44 */ 45 extern void tlb_do_page_fault_0(void); 46 extern void tlb_do_page_fault_1(void); 47 48 struct work_registers { 49 int r1; 50 int r2; 51 int r3; 52 }; 53 54 struct tlb_reg_save { 55 unsigned long a; 56 unsigned long b; 57 } ____cacheline_aligned_in_smp; 58 59 static struct tlb_reg_save handler_reg_save[NR_CPUS]; 60 61 static inline int r45k_bvahwbug(void) 62 { 63 /* XXX: We should probe for the presence of this bug, but we don't. */ 64 return 0; 65 } 66 67 static inline int r4k_250MHZhwbug(void) 68 { 69 /* XXX: We should probe for the presence of this bug, but we don't. */ 70 return 0; 71 } 72 73 static inline int __maybe_unused bcm1250_m3_war(void) 74 { 75 return BCM1250_M3_WAR; 76 } 77 78 static inline int __maybe_unused r10000_llsc_war(void) 79 { 80 return R10000_LLSC_WAR; 81 } 82 83 static int use_bbit_insns(void) 84 { 85 switch (current_cpu_type()) { 86 case CPU_CAVIUM_OCTEON: 87 case CPU_CAVIUM_OCTEON_PLUS: 88 case CPU_CAVIUM_OCTEON2: 89 case CPU_CAVIUM_OCTEON3: 90 return 1; 91 default: 92 return 0; 93 } 94 } 95 96 static int use_lwx_insns(void) 97 { 98 switch (current_cpu_type()) { 99 case CPU_CAVIUM_OCTEON2: 100 case CPU_CAVIUM_OCTEON3: 101 return 1; 102 default: 103 return 0; 104 } 105 } 106 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ 107 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 108 static bool scratchpad_available(void) 109 { 110 return true; 111 } 112 static int scratchpad_offset(int i) 113 { 114 /* 115 * CVMSEG starts at address -32768 and extends for 116 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines. 117 */ 118 i += 1; /* Kernel use starts at the top and works down. */ 119 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768; 120 } 121 #else 122 static bool scratchpad_available(void) 123 { 124 return false; 125 } 126 static int scratchpad_offset(int i) 127 { 128 BUG(); 129 /* Really unreachable, but evidently some GCC want this. */ 130 return 0; 131 } 132 #endif 133 /* 134 * Found by experiment: At least some revisions of the 4kc throw under 135 * some circumstances a machine check exception, triggered by invalid 136 * values in the index register. Delaying the tlbp instruction until 137 * after the next branch, plus adding an additional nop in front of 138 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows 139 * why; it's not an issue caused by the core RTL. 140 * 141 */ 142 static int m4kc_tlbp_war(void) 143 { 144 return (current_cpu_data.processor_id & 0xffff00) == 145 (PRID_COMP_MIPS | PRID_IMP_4KC); 146 } 147 148 /* Handle labels (which must be positive integers). */ 149 enum label_id { 150 label_second_part = 1, 151 label_leave, 152 label_vmalloc, 153 label_vmalloc_done, 154 label_tlbw_hazard_0, 155 label_split = label_tlbw_hazard_0 + 8, 156 label_tlbl_goaround1, 157 label_tlbl_goaround2, 158 label_nopage_tlbl, 159 label_nopage_tlbs, 160 label_nopage_tlbm, 161 label_smp_pgtable_change, 162 label_r3000_write_probe_fail, 163 label_large_segbits_fault, 164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 165 label_tlb_huge_update, 166 #endif 167 }; 168 169 UASM_L_LA(_second_part) 170 UASM_L_LA(_leave) 171 UASM_L_LA(_vmalloc) 172 UASM_L_LA(_vmalloc_done) 173 /* _tlbw_hazard_x is handled differently. */ 174 UASM_L_LA(_split) 175 UASM_L_LA(_tlbl_goaround1) 176 UASM_L_LA(_tlbl_goaround2) 177 UASM_L_LA(_nopage_tlbl) 178 UASM_L_LA(_nopage_tlbs) 179 UASM_L_LA(_nopage_tlbm) 180 UASM_L_LA(_smp_pgtable_change) 181 UASM_L_LA(_r3000_write_probe_fail) 182 UASM_L_LA(_large_segbits_fault) 183 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 184 UASM_L_LA(_tlb_huge_update) 185 #endif 186 187 static int hazard_instance; 188 189 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance) 190 { 191 switch (instance) { 192 case 0 ... 7: 193 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance); 194 return; 195 default: 196 BUG(); 197 } 198 } 199 200 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance) 201 { 202 switch (instance) { 203 case 0 ... 7: 204 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance); 205 break; 206 default: 207 BUG(); 208 } 209 } 210 211 /* 212 * pgtable bits are assigned dynamically depending on processor feature 213 * and statically based on kernel configuration. This spits out the actual 214 * values the kernel is using. Required to make sense from disassembled 215 * TLB exception handlers. 216 */ 217 static void output_pgtable_bits_defines(void) 218 { 219 #define pr_define(fmt, ...) \ 220 pr_debug("#define " fmt, ##__VA_ARGS__) 221 222 pr_debug("#include <asm/asm.h>\n"); 223 pr_debug("#include <asm/regdef.h>\n"); 224 pr_debug("\n"); 225 226 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT); 227 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT); 228 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT); 229 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT); 230 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT); 231 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 232 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT); 233 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT); 234 #endif 235 if (cpu_has_rixi) { 236 #ifdef _PAGE_NO_EXEC_SHIFT 237 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT); 238 #endif 239 #ifdef _PAGE_NO_READ_SHIFT 240 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT); 241 #endif 242 } 243 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT); 244 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT); 245 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT); 246 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT); 247 pr_debug("\n"); 248 } 249 250 static inline void dump_handler(const char *symbol, const u32 *handler, int count) 251 { 252 int i; 253 254 pr_debug("LEAF(%s)\n", symbol); 255 256 pr_debug("\t.set push\n"); 257 pr_debug("\t.set noreorder\n"); 258 259 for (i = 0; i < count; i++) 260 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]); 261 262 pr_debug("\t.set\tpop\n"); 263 264 pr_debug("\tEND(%s)\n", symbol); 265 } 266 267 /* The only general purpose registers allowed in TLB handlers. */ 268 #define K0 26 269 #define K1 27 270 271 /* Some CP0 registers */ 272 #define C0_INDEX 0, 0 273 #define C0_ENTRYLO0 2, 0 274 #define C0_TCBIND 2, 2 275 #define C0_ENTRYLO1 3, 0 276 #define C0_CONTEXT 4, 0 277 #define C0_PAGEMASK 5, 0 278 #define C0_BADVADDR 8, 0 279 #define C0_ENTRYHI 10, 0 280 #define C0_EPC 14, 0 281 #define C0_XCONTEXT 20, 0 282 283 #ifdef CONFIG_64BIT 284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) 285 #else 286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) 287 #endif 288 289 /* The worst case length of the handler is around 18 instructions for 290 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. 291 * Maximum space available is 32 instructions for R3000 and 64 292 * instructions for R4000. 293 * 294 * We deliberately chose a buffer size of 128, so we won't scribble 295 * over anything important on overflow before we panic. 296 */ 297 static u32 tlb_handler[128]; 298 299 /* simply assume worst case size for labels and relocs */ 300 static struct uasm_label labels[128]; 301 static struct uasm_reloc relocs[128]; 302 303 static int check_for_high_segbits; 304 305 static unsigned int kscratch_used_mask; 306 307 static inline int __maybe_unused c0_kscratch(void) 308 { 309 switch (current_cpu_type()) { 310 case CPU_XLP: 311 case CPU_XLR: 312 return 22; 313 default: 314 return 31; 315 } 316 } 317 318 static int allocate_kscratch(void) 319 { 320 int r; 321 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask; 322 323 r = ffs(a); 324 325 if (r == 0) 326 return -1; 327 328 r--; /* make it zero based */ 329 330 kscratch_used_mask |= (1 << r); 331 332 return r; 333 } 334 335 static int scratch_reg; 336 static int pgd_reg; 337 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch}; 338 339 static struct work_registers build_get_work_registers(u32 **p) 340 { 341 struct work_registers r; 342 343 if (scratch_reg >= 0) { 344 /* Save in CPU local C0_KScratch? */ 345 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg); 346 r.r1 = K0; 347 r.r2 = K1; 348 r.r3 = 1; 349 return r; 350 } 351 352 if (num_possible_cpus() > 1) { 353 /* Get smp_processor_id */ 354 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG); 355 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT); 356 357 /* handler_reg_save index in K0 */ 358 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save))); 359 360 UASM_i_LA(p, K1, (long)&handler_reg_save); 361 UASM_i_ADDU(p, K0, K0, K1); 362 } else { 363 UASM_i_LA(p, K0, (long)&handler_reg_save); 364 } 365 /* K0 now points to save area, save $1 and $2 */ 366 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0); 367 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0); 368 369 r.r1 = K1; 370 r.r2 = 1; 371 r.r3 = 2; 372 return r; 373 } 374 375 static void build_restore_work_registers(u32 **p) 376 { 377 if (scratch_reg >= 0) { 378 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 379 return; 380 } 381 /* K0 already points to save area, restore $1 and $2 */ 382 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0); 383 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0); 384 } 385 386 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 387 388 /* 389 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current, 390 * we cannot do r3000 under these circumstances. 391 * 392 * Declare pgd_current here instead of including mmu_context.h to avoid type 393 * conflicts for tlbmiss_handler_setup_pgd 394 */ 395 extern unsigned long pgd_current[]; 396 397 /* 398 * The R3000 TLB handler is simple. 399 */ 400 static void build_r3000_tlb_refill_handler(void) 401 { 402 long pgdc = (long)pgd_current; 403 u32 *p; 404 405 memset(tlb_handler, 0, sizeof(tlb_handler)); 406 p = tlb_handler; 407 408 uasm_i_mfc0(&p, K0, C0_BADVADDR); 409 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ 410 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); 411 uasm_i_srl(&p, K0, K0, 22); /* load delay */ 412 uasm_i_sll(&p, K0, K0, 2); 413 uasm_i_addu(&p, K1, K1, K0); 414 uasm_i_mfc0(&p, K0, C0_CONTEXT); 415 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ 416 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ 417 uasm_i_addu(&p, K1, K1, K0); 418 uasm_i_lw(&p, K0, 0, K1); 419 uasm_i_nop(&p); /* load delay */ 420 uasm_i_mtc0(&p, K0, C0_ENTRYLO0); 421 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ 422 uasm_i_tlbwr(&p); /* cp0 delay */ 423 uasm_i_jr(&p, K1); 424 uasm_i_rfe(&p); /* branch delay */ 425 426 if (p > tlb_handler + 32) 427 panic("TLB refill handler space exceeded"); 428 429 pr_debug("Wrote TLB refill handler (%u instructions).\n", 430 (unsigned int)(p - tlb_handler)); 431 432 memcpy((void *)ebase, tlb_handler, 0x80); 433 434 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32); 435 } 436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 437 438 /* 439 * The R4000 TLB handler is much more complicated. We have two 440 * consecutive handler areas with 32 instructions space each. 441 * Since they aren't used at the same time, we can overflow in the 442 * other one.To keep things simple, we first assume linear space, 443 * then we relocate it to the final handler layout as needed. 444 */ 445 static u32 final_handler[64]; 446 447 /* 448 * Hazards 449 * 450 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: 451 * 2. A timing hazard exists for the TLBP instruction. 452 * 453 * stalling_instruction 454 * TLBP 455 * 456 * The JTLB is being read for the TLBP throughout the stall generated by the 457 * previous instruction. This is not really correct as the stalling instruction 458 * can modify the address used to access the JTLB. The failure symptom is that 459 * the TLBP instruction will use an address created for the stalling instruction 460 * and not the address held in C0_ENHI and thus report the wrong results. 461 * 462 * The software work-around is to not allow the instruction preceding the TLBP 463 * to stall - make it an NOP or some other instruction guaranteed not to stall. 464 * 465 * Errata 2 will not be fixed. This errata is also on the R5000. 466 * 467 * As if we MIPS hackers wouldn't know how to nop pipelines happy ... 468 */ 469 static void __maybe_unused build_tlb_probe_entry(u32 **p) 470 { 471 switch (current_cpu_type()) { 472 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ 473 case CPU_R4600: 474 case CPU_R4700: 475 case CPU_R5000: 476 case CPU_NEVADA: 477 uasm_i_nop(p); 478 uasm_i_tlbp(p); 479 break; 480 481 default: 482 uasm_i_tlbp(p); 483 break; 484 } 485 } 486 487 /* 488 * Write random or indexed TLB entry, and care about the hazards from 489 * the preceding mtc0 and for the following eret. 490 */ 491 enum tlb_write_entry { tlb_random, tlb_indexed }; 492 493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l, 494 struct uasm_reloc **r, 495 enum tlb_write_entry wmode) 496 { 497 void(*tlbw)(u32 **) = NULL; 498 499 switch (wmode) { 500 case tlb_random: tlbw = uasm_i_tlbwr; break; 501 case tlb_indexed: tlbw = uasm_i_tlbwi; break; 502 } 503 504 if (cpu_has_mips_r2) { 505 /* 506 * The architecture spec says an ehb is required here, 507 * but a number of cores do not have the hazard and 508 * using an ehb causes an expensive pipeline stall. 509 */ 510 switch (current_cpu_type()) { 511 case CPU_M14KC: 512 case CPU_74K: 513 break; 514 515 default: 516 uasm_i_ehb(p); 517 break; 518 } 519 tlbw(p); 520 return; 521 } 522 523 switch (current_cpu_type()) { 524 case CPU_R4000PC: 525 case CPU_R4000SC: 526 case CPU_R4000MC: 527 case CPU_R4400PC: 528 case CPU_R4400SC: 529 case CPU_R4400MC: 530 /* 531 * This branch uses up a mtc0 hazard nop slot and saves 532 * two nops after the tlbw instruction. 533 */ 534 uasm_bgezl_hazard(p, r, hazard_instance); 535 tlbw(p); 536 uasm_bgezl_label(l, p, hazard_instance); 537 hazard_instance++; 538 uasm_i_nop(p); 539 break; 540 541 case CPU_R4600: 542 case CPU_R4700: 543 uasm_i_nop(p); 544 tlbw(p); 545 uasm_i_nop(p); 546 break; 547 548 case CPU_R5000: 549 case CPU_NEVADA: 550 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 551 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 552 tlbw(p); 553 break; 554 555 case CPU_R4300: 556 case CPU_5KC: 557 case CPU_TX49XX: 558 case CPU_PR4450: 559 case CPU_XLR: 560 uasm_i_nop(p); 561 tlbw(p); 562 break; 563 564 case CPU_R10000: 565 case CPU_R12000: 566 case CPU_R14000: 567 case CPU_4KC: 568 case CPU_4KEC: 569 case CPU_M14KC: 570 case CPU_M14KEC: 571 case CPU_SB1: 572 case CPU_SB1A: 573 case CPU_4KSC: 574 case CPU_20KC: 575 case CPU_25KF: 576 case CPU_BMIPS32: 577 case CPU_BMIPS3300: 578 case CPU_BMIPS4350: 579 case CPU_BMIPS4380: 580 case CPU_BMIPS5000: 581 case CPU_LOONGSON2: 582 case CPU_R5500: 583 if (m4kc_tlbp_war()) 584 uasm_i_nop(p); 585 case CPU_ALCHEMY: 586 tlbw(p); 587 break; 588 589 case CPU_RM7000: 590 uasm_i_nop(p); 591 uasm_i_nop(p); 592 uasm_i_nop(p); 593 uasm_i_nop(p); 594 tlbw(p); 595 break; 596 597 case CPU_VR4111: 598 case CPU_VR4121: 599 case CPU_VR4122: 600 case CPU_VR4181: 601 case CPU_VR4181A: 602 uasm_i_nop(p); 603 uasm_i_nop(p); 604 tlbw(p); 605 uasm_i_nop(p); 606 uasm_i_nop(p); 607 break; 608 609 case CPU_VR4131: 610 case CPU_VR4133: 611 case CPU_R5432: 612 uasm_i_nop(p); 613 uasm_i_nop(p); 614 tlbw(p); 615 break; 616 617 case CPU_JZRISC: 618 tlbw(p); 619 uasm_i_nop(p); 620 break; 621 622 default: 623 panic("No TLB refill handler yet (CPU type: %d)", 624 current_cpu_data.cputype); 625 break; 626 } 627 } 628 629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p, 630 unsigned int reg) 631 { 632 if (cpu_has_rixi) { 633 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL)); 634 } else { 635 #ifdef CONFIG_64BIT_PHYS_ADDR 636 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL)); 637 #else 638 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL)); 639 #endif 640 } 641 } 642 643 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 644 645 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r, 646 unsigned int tmp, enum label_id lid, 647 int restore_scratch) 648 { 649 if (restore_scratch) { 650 /* Reset default page size */ 651 if (PM_DEFAULT_MASK >> 16) { 652 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 653 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 654 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 655 uasm_il_b(p, r, lid); 656 } else if (PM_DEFAULT_MASK) { 657 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 658 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 659 uasm_il_b(p, r, lid); 660 } else { 661 uasm_i_mtc0(p, 0, C0_PAGEMASK); 662 uasm_il_b(p, r, lid); 663 } 664 if (scratch_reg >= 0) 665 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 666 else 667 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 668 } else { 669 /* Reset default page size */ 670 if (PM_DEFAULT_MASK >> 16) { 671 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 672 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 673 uasm_il_b(p, r, lid); 674 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 675 } else if (PM_DEFAULT_MASK) { 676 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 677 uasm_il_b(p, r, lid); 678 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 679 } else { 680 uasm_il_b(p, r, lid); 681 uasm_i_mtc0(p, 0, C0_PAGEMASK); 682 } 683 } 684 } 685 686 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l, 687 struct uasm_reloc **r, 688 unsigned int tmp, 689 enum tlb_write_entry wmode, 690 int restore_scratch) 691 { 692 /* Set huge page tlb entry size */ 693 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); 694 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); 695 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 696 697 build_tlb_write_entry(p, l, r, wmode); 698 699 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch); 700 } 701 702 /* 703 * Check if Huge PTE is present, if so then jump to LABEL. 704 */ 705 static void 706 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, 707 unsigned int pmd, int lid) 708 { 709 UASM_i_LW(p, tmp, 0, pmd); 710 if (use_bbit_insns()) { 711 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid); 712 } else { 713 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); 714 uasm_il_bnez(p, r, tmp, lid); 715 } 716 } 717 718 static void build_huge_update_entries(u32 **p, unsigned int pte, 719 unsigned int tmp) 720 { 721 int small_sequence; 722 723 /* 724 * A huge PTE describes an area the size of the 725 * configured huge page size. This is twice the 726 * of the large TLB entry size we intend to use. 727 * A TLB entry half the size of the configured 728 * huge page size is configured into entrylo0 729 * and entrylo1 to cover the contiguous huge PTE 730 * address space. 731 */ 732 small_sequence = (HPAGE_SIZE >> 7) < 0x10000; 733 734 /* We can clobber tmp. It isn't used after this.*/ 735 if (!small_sequence) 736 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); 737 738 build_convert_pte_to_entrylo(p, pte); 739 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */ 740 /* convert to entrylo1 */ 741 if (small_sequence) 742 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); 743 else 744 UASM_i_ADDU(p, pte, pte, tmp); 745 746 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */ 747 } 748 749 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r, 750 struct uasm_label **l, 751 unsigned int pte, 752 unsigned int ptr) 753 { 754 #ifdef CONFIG_SMP 755 UASM_i_SC(p, pte, 0, ptr); 756 uasm_il_beqz(p, r, pte, label_tlb_huge_update); 757 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ 758 #else 759 UASM_i_SW(p, pte, 0, ptr); 760 #endif 761 build_huge_update_entries(p, pte, ptr); 762 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0); 763 } 764 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 765 766 #ifdef CONFIG_64BIT 767 /* 768 * TMP and PTR are scratch. 769 * TMP will be clobbered, PTR will hold the pmd entry. 770 */ 771 static void 772 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 773 unsigned int tmp, unsigned int ptr) 774 { 775 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 776 long pgdc = (long)pgd_current; 777 #endif 778 /* 779 * The vmalloc handling is not in the hotpath. 780 */ 781 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 782 783 if (check_for_high_segbits) { 784 /* 785 * The kernel currently implicitely assumes that the 786 * MIPS SEGBITS parameter for the processor is 787 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never 788 * allocate virtual addresses outside the maximum 789 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But 790 * that doesn't prevent user code from accessing the 791 * higher xuseg addresses. Here, we make sure that 792 * everything but the lower xuseg addresses goes down 793 * the module_alloc/vmalloc path. 794 */ 795 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 796 uasm_il_bnez(p, r, ptr, label_vmalloc); 797 } else { 798 uasm_il_bltz(p, r, tmp, label_vmalloc); 799 } 800 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ 801 802 if (pgd_reg != -1) { 803 /* pgd is in pgd_reg */ 804 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 805 } else { 806 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT) 807 /* 808 * &pgd << 11 stored in CONTEXT [23..63]. 809 */ 810 UASM_i_MFC0(p, ptr, C0_CONTEXT); 811 812 /* Clear lower 23 bits of context. */ 813 uasm_i_dins(p, ptr, 0, 0, 23); 814 815 /* 1 0 1 0 1 << 6 xkphys cached */ 816 uasm_i_ori(p, ptr, ptr, 0x540); 817 uasm_i_drotr(p, ptr, ptr, 11); 818 #elif defined(CONFIG_SMP) 819 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG); 820 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 821 UASM_i_LA_mostly(p, tmp, pgdc); 822 uasm_i_daddu(p, ptr, ptr, tmp); 823 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 824 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 825 #else 826 UASM_i_LA_mostly(p, ptr, pgdc); 827 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 828 #endif 829 } 830 831 uasm_l_vmalloc_done(l, *p); 832 833 /* get pgd offset in bytes */ 834 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3); 835 836 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); 837 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ 838 #ifndef __PAGETABLE_PMD_FOLDED 839 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 840 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ 841 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ 842 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); 843 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ 844 #endif 845 } 846 847 /* 848 * BVADDR is the faulting address, PTR is scratch. 849 * PTR will hold the pgd for vmalloc. 850 */ 851 static void 852 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 853 unsigned int bvaddr, unsigned int ptr, 854 enum vmalloc64_mode mode) 855 { 856 long swpd = (long)swapper_pg_dir; 857 int single_insn_swpd; 858 int did_vmalloc_branch = 0; 859 860 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd); 861 862 uasm_l_vmalloc(l, *p); 863 864 if (mode != not_refill && check_for_high_segbits) { 865 if (single_insn_swpd) { 866 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done); 867 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 868 did_vmalloc_branch = 1; 869 /* fall through */ 870 } else { 871 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault); 872 } 873 } 874 if (!did_vmalloc_branch) { 875 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) { 876 uasm_il_b(p, r, label_vmalloc_done); 877 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 878 } else { 879 UASM_i_LA_mostly(p, ptr, swpd); 880 uasm_il_b(p, r, label_vmalloc_done); 881 if (uasm_in_compat_space_p(swpd)) 882 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); 883 else 884 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); 885 } 886 } 887 if (mode != not_refill && check_for_high_segbits) { 888 uasm_l_large_segbits_fault(l, *p); 889 /* 890 * We get here if we are an xsseg address, or if we are 891 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary. 892 * 893 * Ignoring xsseg (assume disabled so would generate 894 * (address errors?), the only remaining possibility 895 * is the upper xuseg addresses. On processors with 896 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these 897 * addresses would have taken an address error. We try 898 * to mimic that here by taking a load/istream page 899 * fault. 900 */ 901 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0); 902 uasm_i_jr(p, ptr); 903 904 if (mode == refill_scratch) { 905 if (scratch_reg >= 0) 906 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 907 else 908 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 909 } else { 910 uasm_i_nop(p); 911 } 912 } 913 } 914 915 #else /* !CONFIG_64BIT */ 916 917 /* 918 * TMP and PTR are scratch. 919 * TMP will be clobbered, PTR will hold the pgd entry. 920 */ 921 static void __maybe_unused 922 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) 923 { 924 if (pgd_reg != -1) { 925 /* pgd is in pgd_reg */ 926 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg); 927 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 928 } else { 929 long pgdc = (long)pgd_current; 930 931 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ 932 #ifdef CONFIG_SMP 933 uasm_i_mfc0(p, ptr, SMP_CPUID_REG); 934 UASM_i_LA_mostly(p, tmp, pgdc); 935 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 936 uasm_i_addu(p, ptr, tmp, ptr); 937 #else 938 UASM_i_LA_mostly(p, ptr, pgdc); 939 #endif 940 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 941 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 942 } 943 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ 944 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); 945 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ 946 } 947 948 #endif /* !CONFIG_64BIT */ 949 950 static void build_adjust_context(u32 **p, unsigned int ctx) 951 { 952 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; 953 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); 954 955 switch (current_cpu_type()) { 956 case CPU_VR41XX: 957 case CPU_VR4111: 958 case CPU_VR4121: 959 case CPU_VR4122: 960 case CPU_VR4131: 961 case CPU_VR4181: 962 case CPU_VR4181A: 963 case CPU_VR4133: 964 shift += 2; 965 break; 966 967 default: 968 break; 969 } 970 971 if (shift) 972 UASM_i_SRL(p, ctx, ctx, shift); 973 uasm_i_andi(p, ctx, ctx, mask); 974 } 975 976 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) 977 { 978 /* 979 * Bug workaround for the Nevada. It seems as if under certain 980 * circumstances the move from cp0_context might produce a 981 * bogus result when the mfc0 instruction and its consumer are 982 * in a different cacheline or a load instruction, probably any 983 * memory reference, is between them. 984 */ 985 switch (current_cpu_type()) { 986 case CPU_NEVADA: 987 UASM_i_LW(p, ptr, 0, ptr); 988 GET_CONTEXT(p, tmp); /* get context reg */ 989 break; 990 991 default: 992 GET_CONTEXT(p, tmp); /* get context reg */ 993 UASM_i_LW(p, ptr, 0, ptr); 994 break; 995 } 996 997 build_adjust_context(p, tmp); 998 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ 999 } 1000 1001 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) 1002 { 1003 /* 1004 * 64bit address support (36bit on a 32bit CPU) in a 32bit 1005 * Kernel is a special case. Only a few CPUs use it. 1006 */ 1007 #ifdef CONFIG_64BIT_PHYS_ADDR 1008 if (cpu_has_64bits) { 1009 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */ 1010 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ 1011 if (cpu_has_rixi) { 1012 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1013 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1014 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); 1015 } else { 1016 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */ 1017 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1018 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */ 1019 } 1020 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1021 } else { 1022 int pte_off_even = sizeof(pte_t) / 2; 1023 int pte_off_odd = pte_off_even + sizeof(pte_t); 1024 1025 /* The pte entries are pre-shifted */ 1026 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */ 1027 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1028 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */ 1029 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1030 } 1031 #else 1032 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */ 1033 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ 1034 if (r45k_bvahwbug()) 1035 build_tlb_probe_entry(p); 1036 if (cpu_has_rixi) { 1037 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1038 if (r4k_250MHZhwbug()) 1039 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1040 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1041 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); 1042 } else { 1043 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */ 1044 if (r4k_250MHZhwbug()) 1045 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1046 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1047 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */ 1048 if (r45k_bvahwbug()) 1049 uasm_i_mfc0(p, tmp, C0_INDEX); 1050 } 1051 if (r4k_250MHZhwbug()) 1052 UASM_i_MTC0(p, 0, C0_ENTRYLO1); 1053 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1054 #endif 1055 } 1056 1057 struct mips_huge_tlb_info { 1058 int huge_pte; 1059 int restore_scratch; 1060 }; 1061 1062 static struct mips_huge_tlb_info 1063 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l, 1064 struct uasm_reloc **r, unsigned int tmp, 1065 unsigned int ptr, int c0_scratch_reg) 1066 { 1067 struct mips_huge_tlb_info rv; 1068 unsigned int even, odd; 1069 int vmalloc_branch_delay_filled = 0; 1070 const int scratch = 1; /* Our extra working register */ 1071 1072 rv.huge_pte = scratch; 1073 rv.restore_scratch = 0; 1074 1075 if (check_for_high_segbits) { 1076 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1077 1078 if (pgd_reg != -1) 1079 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1080 else 1081 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1082 1083 if (c0_scratch_reg >= 0) 1084 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1085 else 1086 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1087 1088 uasm_i_dsrl_safe(p, scratch, tmp, 1089 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1090 uasm_il_bnez(p, r, scratch, label_vmalloc); 1091 1092 if (pgd_reg == -1) { 1093 vmalloc_branch_delay_filled = 1; 1094 /* Clear lower 23 bits of context. */ 1095 uasm_i_dins(p, ptr, 0, 0, 23); 1096 } 1097 } else { 1098 if (pgd_reg != -1) 1099 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1100 else 1101 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1102 1103 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1104 1105 if (c0_scratch_reg >= 0) 1106 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1107 else 1108 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1109 1110 if (pgd_reg == -1) 1111 /* Clear lower 23 bits of context. */ 1112 uasm_i_dins(p, ptr, 0, 0, 23); 1113 1114 uasm_il_bltz(p, r, tmp, label_vmalloc); 1115 } 1116 1117 if (pgd_reg == -1) { 1118 vmalloc_branch_delay_filled = 1; 1119 /* 1 0 1 0 1 << 6 xkphys cached */ 1120 uasm_i_ori(p, ptr, ptr, 0x540); 1121 uasm_i_drotr(p, ptr, ptr, 11); 1122 } 1123 1124 #ifdef __PAGETABLE_PMD_FOLDED 1125 #define LOC_PTEP scratch 1126 #else 1127 #define LOC_PTEP ptr 1128 #endif 1129 1130 if (!vmalloc_branch_delay_filled) 1131 /* get pgd offset in bytes */ 1132 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1133 1134 uasm_l_vmalloc_done(l, *p); 1135 1136 /* 1137 * tmp ptr 1138 * fall-through case = badvaddr *pgd_current 1139 * vmalloc case = badvaddr swapper_pg_dir 1140 */ 1141 1142 if (vmalloc_branch_delay_filled) 1143 /* get pgd offset in bytes */ 1144 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1145 1146 #ifdef __PAGETABLE_PMD_FOLDED 1147 GET_CONTEXT(p, tmp); /* get context reg */ 1148 #endif 1149 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3); 1150 1151 if (use_lwx_insns()) { 1152 UASM_i_LWX(p, LOC_PTEP, scratch, ptr); 1153 } else { 1154 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */ 1155 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */ 1156 } 1157 1158 #ifndef __PAGETABLE_PMD_FOLDED 1159 /* get pmd offset in bytes */ 1160 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3); 1161 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3); 1162 GET_CONTEXT(p, tmp); /* get context reg */ 1163 1164 if (use_lwx_insns()) { 1165 UASM_i_LWX(p, scratch, scratch, ptr); 1166 } else { 1167 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ 1168 UASM_i_LW(p, scratch, 0, ptr); 1169 } 1170 #endif 1171 /* Adjust the context during the load latency. */ 1172 build_adjust_context(p, tmp); 1173 1174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1175 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update); 1176 /* 1177 * The in the LWX case we don't want to do the load in the 1178 * delay slot. It cannot issue in the same cycle and may be 1179 * speculative and unneeded. 1180 */ 1181 if (use_lwx_insns()) 1182 uasm_i_nop(p); 1183 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 1184 1185 1186 /* build_update_entries */ 1187 if (use_lwx_insns()) { 1188 even = ptr; 1189 odd = tmp; 1190 UASM_i_LWX(p, even, scratch, tmp); 1191 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t)); 1192 UASM_i_LWX(p, odd, scratch, tmp); 1193 } else { 1194 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */ 1195 even = tmp; 1196 odd = ptr; 1197 UASM_i_LW(p, even, 0, ptr); /* get even pte */ 1198 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */ 1199 } 1200 if (cpu_has_rixi) { 1201 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL)); 1202 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1203 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1204 } else { 1205 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL)); 1206 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1207 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1208 } 1209 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */ 1210 1211 if (c0_scratch_reg >= 0) { 1212 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1213 build_tlb_write_entry(p, l, r, tlb_random); 1214 uasm_l_leave(l, *p); 1215 rv.restore_scratch = 1; 1216 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) { 1217 build_tlb_write_entry(p, l, r, tlb_random); 1218 uasm_l_leave(l, *p); 1219 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1220 } else { 1221 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1222 build_tlb_write_entry(p, l, r, tlb_random); 1223 uasm_l_leave(l, *p); 1224 rv.restore_scratch = 1; 1225 } 1226 1227 uasm_i_eret(p); /* return from trap */ 1228 1229 return rv; 1230 } 1231 1232 /* 1233 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception 1234 * because EXL == 0. If we wrap, we can also use the 32 instruction 1235 * slots before the XTLB refill exception handler which belong to the 1236 * unused TLB refill exception. 1237 */ 1238 #define MIPS64_REFILL_INSNS 32 1239 1240 static void build_r4000_tlb_refill_handler(void) 1241 { 1242 u32 *p = tlb_handler; 1243 struct uasm_label *l = labels; 1244 struct uasm_reloc *r = relocs; 1245 u32 *f; 1246 unsigned int final_len; 1247 struct mips_huge_tlb_info htlb_info __maybe_unused; 1248 enum vmalloc64_mode vmalloc_mode __maybe_unused; 1249 1250 memset(tlb_handler, 0, sizeof(tlb_handler)); 1251 memset(labels, 0, sizeof(labels)); 1252 memset(relocs, 0, sizeof(relocs)); 1253 memset(final_handler, 0, sizeof(final_handler)); 1254 1255 if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) { 1256 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1, 1257 scratch_reg); 1258 vmalloc_mode = refill_scratch; 1259 } else { 1260 htlb_info.huge_pte = K0; 1261 htlb_info.restore_scratch = 0; 1262 vmalloc_mode = refill_noscratch; 1263 /* 1264 * create the plain linear handler 1265 */ 1266 if (bcm1250_m3_war()) { 1267 unsigned int segbits = 44; 1268 1269 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1270 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1271 uasm_i_xor(&p, K0, K0, K1); 1272 uasm_i_dsrl_safe(&p, K1, K0, 62); 1273 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1274 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1275 uasm_i_or(&p, K0, K0, K1); 1276 uasm_il_bnez(&p, &r, K0, label_leave); 1277 /* No need for uasm_i_nop */ 1278 } 1279 1280 #ifdef CONFIG_64BIT 1281 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 1282 #else 1283 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 1284 #endif 1285 1286 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1287 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); 1288 #endif 1289 1290 build_get_ptep(&p, K0, K1); 1291 build_update_entries(&p, K0, K1); 1292 build_tlb_write_entry(&p, &l, &r, tlb_random); 1293 uasm_l_leave(&l, p); 1294 uasm_i_eret(&p); /* return from trap */ 1295 } 1296 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1297 uasm_l_tlb_huge_update(&l, p); 1298 build_huge_update_entries(&p, htlb_info.huge_pte, K1); 1299 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random, 1300 htlb_info.restore_scratch); 1301 #endif 1302 1303 #ifdef CONFIG_64BIT 1304 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode); 1305 #endif 1306 1307 /* 1308 * Overflow check: For the 64bit handler, we need at least one 1309 * free instruction slot for the wrap-around branch. In worst 1310 * case, if the intended insertion point is a delay slot, we 1311 * need three, with the second nop'ed and the third being 1312 * unused. 1313 */ 1314 switch (boot_cpu_type()) { 1315 default: 1316 if (sizeof(long) == 4) { 1317 case CPU_LOONGSON2: 1318 /* Loongson2 ebase is different than r4k, we have more space */ 1319 if ((p - tlb_handler) > 64) 1320 panic("TLB refill handler space exceeded"); 1321 /* 1322 * Now fold the handler in the TLB refill handler space. 1323 */ 1324 f = final_handler; 1325 /* Simplest case, just copy the handler. */ 1326 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1327 final_len = p - tlb_handler; 1328 break; 1329 } else { 1330 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) 1331 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) 1332 && uasm_insn_has_bdelay(relocs, 1333 tlb_handler + MIPS64_REFILL_INSNS - 3))) 1334 panic("TLB refill handler space exceeded"); 1335 /* 1336 * Now fold the handler in the TLB refill handler space. 1337 */ 1338 f = final_handler + MIPS64_REFILL_INSNS; 1339 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { 1340 /* Just copy the handler. */ 1341 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1342 final_len = p - tlb_handler; 1343 } else { 1344 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1345 const enum label_id ls = label_tlb_huge_update; 1346 #else 1347 const enum label_id ls = label_vmalloc; 1348 #endif 1349 u32 *split; 1350 int ov = 0; 1351 int i; 1352 1353 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) 1354 ; 1355 BUG_ON(i == ARRAY_SIZE(labels)); 1356 split = labels[i].addr; 1357 1358 /* 1359 * See if we have overflown one way or the other. 1360 */ 1361 if (split > tlb_handler + MIPS64_REFILL_INSNS || 1362 split < p - MIPS64_REFILL_INSNS) 1363 ov = 1; 1364 1365 if (ov) { 1366 /* 1367 * Split two instructions before the end. One 1368 * for the branch and one for the instruction 1369 * in the delay slot. 1370 */ 1371 split = tlb_handler + MIPS64_REFILL_INSNS - 2; 1372 1373 /* 1374 * If the branch would fall in a delay slot, 1375 * we must back up an additional instruction 1376 * so that it is no longer in a delay slot. 1377 */ 1378 if (uasm_insn_has_bdelay(relocs, split - 1)) 1379 split--; 1380 } 1381 /* Copy first part of the handler. */ 1382 uasm_copy_handler(relocs, labels, tlb_handler, split, f); 1383 f += split - tlb_handler; 1384 1385 if (ov) { 1386 /* Insert branch. */ 1387 uasm_l_split(&l, final_handler); 1388 uasm_il_b(&f, &r, label_split); 1389 if (uasm_insn_has_bdelay(relocs, split)) 1390 uasm_i_nop(&f); 1391 else { 1392 uasm_copy_handler(relocs, labels, 1393 split, split + 1, f); 1394 uasm_move_labels(labels, f, f + 1, -1); 1395 f++; 1396 split++; 1397 } 1398 } 1399 1400 /* Copy the rest of the handler. */ 1401 uasm_copy_handler(relocs, labels, split, p, final_handler); 1402 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + 1403 (p - split); 1404 } 1405 } 1406 break; 1407 } 1408 1409 uasm_resolve_relocs(relocs, labels); 1410 pr_debug("Wrote TLB refill handler (%u instructions).\n", 1411 final_len); 1412 1413 memcpy((void *)ebase, final_handler, 0x100); 1414 1415 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64); 1416 } 1417 1418 extern u32 handle_tlbl[], handle_tlbl_end[]; 1419 extern u32 handle_tlbs[], handle_tlbs_end[]; 1420 extern u32 handle_tlbm[], handle_tlbm_end[]; 1421 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[]; 1422 1423 static void build_setup_pgd(void) 1424 { 1425 const int a0 = 4; 1426 const int __maybe_unused a1 = 5; 1427 const int __maybe_unused a2 = 6; 1428 u32 *p = tlbmiss_handler_setup_pgd; 1429 const int tlbmiss_handler_setup_pgd_size = 1430 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd; 1431 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1432 long pgdc = (long)pgd_current; 1433 #endif 1434 1435 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size * 1436 sizeof(tlbmiss_handler_setup_pgd[0])); 1437 memset(labels, 0, sizeof(labels)); 1438 memset(relocs, 0, sizeof(relocs)); 1439 pgd_reg = allocate_kscratch(); 1440 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 1441 if (pgd_reg == -1) { 1442 struct uasm_label *l = labels; 1443 struct uasm_reloc *r = relocs; 1444 1445 /* PGD << 11 in c0_Context */ 1446 /* 1447 * If it is a ckseg0 address, convert to a physical 1448 * address. Shifting right by 29 and adding 4 will 1449 * result in zero for these addresses. 1450 * 1451 */ 1452 UASM_i_SRA(&p, a1, a0, 29); 1453 UASM_i_ADDIU(&p, a1, a1, 4); 1454 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1); 1455 uasm_i_nop(&p); 1456 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29); 1457 uasm_l_tlbl_goaround1(&l, p); 1458 UASM_i_SLL(&p, a0, a0, 11); 1459 uasm_i_jr(&p, 31); 1460 UASM_i_MTC0(&p, a0, C0_CONTEXT); 1461 } else { 1462 /* PGD in c0_KScratch */ 1463 uasm_i_jr(&p, 31); 1464 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1465 } 1466 #else 1467 #ifdef CONFIG_SMP 1468 /* Save PGD to pgd_current[smp_processor_id()] */ 1469 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG); 1470 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT); 1471 UASM_i_LA_mostly(&p, a2, pgdc); 1472 UASM_i_ADDU(&p, a2, a2, a1); 1473 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1474 #else 1475 UASM_i_LA_mostly(&p, a2, pgdc); 1476 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1477 #endif /* SMP */ 1478 uasm_i_jr(&p, 31); 1479 1480 /* if pgd_reg is allocated, save PGD also to scratch register */ 1481 if (pgd_reg != -1) 1482 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1483 else 1484 uasm_i_nop(&p); 1485 #endif 1486 if (p >= tlbmiss_handler_setup_pgd_end) 1487 panic("tlbmiss_handler_setup_pgd space exceeded"); 1488 1489 uasm_resolve_relocs(relocs, labels); 1490 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n", 1491 (unsigned int)(p - tlbmiss_handler_setup_pgd)); 1492 1493 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd, 1494 tlbmiss_handler_setup_pgd_size); 1495 } 1496 1497 static void 1498 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) 1499 { 1500 #ifdef CONFIG_SMP 1501 # ifdef CONFIG_64BIT_PHYS_ADDR 1502 if (cpu_has_64bits) 1503 uasm_i_lld(p, pte, 0, ptr); 1504 else 1505 # endif 1506 UASM_i_LL(p, pte, 0, ptr); 1507 #else 1508 # ifdef CONFIG_64BIT_PHYS_ADDR 1509 if (cpu_has_64bits) 1510 uasm_i_ld(p, pte, 0, ptr); 1511 else 1512 # endif 1513 UASM_i_LW(p, pte, 0, ptr); 1514 #endif 1515 } 1516 1517 static void 1518 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, 1519 unsigned int mode) 1520 { 1521 #ifdef CONFIG_64BIT_PHYS_ADDR 1522 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); 1523 #endif 1524 1525 uasm_i_ori(p, pte, pte, mode); 1526 #ifdef CONFIG_SMP 1527 # ifdef CONFIG_64BIT_PHYS_ADDR 1528 if (cpu_has_64bits) 1529 uasm_i_scd(p, pte, 0, ptr); 1530 else 1531 # endif 1532 UASM_i_SC(p, pte, 0, ptr); 1533 1534 if (r10000_llsc_war()) 1535 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); 1536 else 1537 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1538 1539 # ifdef CONFIG_64BIT_PHYS_ADDR 1540 if (!cpu_has_64bits) { 1541 /* no uasm_i_nop needed */ 1542 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); 1543 uasm_i_ori(p, pte, pte, hwmode); 1544 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); 1545 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1546 /* no uasm_i_nop needed */ 1547 uasm_i_lw(p, pte, 0, ptr); 1548 } else 1549 uasm_i_nop(p); 1550 # else 1551 uasm_i_nop(p); 1552 # endif 1553 #else 1554 # ifdef CONFIG_64BIT_PHYS_ADDR 1555 if (cpu_has_64bits) 1556 uasm_i_sd(p, pte, 0, ptr); 1557 else 1558 # endif 1559 UASM_i_SW(p, pte, 0, ptr); 1560 1561 # ifdef CONFIG_64BIT_PHYS_ADDR 1562 if (!cpu_has_64bits) { 1563 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); 1564 uasm_i_ori(p, pte, pte, hwmode); 1565 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); 1566 uasm_i_lw(p, pte, 0, ptr); 1567 } 1568 # endif 1569 #endif 1570 } 1571 1572 /* 1573 * Check if PTE is present, if not then jump to LABEL. PTR points to 1574 * the page table where this PTE is located, PTE will be re-loaded 1575 * with it's original value. 1576 */ 1577 static void 1578 build_pte_present(u32 **p, struct uasm_reloc **r, 1579 int pte, int ptr, int scratch, enum label_id lid) 1580 { 1581 int t = scratch >= 0 ? scratch : pte; 1582 1583 if (cpu_has_rixi) { 1584 if (use_bbit_insns()) { 1585 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid); 1586 uasm_i_nop(p); 1587 } else { 1588 uasm_i_andi(p, t, pte, _PAGE_PRESENT); 1589 uasm_il_beqz(p, r, t, lid); 1590 if (pte == t) 1591 /* You lose the SMP race :-(*/ 1592 iPTE_LW(p, pte, ptr); 1593 } 1594 } else { 1595 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ); 1596 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ); 1597 uasm_il_bnez(p, r, t, lid); 1598 if (pte == t) 1599 /* You lose the SMP race :-(*/ 1600 iPTE_LW(p, pte, ptr); 1601 } 1602 } 1603 1604 /* Make PTE valid, store result in PTR. */ 1605 static void 1606 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, 1607 unsigned int ptr) 1608 { 1609 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; 1610 1611 iPTE_SW(p, r, pte, ptr, mode); 1612 } 1613 1614 /* 1615 * Check if PTE can be written to, if not branch to LABEL. Regardless 1616 * restore PTE with value from PTR when done. 1617 */ 1618 static void 1619 build_pte_writable(u32 **p, struct uasm_reloc **r, 1620 unsigned int pte, unsigned int ptr, int scratch, 1621 enum label_id lid) 1622 { 1623 int t = scratch >= 0 ? scratch : pte; 1624 1625 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE); 1626 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE); 1627 uasm_il_bnez(p, r, t, lid); 1628 if (pte == t) 1629 /* You lose the SMP race :-(*/ 1630 iPTE_LW(p, pte, ptr); 1631 else 1632 uasm_i_nop(p); 1633 } 1634 1635 /* Make PTE writable, update software status bits as well, then store 1636 * at PTR. 1637 */ 1638 static void 1639 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, 1640 unsigned int ptr) 1641 { 1642 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID 1643 | _PAGE_DIRTY); 1644 1645 iPTE_SW(p, r, pte, ptr, mode); 1646 } 1647 1648 /* 1649 * Check if PTE can be modified, if not branch to LABEL. Regardless 1650 * restore PTE with value from PTR when done. 1651 */ 1652 static void 1653 build_pte_modifiable(u32 **p, struct uasm_reloc **r, 1654 unsigned int pte, unsigned int ptr, int scratch, 1655 enum label_id lid) 1656 { 1657 if (use_bbit_insns()) { 1658 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid); 1659 uasm_i_nop(p); 1660 } else { 1661 int t = scratch >= 0 ? scratch : pte; 1662 uasm_i_andi(p, t, pte, _PAGE_WRITE); 1663 uasm_il_beqz(p, r, t, lid); 1664 if (pte == t) 1665 /* You lose the SMP race :-(*/ 1666 iPTE_LW(p, pte, ptr); 1667 } 1668 } 1669 1670 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1671 1672 1673 /* 1674 * R3000 style TLB load/store/modify handlers. 1675 */ 1676 1677 /* 1678 * This places the pte into ENTRYLO0 and writes it with tlbwi. 1679 * Then it returns. 1680 */ 1681 static void 1682 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) 1683 { 1684 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1685 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ 1686 uasm_i_tlbwi(p); 1687 uasm_i_jr(p, tmp); 1688 uasm_i_rfe(p); /* branch delay */ 1689 } 1690 1691 /* 1692 * This places the pte into ENTRYLO0 and writes it with tlbwi 1693 * or tlbwr as appropriate. This is because the index register 1694 * may have the probe fail bit set as a result of a trap on a 1695 * kseg2 access, i.e. without refill. Then it returns. 1696 */ 1697 static void 1698 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, 1699 struct uasm_reloc **r, unsigned int pte, 1700 unsigned int tmp) 1701 { 1702 uasm_i_mfc0(p, tmp, C0_INDEX); 1703 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1704 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ 1705 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ 1706 uasm_i_tlbwi(p); /* cp0 delay */ 1707 uasm_i_jr(p, tmp); 1708 uasm_i_rfe(p); /* branch delay */ 1709 uasm_l_r3000_write_probe_fail(l, *p); 1710 uasm_i_tlbwr(p); /* cp0 delay */ 1711 uasm_i_jr(p, tmp); 1712 uasm_i_rfe(p); /* branch delay */ 1713 } 1714 1715 static void 1716 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, 1717 unsigned int ptr) 1718 { 1719 long pgdc = (long)pgd_current; 1720 1721 uasm_i_mfc0(p, pte, C0_BADVADDR); 1722 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ 1723 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 1724 uasm_i_srl(p, pte, pte, 22); /* load delay */ 1725 uasm_i_sll(p, pte, pte, 2); 1726 uasm_i_addu(p, ptr, ptr, pte); 1727 uasm_i_mfc0(p, pte, C0_CONTEXT); 1728 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ 1729 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ 1730 uasm_i_addu(p, ptr, ptr, pte); 1731 uasm_i_lw(p, pte, 0, ptr); 1732 uasm_i_tlbp(p); /* load delay */ 1733 } 1734 1735 static void build_r3000_tlb_load_handler(void) 1736 { 1737 u32 *p = handle_tlbl; 1738 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1739 struct uasm_label *l = labels; 1740 struct uasm_reloc *r = relocs; 1741 1742 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1743 memset(labels, 0, sizeof(labels)); 1744 memset(relocs, 0, sizeof(relocs)); 1745 1746 build_r3000_tlbchange_handler_head(&p, K0, K1); 1747 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl); 1748 uasm_i_nop(&p); /* load delay */ 1749 build_make_valid(&p, &r, K0, K1); 1750 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1751 1752 uasm_l_nopage_tlbl(&l, p); 1753 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 1754 uasm_i_nop(&p); 1755 1756 if (p >= handle_tlbl_end) 1757 panic("TLB load handler fastpath space exceeded"); 1758 1759 uasm_resolve_relocs(relocs, labels); 1760 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 1761 (unsigned int)(p - handle_tlbl)); 1762 1763 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size); 1764 } 1765 1766 static void build_r3000_tlb_store_handler(void) 1767 { 1768 u32 *p = handle_tlbs; 1769 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 1770 struct uasm_label *l = labels; 1771 struct uasm_reloc *r = relocs; 1772 1773 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 1774 memset(labels, 0, sizeof(labels)); 1775 memset(relocs, 0, sizeof(relocs)); 1776 1777 build_r3000_tlbchange_handler_head(&p, K0, K1); 1778 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs); 1779 uasm_i_nop(&p); /* load delay */ 1780 build_make_write(&p, &r, K0, K1); 1781 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1782 1783 uasm_l_nopage_tlbs(&l, p); 1784 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1785 uasm_i_nop(&p); 1786 1787 if (p >= handle_tlbs_end) 1788 panic("TLB store handler fastpath space exceeded"); 1789 1790 uasm_resolve_relocs(relocs, labels); 1791 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 1792 (unsigned int)(p - handle_tlbs)); 1793 1794 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size); 1795 } 1796 1797 static void build_r3000_tlb_modify_handler(void) 1798 { 1799 u32 *p = handle_tlbm; 1800 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 1801 struct uasm_label *l = labels; 1802 struct uasm_reloc *r = relocs; 1803 1804 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 1805 memset(labels, 0, sizeof(labels)); 1806 memset(relocs, 0, sizeof(relocs)); 1807 1808 build_r3000_tlbchange_handler_head(&p, K0, K1); 1809 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm); 1810 uasm_i_nop(&p); /* load delay */ 1811 build_make_write(&p, &r, K0, K1); 1812 build_r3000_pte_reload_tlbwi(&p, K0, K1); 1813 1814 uasm_l_nopage_tlbm(&l, p); 1815 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1816 uasm_i_nop(&p); 1817 1818 if (p >= handle_tlbm_end) 1819 panic("TLB modify handler fastpath space exceeded"); 1820 1821 uasm_resolve_relocs(relocs, labels); 1822 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 1823 (unsigned int)(p - handle_tlbm)); 1824 1825 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size); 1826 } 1827 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 1828 1829 /* 1830 * R4000 style TLB load/store/modify handlers. 1831 */ 1832 static struct work_registers 1833 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, 1834 struct uasm_reloc **r) 1835 { 1836 struct work_registers wr = build_get_work_registers(p); 1837 1838 #ifdef CONFIG_64BIT 1839 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */ 1840 #else 1841 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */ 1842 #endif 1843 1844 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1845 /* 1846 * For huge tlb entries, pmd doesn't contain an address but 1847 * instead contains the tlb pte. Check the PAGE_HUGE bit and 1848 * see if we need to jump to huge tlb processing. 1849 */ 1850 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update); 1851 #endif 1852 1853 UASM_i_MFC0(p, wr.r1, C0_BADVADDR); 1854 UASM_i_LW(p, wr.r2, 0, wr.r2); 1855 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); 1856 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2); 1857 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1); 1858 1859 #ifdef CONFIG_SMP 1860 uasm_l_smp_pgtable_change(l, *p); 1861 #endif 1862 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */ 1863 if (!m4kc_tlbp_war()) 1864 build_tlb_probe_entry(p); 1865 return wr; 1866 } 1867 1868 static void 1869 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, 1870 struct uasm_reloc **r, unsigned int tmp, 1871 unsigned int ptr) 1872 { 1873 uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); 1874 uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); 1875 build_update_entries(p, tmp, ptr); 1876 build_tlb_write_entry(p, l, r, tlb_indexed); 1877 uasm_l_leave(l, *p); 1878 build_restore_work_registers(p); 1879 uasm_i_eret(p); /* return from trap */ 1880 1881 #ifdef CONFIG_64BIT 1882 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill); 1883 #endif 1884 } 1885 1886 static void build_r4000_tlb_load_handler(void) 1887 { 1888 u32 *p = handle_tlbl; 1889 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1890 struct uasm_label *l = labels; 1891 struct uasm_reloc *r = relocs; 1892 struct work_registers wr; 1893 1894 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1895 memset(labels, 0, sizeof(labels)); 1896 memset(relocs, 0, sizeof(relocs)); 1897 1898 if (bcm1250_m3_war()) { 1899 unsigned int segbits = 44; 1900 1901 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1902 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1903 uasm_i_xor(&p, K0, K0, K1); 1904 uasm_i_dsrl_safe(&p, K1, K0, 62); 1905 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1906 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1907 uasm_i_or(&p, K0, K0, K1); 1908 uasm_il_bnez(&p, &r, K0, label_leave); 1909 /* No need for uasm_i_nop */ 1910 } 1911 1912 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 1913 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 1914 if (m4kc_tlbp_war()) 1915 build_tlb_probe_entry(&p); 1916 1917 if (cpu_has_rixi) { 1918 /* 1919 * If the page is not _PAGE_VALID, RI or XI could not 1920 * have triggered it. Skip the expensive test.. 1921 */ 1922 if (use_bbit_insns()) { 1923 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 1924 label_tlbl_goaround1); 1925 } else { 1926 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 1927 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1); 1928 } 1929 uasm_i_nop(&p); 1930 1931 uasm_i_tlbr(&p); 1932 1933 switch (current_cpu_type()) { 1934 default: 1935 if (cpu_has_mips_r2) { 1936 uasm_i_ehb(&p); 1937 1938 case CPU_CAVIUM_OCTEON: 1939 case CPU_CAVIUM_OCTEON_PLUS: 1940 case CPU_CAVIUM_OCTEON2: 1941 break; 1942 } 1943 } 1944 1945 /* Examine entrylo 0 or 1 based on ptr. */ 1946 if (use_bbit_insns()) { 1947 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 1948 } else { 1949 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 1950 uasm_i_beqz(&p, wr.r3, 8); 1951 } 1952 /* load it in the delay slot*/ 1953 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 1954 /* load it if ptr is odd */ 1955 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 1956 /* 1957 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 1958 * XI must have triggered it. 1959 */ 1960 if (use_bbit_insns()) { 1961 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl); 1962 uasm_i_nop(&p); 1963 uasm_l_tlbl_goaround1(&l, p); 1964 } else { 1965 uasm_i_andi(&p, wr.r3, wr.r3, 2); 1966 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl); 1967 uasm_i_nop(&p); 1968 } 1969 uasm_l_tlbl_goaround1(&l, p); 1970 } 1971 build_make_valid(&p, &r, wr.r1, wr.r2); 1972 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 1973 1974 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1975 /* 1976 * This is the entry point when build_r4000_tlbchange_handler_head 1977 * spots a huge page. 1978 */ 1979 uasm_l_tlb_huge_update(&l, p); 1980 iPTE_LW(&p, wr.r1, wr.r2); 1981 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 1982 build_tlb_probe_entry(&p); 1983 1984 if (cpu_has_rixi) { 1985 /* 1986 * If the page is not _PAGE_VALID, RI or XI could not 1987 * have triggered it. Skip the expensive test.. 1988 */ 1989 if (use_bbit_insns()) { 1990 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 1991 label_tlbl_goaround2); 1992 } else { 1993 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 1994 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 1995 } 1996 uasm_i_nop(&p); 1997 1998 uasm_i_tlbr(&p); 1999 2000 switch (current_cpu_type()) { 2001 default: 2002 if (cpu_has_mips_r2) { 2003 uasm_i_ehb(&p); 2004 2005 case CPU_CAVIUM_OCTEON: 2006 case CPU_CAVIUM_OCTEON_PLUS: 2007 case CPU_CAVIUM_OCTEON2: 2008 break; 2009 } 2010 } 2011 2012 /* Examine entrylo 0 or 1 based on ptr. */ 2013 if (use_bbit_insns()) { 2014 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 2015 } else { 2016 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 2017 uasm_i_beqz(&p, wr.r3, 8); 2018 } 2019 /* load it in the delay slot*/ 2020 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 2021 /* load it if ptr is odd */ 2022 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 2023 /* 2024 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 2025 * XI must have triggered it. 2026 */ 2027 if (use_bbit_insns()) { 2028 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2); 2029 } else { 2030 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2031 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2032 } 2033 if (PM_DEFAULT_MASK == 0) 2034 uasm_i_nop(&p); 2035 /* 2036 * We clobbered C0_PAGEMASK, restore it. On the other branch 2037 * it is restored in build_huge_tlb_write_entry. 2038 */ 2039 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0); 2040 2041 uasm_l_tlbl_goaround2(&l, p); 2042 } 2043 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID)); 2044 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2045 #endif 2046 2047 uasm_l_nopage_tlbl(&l, p); 2048 build_restore_work_registers(&p); 2049 #ifdef CONFIG_CPU_MICROMIPS 2050 if ((unsigned long)tlb_do_page_fault_0 & 1) { 2051 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0)); 2052 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0)); 2053 uasm_i_jr(&p, K0); 2054 } else 2055 #endif 2056 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 2057 uasm_i_nop(&p); 2058 2059 if (p >= handle_tlbl_end) 2060 panic("TLB load handler fastpath space exceeded"); 2061 2062 uasm_resolve_relocs(relocs, labels); 2063 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 2064 (unsigned int)(p - handle_tlbl)); 2065 2066 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size); 2067 } 2068 2069 static void build_r4000_tlb_store_handler(void) 2070 { 2071 u32 *p = handle_tlbs; 2072 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 2073 struct uasm_label *l = labels; 2074 struct uasm_reloc *r = relocs; 2075 struct work_registers wr; 2076 2077 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 2078 memset(labels, 0, sizeof(labels)); 2079 memset(relocs, 0, sizeof(relocs)); 2080 2081 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2082 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2083 if (m4kc_tlbp_war()) 2084 build_tlb_probe_entry(&p); 2085 build_make_write(&p, &r, wr.r1, wr.r2); 2086 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2087 2088 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2089 /* 2090 * This is the entry point when 2091 * build_r4000_tlbchange_handler_head spots a huge page. 2092 */ 2093 uasm_l_tlb_huge_update(&l, p); 2094 iPTE_LW(&p, wr.r1, wr.r2); 2095 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2096 build_tlb_probe_entry(&p); 2097 uasm_i_ori(&p, wr.r1, wr.r1, 2098 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2099 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2100 #endif 2101 2102 uasm_l_nopage_tlbs(&l, p); 2103 build_restore_work_registers(&p); 2104 #ifdef CONFIG_CPU_MICROMIPS 2105 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2106 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2107 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2108 uasm_i_jr(&p, K0); 2109 } else 2110 #endif 2111 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2112 uasm_i_nop(&p); 2113 2114 if (p >= handle_tlbs_end) 2115 panic("TLB store handler fastpath space exceeded"); 2116 2117 uasm_resolve_relocs(relocs, labels); 2118 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 2119 (unsigned int)(p - handle_tlbs)); 2120 2121 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size); 2122 } 2123 2124 static void build_r4000_tlb_modify_handler(void) 2125 { 2126 u32 *p = handle_tlbm; 2127 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 2128 struct uasm_label *l = labels; 2129 struct uasm_reloc *r = relocs; 2130 struct work_registers wr; 2131 2132 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 2133 memset(labels, 0, sizeof(labels)); 2134 memset(relocs, 0, sizeof(relocs)); 2135 2136 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2137 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2138 if (m4kc_tlbp_war()) 2139 build_tlb_probe_entry(&p); 2140 /* Present and writable bits set, set accessed and dirty bits. */ 2141 build_make_write(&p, &r, wr.r1, wr.r2); 2142 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2143 2144 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2145 /* 2146 * This is the entry point when 2147 * build_r4000_tlbchange_handler_head spots a huge page. 2148 */ 2149 uasm_l_tlb_huge_update(&l, p); 2150 iPTE_LW(&p, wr.r1, wr.r2); 2151 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2152 build_tlb_probe_entry(&p); 2153 uasm_i_ori(&p, wr.r1, wr.r1, 2154 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2155 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2156 #endif 2157 2158 uasm_l_nopage_tlbm(&l, p); 2159 build_restore_work_registers(&p); 2160 #ifdef CONFIG_CPU_MICROMIPS 2161 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2162 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2163 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2164 uasm_i_jr(&p, K0); 2165 } else 2166 #endif 2167 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2168 uasm_i_nop(&p); 2169 2170 if (p >= handle_tlbm_end) 2171 panic("TLB modify handler fastpath space exceeded"); 2172 2173 uasm_resolve_relocs(relocs, labels); 2174 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 2175 (unsigned int)(p - handle_tlbm)); 2176 2177 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size); 2178 } 2179 2180 static void flush_tlb_handlers(void) 2181 { 2182 local_flush_icache_range((unsigned long)handle_tlbl, 2183 (unsigned long)handle_tlbl_end); 2184 local_flush_icache_range((unsigned long)handle_tlbs, 2185 (unsigned long)handle_tlbs_end); 2186 local_flush_icache_range((unsigned long)handle_tlbm, 2187 (unsigned long)handle_tlbm_end); 2188 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd, 2189 (unsigned long)tlbmiss_handler_setup_pgd_end); 2190 } 2191 2192 void build_tlb_refill_handler(void) 2193 { 2194 /* 2195 * The refill handler is generated per-CPU, multi-node systems 2196 * may have local storage for it. The other handlers are only 2197 * needed once. 2198 */ 2199 static int run_once = 0; 2200 2201 output_pgtable_bits_defines(); 2202 2203 #ifdef CONFIG_64BIT 2204 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 2205 #endif 2206 2207 switch (current_cpu_type()) { 2208 case CPU_R2000: 2209 case CPU_R3000: 2210 case CPU_R3000A: 2211 case CPU_R3081E: 2212 case CPU_TX3912: 2213 case CPU_TX3922: 2214 case CPU_TX3927: 2215 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 2216 if (cpu_has_local_ebase) 2217 build_r3000_tlb_refill_handler(); 2218 if (!run_once) { 2219 if (!cpu_has_local_ebase) 2220 build_r3000_tlb_refill_handler(); 2221 build_setup_pgd(); 2222 build_r3000_tlb_load_handler(); 2223 build_r3000_tlb_store_handler(); 2224 build_r3000_tlb_modify_handler(); 2225 flush_tlb_handlers(); 2226 run_once++; 2227 } 2228 #else 2229 panic("No R3000 TLB refill handler"); 2230 #endif 2231 break; 2232 2233 case CPU_R6000: 2234 case CPU_R6000A: 2235 panic("No R6000 TLB refill handler yet"); 2236 break; 2237 2238 case CPU_R8000: 2239 panic("No R8000 TLB refill handler yet"); 2240 break; 2241 2242 default: 2243 if (!run_once) { 2244 scratch_reg = allocate_kscratch(); 2245 build_setup_pgd(); 2246 build_r4000_tlb_load_handler(); 2247 build_r4000_tlb_store_handler(); 2248 build_r4000_tlb_modify_handler(); 2249 if (!cpu_has_local_ebase) 2250 build_r4000_tlb_refill_handler(); 2251 flush_tlb_handlers(); 2252 run_once++; 2253 } 2254 if (cpu_has_local_ebase) 2255 build_r4000_tlb_refill_handler(); 2256 } 2257 } 2258